Silaum silaus (L.) Schinz and Thell.—Habitat Conditions and Variation in Selected Characteristics of Populations at Different Densities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Species
2.2. Study Area
2.3. Study of Habitat Conditions
2.4. Vegetation Survey
2.5. Analysis of Population Numbers and Selected Traits of Generative Specimens
2.6. Statistical Analyses
3. Results
3.1. Habitat Conditions
3.2. Vegetation
3.3. Population Numbers and Characteristics of Generative Specimens
4. Discussion
4.1. Habitat Conditions
4.2. Phytocoenotic and Species Diversity
4.3. Population Numbers and Analysis of Selected Specimen Characteristics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saunders, D.A.; Hobbs, R.J.; Margules, C.R. Biological consequences of ecosystem fragmentation: A review. Conserv. Biol. 1991, 5, 18–32. [Google Scholar] [CrossRef]
- Harrison, S.; Bruna, E. Habitat fragmentation and large-scale conservation: What do we know for sure? Ecography 1999, 22, 225–232. [Google Scholar] [CrossRef]
- Steffan-Dewenter, I. Importance of habitat area and landscape context for species richness of bees and wasps in fragmented orchard meadows. Conserv. Biol. 2003, 17, 1036–1044. [Google Scholar] [CrossRef]
- Scanes, C.G. Human Activity and Habitat Loss: Destruction, Fragmentation, and Degradation. In Animals and Human Society; Scanes, C.G., Toukhsati, S.R., Eds.; Academic Press: Cambridge, MA, USA, 2018; Volume 19, pp. 451–482. [Google Scholar] [CrossRef]
- Jacobson, A.P.; Riggio, J.M.; Tait, A.M.; Baillie, J.E.M. Global areas of low human impact (‘Low Impact Areas’) and fragmentation of the natural world. Sci. Rep. 2019, 9, 14179. [Google Scholar] [CrossRef] [PubMed]
- Krebs, L.; Corbonnois, J.; Muller, S. The impact of hydrological fluctuations on shallow groundwater hydrochemistry under two alluvial meadows. Hydrobiologia 1999, 410, 195–206. [Google Scholar] [CrossRef]
- Grevilliot, F.; Muller, S. Grassland ecotopes of the upper Meuse as references for habitats and biodiversity restoration: A synthesis. Landsc. Ecol. 2002, 17, 19–33. [Google Scholar] [CrossRef]
- Pykälä, J. Habitat loss and deterioration explain the disappearance of populations of threatened vascular plants, bryophytes and lichens in a hemiboreal landscape. Glob. Ecol. Conserv. 2019, 18, e00610. [Google Scholar] [CrossRef]
- Harvolk-Schöning, S.; Michalska-Hejduk, D.; Harnisch, M.; Otte, A.; Donath, T.W. Floodplain meadow restoration revisited: Long-term success of large scale application of diaspore transfer with plant material in restoration practice. Biol. Conserv. 2020, 241, 108322. [Google Scholar] [CrossRef]
- Hopkins, A.; Hopkins, J.J. UK grasslands now: Agricultural production and nature conservation. In Proceedings of the Grassland Management and Nature Conservation. Occasional Symposium No. 28, Leeds University, Leeds, UK, 27–29 September 1993; Haggar, R.J., Peel, S., Eds.; British Grassland Society: Dunston Business Village, Dunston, UK, 1994; pp. 10–19. [Google Scholar]
- Huyghe, C.; De Vliegher, A.; van Gils, B.; Peeters, A. Grasslands and Herbivore Production in Europe and Effects of Common Policies, 1st ed.; Editions Quae: Versailles, France, 2014; pp. 1–288. [Google Scholar] [CrossRef]
- Goulnik, J.; Plantureux, S.; Théry, M.; Baude, M.; Delattre, M.; van Reeth, C.; Villerd, J.; Michelot-Antalik, A. Floral trait functional diversity is related to soil characteristics and positively influences pollination function in semi-natural grasslands. Agric. Ecosyst. Environ. 2020, 301, 107033. [Google Scholar] [CrossRef]
- Berendse, F.; Oomes, M.J.M.; Altena, H.J.; Elberse, W.T.H. Experiments of restoration of species-rich meadows in the Netherlands. Biol. Conserv. 1992, 62, 59–65. [Google Scholar] [CrossRef]
- Matches, A.G. Plant respons to grazing: A review. J. Prod. Agric. 1992, 5, 1–7. [Google Scholar] [CrossRef]
- Broyer, J.; Prudhomme, J. Incidence de la fertilisation sur la diversité floristique des prairies de fauche inondables dans le val de Saône. Écologie 1995, 26, 45–58. [Google Scholar]
- McJannet, C.L.; Keddy, P.A.; Pick, F.R. Nitrogen and phosphorous tissue concentrations in 41 wetland plants: A comparison across habitats and functional groups. Funct. Ecol. 1995, 9, 231–238. [Google Scholar] [CrossRef]
- Mountford, J.O.; Lakhani, K.H.; Holland, R.J. Reversion of grassland vegetation following the cessation of fertilizer application. J. Veget. Sci. 1996, 7, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Schnittler, M.; Günther, K.F. Central European vascular plants requiring priority conservation measures—An analysis from national Red Lists and distribution maps. Biodivers. Conserv. 1999, 8, 891–925. [Google Scholar] [CrossRef]
- Hölzel, N.; Otte, A. Restoration of a species-rich flood meadow by topsoil removal and diaspore transfer with plant material. Appl. Veg. Sci. 2003, 6, 131–140. [Google Scholar] [CrossRef]
- Myśliwy, M.; Bosiacka, B. Disappearance of Molinio-Arrhenatheretea meadows diagnostic species in the upper plonia river valley (NW Poland). Pol. J. Environ. Stud. 2009, 18, 513–519. [Google Scholar]
- Rysiak, A.; Chabuz, W.; Sawicka-Zugaj, W.; Zdulski, J.; Grzywaczewski, G.; Kulik, M. Comparative impacts of grazing and mowing on the floristics of grasslands in the buffer zone of Polesie National Park, eastern Poland. Glob. Ecol. Conserv. 2021, 27, e01612. [Google Scholar] [CrossRef]
- Wójcik, T.; Kostrakiewicz-Gierałt, K.; Makuch-Pietraś, I. The effect of accidental burning on habitat conditions and species composition of Molinion caeruleae meadows. J. Nat. Conserv. 2022, 70, 126294. [Google Scholar] [CrossRef]
- Kostrakiewicz-Gierałt, K.; Podgórska, M.; Kłosowski, S. State of the population of Gladiolus imbricatus L. in a molinia meadow after extensive management and abandonment. Int. J. Ecol. 2023, 2023, 2549617. [Google Scholar] [CrossRef]
- Costanza, R.; D’Arge, R.; De Groot, R.; Farberk, S.; Grasso, M.; Bruce Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Qian, D.; Du, Y.; Li, Q.; Guo, X.; Fan, B.; Cao, G. Impacts of alpine shrub-meadow degradation on its ecosystem services and spatial patterns in Qinghai-Tibetan Plateau. Ecol. Indic. 2022, 135, 108541. [Google Scholar] [CrossRef]
- Council Directive 92/43/EEC of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna and Flora. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31992L0043 (accessed on 12 December 2023).
- Matthews, J.W.; Spyreas, G. Convergence and divergence in plant community trajectories as a framework for monitoring wetland restoration progress. J. Appl. Ecol. 2010, 47, 1128–1136. [Google Scholar] [CrossRef]
- Woodcock, B.A.; McDonald, A.W.; Pywell, R.F. Can long-term floodplain meadow recreation replicate species composition and functional characteristics of target grasslands? J. Appl. Ecol. 2011, 48, 1070–1078. [Google Scholar] [CrossRef]
- Schmiede, R.; Otte, A.; Donath, T.W. Enhancing plant biodiversity in species-poor grassland through plant material transfer—The impact of sward disturbance. Appl. Veg. Sci. 2012, 15, 290–298. [Google Scholar] [CrossRef]
- Smith, R.S.; Shiel, R.S.; Bardgett, R.D.; Millward, D.; Corkhill, P.; Evans, P.; Quirk, H.; Hobbs, P.J.; Kometa, S.T. Long-term change in vegetation and soil microbial communities during the phased restoration of traditional meadow grassland. J. Appl. Ecol. 2008, 45, 670–679. [Google Scholar] [CrossRef]
- Thompson, K.; Bakker, J.P.; Bekker, R.M. The Soil Seed Banks of North West Europe; University Press: Cambridge, UK, 1997; pp. 1–276. [Google Scholar]
- Bischoff, A. Dispersal and re-establishment of Silaum silaus (L.) in floodplain grassland. Basic Appl Ecol. 2000, 1, 125–131. [Google Scholar] [CrossRef]
- Donath, T.W.; Hözel, N.; Otte, A. Influence of competition by sown grass, disturbance and litter on recruitment of rare floodmeadow species. Biol. Conserv. 2006, 130, 315–323. [Google Scholar] [CrossRef]
- Niemela, J.; Baur, B. Threatened species in a vanishing habitat: Plants and invertebrates in calcareous grasslands in the Swiss Jura mountains. Biodivers. Conserv. 1998, 7, 1407–1416. [Google Scholar] [CrossRef]
- Kącki, Z. Comprehensive Syntaxonomy of Molinion Meadows in Southwestern Poland; Volume 2 of Acta Botanica Silesiaca: Monographiae; Biologica Silesiae: Wrocław, Poland, 2007; Volume 2, pp. 1–134. [Google Scholar]
- Řezničková, M. Variability of the Molinion meadows in Slovakia. Biologia 2007, 62, 675–683. [Google Scholar] [CrossRef]
- Swacha, G.; Kącki, Z.; Załuski, T. Classification of Molinia meadows in Poland using a hierarchical expert system. Phytocoenologia 2016, 46, 33–47. [Google Scholar] [CrossRef]
- Rodríguez-Rojo, M.P.; Jiménez-Alfaro, B.; Jandt, U.; Bruelheide, H.; Rodwell, J.S.; Schaminée, J.H.J.; Perrin, P.M.; Kącki, Z.; Willner, W.; Fernández-González, F.; et al. Diversity of lowland hay meadows and pastures in Western and Central Europe. Appl. Veg. Sci. 2017, 20, 702–719. [Google Scholar] [CrossRef]
- Mokrikov, G.V.; Minnikova, T.V.; Kazeev, K.S.; Kolesnikov, S.I. Influence of direct seeding on the yield of agricultural cultures in the Rostov Region. Samara J. Sci. 2019, 8, 69–75. [Google Scholar] [CrossRef]
- Balátova-Tuláčková, E. Einige Molinietalia-Gesellschaften in ihrer Bedeutung für die Landschaftsokologie. In Pflanzensoziologie und Landschaftsokologie Bericht über das J. Internationale Symposion in Stolzenau/Weser 1963 der Internationalen Vereinigung für Vegetationskunde; Tüxen, R., Ed.; Springer-Science+Business Media, B.V.: Zaltbommel, The Netherlands, 1968; pp. 247–251. [Google Scholar] [CrossRef]
- Balátova-Tuláčková, E. Zur Dynamik der Artmächtigkeit innerhalb südmährischer Cnidion venosi-Auenwiesen. In Gesellschaftsentwicklung (Syndynamik); Tüxen, R., Sommer, W.H., Eds.; Springer-Science+Business Media, B.V.: Dordrecht, The Netherlands, 1979; pp. 361–378. [Google Scholar] [CrossRef]
- Bergmeier, E.; Nowak, B.; Wedra, C. Silaum silaus- und Senecio aquaticus-Wiesen in Hessen—Ein Beitrag zu ihrer Systematik, Verbreitung und Ökologie. Tuexenia 1984, 4, 163–179. [Google Scholar]
- Bischoff, A.; Warthemann, G.; Klotz, S. Succession of floodplain grasslands following reduction in land use intensity: The importance of environmental conditions, management and dispersal. J. Appl. Ecol. 2009, 46, 241–249. [Google Scholar] [CrossRef]
- Guardiola, M.; Oliver, X.; García, J.F. Les poblacions de «Silaum silaus» (Umbelliferae) a Catalunya: Distribució, ecologia, amenaces i estatus. Orsis 2014, 28, 55. [Google Scholar] [CrossRef]
- Khapugin, A.A. Population characteristics of Silaum silaus (L.) Schinz & Thell. (Apiaceae) in Mordovia, a highly threatened plant species at the northern limit of its range. J. Threat. Taxa 2018, 10, 11147–11155. [Google Scholar] [CrossRef]
- Anishchenko, I.E.; Zhigunov, O.Y.; Ishbirdina, L.M. Rarely Used Aromatic Plants in the Bashkir Cis-Urals. Vestn. Bashkir State Agrar. Univ. 2019, 51, 6–9. [Google Scholar] [CrossRef]
- Plants of the World Online. Silaum silaus (L.) Schinz & Thell. 2023. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:848813-1 (accessed on 15 December 2023).
- Rutkowski, L. Klucz do Oznaczania Roślin Naczyniowych Polski Niżowej; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2004; p. 816. [Google Scholar]
- Hultén, E.; Fries, M. Atlas of North European Vascular Plants North of the Tropic Cancer; Koeltz Scientific Books: Königstein, Germany, 1986; Volume 2, p. 1172. [Google Scholar]
- Zając, A.; Zając, M. Distribution Atlas of Vascular Plants in Poland; Pracownia Chorologii Komputerowej Instytutu Botaniki Uniwersytetu Jagiellońskiego: Cracow, Poland, 2001; p. 521. [Google Scholar]
- Global Biodiversity Information Facility Online. Silaum silaus (L.) Schinz & Thell. 2023. Available online: https://www.gbif.org/species/6027388 (accessed on 20 December 2023).
- Leuschner, C.; Ellenberg, H. Ecology of Central European Non-Forest Vegetation: Coastal to Alpine, Natural to Man-Made Habitats: Vegetation Ecology of Central Europe; Springer: Stuttgart, Germany, 2017; Volume 2, pp. 1–1093. [Google Scholar] [CrossRef]
- Matuszkiewicz, W. A Guide for Identification of Plant Communities in Poland; PWN: Warsaw, Poland, 2005; pp. 1–540. [Google Scholar]
- Kącki, Z. Variability and long-term changes in the species composition of Molinia meadows in Poland: A case study using a large data set from the Polish Vegetation Database. Acta Bot. Siles. Monographiae 2012, 7, 1–144. [Google Scholar]
- Krasicka-Korczyńska, E.; Korczyński, M. Łąki z Silaum silaus na Równinie Szubińsko-Łabiszyńskiej. In Łąki w Krajobrazie; Stosik, T., Krasicka-Korczyńska, T., Korczyński, M.E., Eds.; Polskie Towarzystwo Botaniczne, Oddział w Bydgoszczy: Bydgoszcz, Poland, 2014; pp. 21–34. [Google Scholar]
- Załuski, T. Łąki selernicowe (związek Cnidion dubii Bal.-Tul. 1966) w Polsce. Monogr. Bot. 1995, 77, 1–142. [Google Scholar]
- Bissels, S.; Hölzel, N.; Donath, T.W.; Otte, A. Evaluation of restoration success in alluvial grasslands under contrasting flooding regimes. Biol. Conserv. 2004, 118, 641–650. [Google Scholar] [CrossRef]
- Bischoff, A.; Hoboy, S.; Winter, N.; Warthemann, G. Hay and seed transfer to re-establish rare grassland species and communities: How important are date and soil preparation? Biol. Conserv. 2018, 221, 182–189. [Google Scholar] [CrossRef]
- Studer-Ehrensberge, K. Synthesis of semi-natural grassland vegetation of a biogeographically heterogeneous area: Mesophilous species-rich meadows in Switzerland. Folia Geobot. 2000, 35, 289–313. [Google Scholar] [CrossRef]
- Illyés, E.; Chytrý, M.; Botta-Dukát, Z.; Jandt, U.; Škodová, I.; Janišová, M.; Willner, W.; Hájek, O. Semi-dry grasslands along a climatic gradient across Central Europe: Vegetation classification with validation. J. Veget. Sci. 2007, 18, 835–846. [Google Scholar] [CrossRef]
- Dudáš, M.; Hrivnák, R.; Slezák, M. Chorology and phytosociological affinity of Greater Spearwort (Ranunculus lingua L.) in Slovakia. Biologia 2023, 78, 2689–2700. [Google Scholar] [CrossRef]
- Grevilliot, F.; Broyer, J.; Muller, S. Phytogeographical and phenological comparison of the Meuse and the Saone valley meadows (France). J. Biogeogr. 1998, 25, 339–360. [Google Scholar] [CrossRef]
- García-Madrid, A.S.; Rodríguez-Rojo, M.P.; Cantó, P.; Molina, J.A. Diversity and classification of tall humid herb grasslands (Molinio-Holoschoenion) in Western Mediterranean Europe. Appl. Veg. Sci. 2016, 19, 736–749. [Google Scholar] [CrossRef]
- Golub, V.B. Class Asteretea tripolium on the Territory of the Former Ussr and Mongolia. Folia Geobot. Phytotx. 1994, 29, 15–54. [Google Scholar] [CrossRef]
- Matveev, N.M.; Divnova, M.A.; Bazhanova, A.V.; Lobanova, A.V. Ecological Features of Green Strawberry Cenopopulations in the Steppe Transvolga Region. Russ. J. Ecol. 2004, 35, 220–223. [Google Scholar] [CrossRef]
- Frank, D.; Herdman, H.; Jage, H.; Klotz, S.; Ratey, F.; Wegener, U.; Weinert, E.; Westhus, W. Rote Liste der Farn- und Blütenpflanzen des Landes Sachsen-Anhalt. Ber. Landesamt Umweltschutz Sachsen-Anhalt 1992, 1, 44–63. [Google Scholar]
- Westhus, W.; Zündorf, H.J. Rote Liste der Farn- und Blütenpflanzen (Pteridophyta et Spermatophyta) Thüringens. Naturschutzreport 1993, 5, 134–152. [Google Scholar]
- Kiraly, G. Red List of the Vascular Flora of Hungary; Private Edition: Sopron, Hungary, 2007. [Google Scholar]
- Danihelka, J.; Chrtek, J.; Kaplan, Z. Checklist of vascular plants of the Czech Republic. Preslia 2012, 84, 647–811. [Google Scholar]
- Turis, P.; Kliment, J.; Feráková, V.; Dítě, D.; Eliáš, P.; Hrivnák, R.; Košťál, J.; Šuvada, R.; Mráz, P.; Bernátová, D. Red List of vascular plants of the Carpathian part of Slovakia. Thaiszia J. Bot. 2014, 24, 35–87. [Google Scholar]
- Bornand, C.; Eggenberg, S.; Gygax, A.; Juillerat, P.; Jutzi, M.; Marazzi, B.; Möhl, A.; Rometsch, S.; Sager, L.; Santiago, H. Regionale Rote Liste der Gefässpflanzen der Schweiz; Info Flora: Genf/Bern/Lugano, Switzerland, 2019; p. 340. [Google Scholar]
- Bornand, C.; Gygax, A.; Juillerat, P.; Jutzi, M.; Möhl, A.; Rometsch, S.; Sager, L.; Santiago, H.; Eggenberg, S. Rote Liste Gefässpflanzen. Gefährdete Arten der Schweiz. Bundesamt für Umwelt, Bern und Info Flora, Genf. Umwelt-Vollzug 2016, 1621, 156. [Google Scholar]
- Kaźmierczakowa, R.; Bloch-Orłowska, J.; Celka, Z.; Cwener, A.; Dajdok, Z.; Michalska-Hejduk, D.; Pawlikowski, P.; Szczęśniak, E.; Ziarnek, K. Polish Red List of Pteridophytes and Flowering Plants; Instytut Ochrony Przyrody PAN: Cracow, Poland, 2016; p. 38. [Google Scholar]
- Khapugin, A.A.; Silaeva, T.B.; Vargot, E.V.; Chugunov, G.G.; Grishutkina, G.A.; Grishutkin, O.G.; Pismarkina, E.V.; Orlova, J.S. Estimation of taxa included in the first volume of the Red Data Book of the Republic of Mordovia (Russia) using the IUCN Red List Cateories and Criteria. Nat. Conserv. Res. 2017, 2, 164–189. [Google Scholar] [CrossRef]
- Grulich, V.; Chobot, K. Red list of threatened species of the Czech Republic vascular plants. Příroda 2017, 35, 1–178. [Google Scholar]
- Chizzola, R. Variability of the volatile oil composition in a population of Silaum silaus from Eastern Austria. Nat. Prod. Commun. 2008, 3, 1141–1144. [Google Scholar] [CrossRef]
- Widelski, J.; Graikou, K.; Ganos, C.; Skalicka-Woźniak, K.; Chinou, I. Volatiles from selected Apiaceae species cultivated in Poland—Antimicrobial activities. Processes 2021, 9, 695. [Google Scholar] [CrossRef]
- Solon, J.; Borzyszkowski, J.; Bidłasik, M.; Richling, A.; Badora, K.; Balon, J.; Brzezińska-Wójcik, T.; Chabudziński, Ł.; Dobrowolski, R.; Grzegorczyk, I.; et al. Physico-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contemporary spatial data. Geogr. Pol. 2018, 91, 143–170. [Google Scholar] [CrossRef]
- Fiedeń, Ł. (Ed.) Turze Pole 600 lat Działalności Człowieka; Instytut Geografii i Gospodarki Przestrzennej, Uniwersytet Jagielloński: Cracow, Poland, 2020. [Google Scholar]
- Wójcik, T.; Brzoza, J.; Chrabąszcz, M.; Czarna, A.; Górecki, A.; Kostrakiewicz-Gierałt, K.; Klich, S.; Łazarski, G.; Nieroda, A.; Ociepa, A.M.; et al. Nowe stanowiska roślin naczyniowych Polski, 3. Wiad. Bot. 2022, 66, 20–23. [Google Scholar] [CrossRef]
- Pawlak, W. Atlas of Lower and Opole Silesia; University of Wroclaw: Wroclaw, Poland, 2008. [Google Scholar]
- Swacha, G.; Botta-Dukát, Z.; Kącki, Z.; Pruchniewicz, D.; Żołnierz, L. A performance comparison of sampling methods in the assessment of species composition patterns and environment–vegetation relationships in species-rich grasslands. Acta Soc. Bot. Pol. 2017, 86, 3561. [Google Scholar] [CrossRef]
- Ellenberg, H.; Leuschner, C. Vegetation Mitteleuropas mit den Alpen: In Ökologischer, Dynamischer und Historischer Sicht. 6; Auflage Ulmer UTB: Stuttgart, Germany, 2010. [Google Scholar]
- Tichý, L. JUICE, software for vegetation classification. J. Veg. Sci. 2002, 13, 451–453. [Google Scholar] [CrossRef]
- Braun-Blanquet, J. Pflanzensoziologie; Springer: Wien, Austria, 1964. [Google Scholar]
- Mirek, Z.; Piękoś-Mirkowa, H.; Zając, A.; Zając, M.; Bernacki, L.; Danielewicz, W.; Hügin, G.; Marciniuk, M.; Marciniuk, P.; Mitka, J.; et al. Vascular plants of Poland. An Annotated Checklist; W. Szafer Institute of Botany, Polish Academy of Sciences: Cracow, Poland, 2020. [Google Scholar]
- Ochyra, R.; Żarnowiec, J.; Bednarek-Ochyra, H. Census Catalogue of Polish Mosses; Polish Academy of Sciences, W Szafer Institute of Botany: Cracow, Poland, 2003. [Google Scholar]
- Rozporządzenie Ministra Środowiska z dnia 9 Października 2014 r. w Sprawie Ochrony Gatunkowej Roślin [Regulation of the Minister of Environment of 9th October 2014 concerning plant species protection]. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20140001409 (accessed on 21 September 2023). (In Polish)
- van der Maarel, E. Transformation of cover-abundance values in phytosociology and its effect on community similarity. Vegetatio 1979, 39, 97–114. [Google Scholar] [CrossRef]
- Pielou, E.C. Population and Community Ecology: Principles and Methods; CRC Press: New York, NY, USA, 1974. [Google Scholar]
- Pielou, E.C. Indices of Diversity and Evenness. Ecological Diversity; John Wiley and Sons: New York, NY, USA, 1975. [Google Scholar]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Zarzycki, K.; Trzcińska-Tacik, H.; Różański, W.; Szeląg, Z.; Wołek, J.; Korzeniak, U. Ecological Values of Vascular Plants of Poland. Biodiversity of Poland; W. Szafer Institute of Botany, Polish Academy of Sciences: Cracow, Poland, 2002. [Google Scholar]
- Chytrý, M.; Tichý, L.; Dřevojan, P.; Sádlo, J.; Zelený, D. Ellenberg-type indicator values for the Czech flora. Preslia 2018, 90, 83–103. [Google Scholar] [CrossRef]
- Bischoff, A. Dispersal and establishment of floodplain grassland species as limiting factors in restoration. Biol. Conserv. 2002, 104, 25–33. [Google Scholar] [CrossRef]
- Swacha, G.; Botta-Dukaát, Z.; Kącki, Z.; Pruchniewicz, D.; Żołnierz, L. The effect of abandonment on vegetation composition and soil properties in Molinion meadows (SW Poland). PLoS ONE 2018, 13, e0197363. [Google Scholar] [CrossRef] [PubMed]
- Donath, T.W.; Bissels, S.; Hölzel, N.; Otte, A. Large scale application of diaspore transfer with plant material in restoration practice—Impact of seed and microsite limitation. Biol. Conserv. 2007, 138, 224–234. [Google Scholar] [CrossRef]
- Stokłosa, N.; Krasicka-Korczyńska, E.; Kieliszewska-Rokicka, B. Mycorrhizal status of selected herbaceous plants in Molinia meadows of Folusz, near Szubin (Poland). Ecol. Quest. 2016, 23, 71–78. [Google Scholar] [CrossRef]
- Yeo, M.J.M.; Blackstock, T.H.; Stevens, D.P. The use of phytosociological data in conservation assessment: A case study of lowland grasslands in mid Wales. Biol. Conserv. 1998, 86, 125–138. [Google Scholar] [CrossRef]
- Kirkham, F.W.; Tallowin, J.R.B.; Sanderson, R.A.; Bhogal, A.; Chambers, B.J.; Stevens, D.P. The impact of organic and inorganic fertilizers and lime on the species-richness and plant functional characteristics of hay meadow communities. Biol. Conserv. 2008, 141, 1411–1427. [Google Scholar] [CrossRef]
- Kalusová, V.; Le Duc, M.G.; Gilbert, J.C.; Lawson, C.S.; Gowing, D.J.G.; Marrs, R.H. Determining the important environmental variables controlling plant species community composition in mesotrophic grasslands in Great Britain. Appl. Veg. Sci. 2009, 12, 459–471. [Google Scholar] [CrossRef]
- Kupferschmid, A.D.; Stampfli, A.; Newbery, D.M. Dispersal and microsite limitation in an abandoned calcareous grassland of the southern Prealps. Folia Geobot. 2000, 35, 125–141. [Google Scholar] [CrossRef]
- Poschlod, P.; Biewer, H. Diaspore and gap availability are limiting species richness in wet meadows. Folia Geobot. 2005, 40, 13–34. [Google Scholar] [CrossRef]
- Pywell, R.F.; Bullock, J.M.; Tallowin, J.R.; Walker, K.J.; Warman, E.A.; Masters, G. Enhancing diversity of species-poor grasslands: An experimental assessment of multiple constraints. J. Appl. Ecol. 2007, 44, 81–94. [Google Scholar] [CrossRef]
Soil Fraction | The Particular Soil Fractions (%) in | The Mann–Whitney U Test Value; p Value | |
---|---|---|---|
1 | 2 | ||
sand (2–0.05 mm) | 22.6 ± 7.57 | 33.6 ± 4.04 | U = 2.0; p < 0.05 |
silt (0.05–0.002 mm) | 67.8 ± 5.26 | 58.0 ± 3.67 | U = 1.0; p < 0.05 |
clay (>0.002 mm) | 9.6 ± 2.51 | 8.4 ± 1.34 | U = 8.5; p = 0.46 |
Soil Parameters | 1 | 2 | The Mann–Whitney U Test; p Value |
---|---|---|---|
pH H2O | 6.72 ± 0.19 | 5.48 ± 0.12 | U = 0.0; p < 0.05 |
pH KCl | 6.25 ± 0.21 | 4.88 ± 0.41 | U = 0.0; p < 0.05 |
EC [μS·cm−1] | 190.28 ± 21.59 | 90.34 ± 20.42 | U = 0.0; p < 0.01 |
CaCO3 | 0.28 ± 0.06 | 0.19 ± 0.01 | U = 0.0; p < 0.05 |
Corg [%] | 6.24 ± 0.82 | 4.69 ± 0.60 | U = 1.0; p < 0.05 |
N [%] | 0.63 ± 0.10 | 0.37 ± 0.05 | U = 0.0; p < 0.05 |
C/N | 9.94 ± 0.39 | 12.54 ± 0.51 | U = 0.0; p < 0.05 |
P2O5 [mg·100 g−1] | 3.36 ± 0.72 | 2.65 ± 0.14 | U = 3.0; p = 0.06 |
K2O [mg·100 g−1] | 9.54 ± 1.53 | 12.80 ± 3.36 | U = 6.0; p = 0.21 |
MgO [mg·100 g−1] | 60.18 ± 9.00 | 26.19 ± 5.88 | U = 0.0; p < 0.05 |
Hh [Molc·kg−1] | 2.37 ± 0.99 | 7.60 ± 1.00 | U = 0.0; p < 0.05 |
BS [Molc·kg−1] | 40.33 ± 4.99 | 16.77 ± 4.15 | U = 0.0; p < 0.05 |
CEC [Molc·kg−1] | 42.71 ± 5.67 | 24.37 ± 4.62 | U = 0.0; p < 0.05 |
Na+ [Molc·kg−1] | 0.14 ± 0.04 | 0.11 ± 0.03 | U = 7.0; p = 0.30 |
K+ [Molc·kg−1] | 0.28 ± 0.06 | 0.23 ± 0.07 | U = 7.0; p = 0.30 |
Mg++ [Molc·kg−1] | 6.49 ±1.02 | 2.06 ± 0.65 | U = 0.0; p < 0.05 |
Ca++ [Molc·kg−1] | 33.41 ± 4.00 | 14.35 ± 3.49 | U = 0.0; p < 0.05 |
Ellenberg Indicators | 1 | 2 | The Mann–Whitney U Test; p Value |
---|---|---|---|
L | 7.09 ± 0.10 | 6.87 ± 0.05 | U = 1.0; p < 0.05 |
T | 5.65 ± 0.10 | 5.67 ± 0.08 | U = 49.5; p = 1.0 |
K | 3.82 ± 0.12 | 4.54 ± 0.30 | U = 0.0; p < 0.05 |
F | 5.65 ± 0.28 | 6.15 ± 0.20 | U = 6.5; p < 0.05 |
R | 6.93 ± 0.12 | 6.60 ± 0.47 | U = 33.0; p = 0.21 |
N | 5.01 ± 0.49 | 3.37 ± 0.20 | U = 0.0; p < 0.05 |
Plant Community | 1 Arrhenatheretum elatioris | 2 Molinietum caeruleae | The Mann–Whitney U Test; p Value |
---|---|---|---|
Total number of species | 80 | 90 | - |
Number of species in relevé | 40.7 ± 4.47 | 41.3 ± 2.58 | U = 46.0; p = 0.79 |
H’ | 2.933 ± 0.17 | 2.983 ± 0.13 | U = 38.0; p = 0.38 |
E’ | 0.794 ± 0.03 | 0.810 ± 0.03 | U = 35.0; p = 0.27 |
SIMP | 0.892 ± 0.03 | 0.909 ± 0.02 | U = 30.0; p = 0.14 |
Trait | Year | 1 | 2 | U | Z | p |
---|---|---|---|---|---|---|
Length of the main stem [cm] | 2020 | 91.63 ± 14.48 | 92.70 ± 15.15 | 433 | −0.24394 | 0.80 |
2022 | 85.40 ± 16.52 | 88.330 ± 10.81 | 373 | −1.13101 | 0.26 | |
Number of side stems | 2020 | 5.00 ± 1.25 | 5.20 ± 1.32 | 414.5 | −0.51745 | 0.60 |
2022 | 5.57 ± 1.43 | 5.10 ± 1.24 | 342 | 1.58933 | 0.11 | |
Number of leaves | 2020 | 9.00 ± 1.84 | 10.93 ± 2.75 | 243.5 | −3.04559 | <0.05 |
2022 | 18.10 ± 5.96 | 13.67 ± 8.33 | 206 | 3.60001 | <0.001 | |
Length of the basal leaf [cm] | 2020 | 44.53 ± 8.13 | 37.70 ± 7.47 | 249.5 | 2.95689 | <0.001 |
2022 | 47.63 ± 9.71 | 43.40 ± 5.45 | 333.5 | 1.71499 | 0.09 |
Trait | Year | 1 | 2 | U | Z | p |
---|---|---|---|---|---|---|
Number of umbels | 2020 | 12.67 ± 4.83 | 13.47 ± 5.83 | 435 | −0.21437 | 0.83 |
2022 | 19.20 ± 7.18 | 16.63 ± 5.35 | 309 | 2.07721 | <0.05 | |
Number of umbellets in the top umbel | 2020 | 9.83 ± 1.55 | 9.77 ± 2.13 | 434.5 | 0.22177 | 0.82 |
2022 | 10.47 ± 2.22 | 9.17 ± 1.68 | 294 | 2.29898 | <0.05 | |
Number of flowers in the top umbellet | 2020 | 19.17 ± 4.24 | 22.83 ± 5.46 | 254.5 | −2.88296 | <0.05 |
2022 | 19.10 ± 4.64 | 20.10 ± 5.15 | 407.5 | −0.62095 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stadnicka-Futoma, A.; Wójcik, T.; Jaźwa, M. Silaum silaus (L.) Schinz and Thell.—Habitat Conditions and Variation in Selected Characteristics of Populations at Different Densities. Sustainability 2024, 16, 1844. https://doi.org/10.3390/su16051844
Stadnicka-Futoma A, Wójcik T, Jaźwa M. Silaum silaus (L.) Schinz and Thell.—Habitat Conditions and Variation in Selected Characteristics of Populations at Different Densities. Sustainability. 2024; 16(5):1844. https://doi.org/10.3390/su16051844
Chicago/Turabian StyleStadnicka-Futoma, Agata, Tomasz Wójcik, and Małgorzata Jaźwa. 2024. "Silaum silaus (L.) Schinz and Thell.—Habitat Conditions and Variation in Selected Characteristics of Populations at Different Densities" Sustainability 16, no. 5: 1844. https://doi.org/10.3390/su16051844
APA StyleStadnicka-Futoma, A., Wójcik, T., & Jaźwa, M. (2024). Silaum silaus (L.) Schinz and Thell.—Habitat Conditions and Variation in Selected Characteristics of Populations at Different Densities. Sustainability, 16(5), 1844. https://doi.org/10.3390/su16051844