Implications of a Climate-Smart Approach to Food and Income Security for Urban Sub-Saharan Africa: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy, Inclusion and Exclusion Criteria
2.2. Data Recording, Management, and Analyses
3. Results
3.1. Annual Scientific Production in Climate-Smart Agriculture Research in Sub-Sharan Africa from 2003 to 2023
3.2. Most Globally Cited Documents in Climate-Smart Agriculture Research in Sub-Sharan Africa between 2003 and 2023
3.3. Country Scientific Production and Most Relevant Affiliations of Climate-Smart Agriculture Research Sub-Sharan Africa between 2003 and 2023
3.4. Co-Occurrence and Interlinkages among Keywords
3.5. The Implications of Climate-Smart Agriculture Practices on Food and Income Security of Urban Farmers
3.5.1. Efficient/Improved Water Management
3.5.2. Conservation Agriculture and Agroecology
3.5.3. Improved Livestock Management
3.5.4. Crop Diversification and Enhancement
3.5.5. Sustainable Land Use and Management
3.5.6. Technological Innovation for Agroecological Support
3.5.7. Livestock, Financial, and Genetic Resource Management
3.5.8. Agricultural Systems and Practices
3.5.9. Ecosystem and Environmental Management
3.5.10. Community and Social Initiatives
3.5.11. Organic Farming and Soil Fertility Management
3.5.12. Pest Management and Crop Production
3.5.13. Other Strategies and Enhancing Adaptive Capacity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maja, M.M.; Ayano, S.F. The impact of population growth on natural resources and farmers’ capacity to adapt to climate change in low-income countries. Earth Syst. Environ. 2021, 5, 271–283. [Google Scholar] [CrossRef]
- Davis, K.F.; Downs, S.; Gephart, J.A. Towards food supply chain resilience to environmental shocks. Nat. Food 2021, 2, 54–65. [Google Scholar] [CrossRef]
- Arora, N.K. Impact of climate change on agriculture production and its sustainable solutions. Environ. Sustain. 2019, 2, 95–96. [Google Scholar] [CrossRef]
- Mallick, D.; Rahman, A. Inclusive economic growth and climate-resilient development in Bangladesh. In Bangladesh’s Economic and Social Progress: From a Basket Case to a Development Model; Palgrave Macmillan: Singapore, 2020; pp. 89–114. [Google Scholar]
- Birkmann, J.; Liwenga, E.; Pandey, R.; Boyd, E.; Djalante, R.; Gemenne, F.; Leal Filho, W.; Pinho, P.; Stringer, L.; Wrathall, D. Poverty, livelihoods and sustainable development. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 1171–1274. [Google Scholar]
- Islam, S.M.F.; Karim, Z. World’s demand for food and water: The consequences of climate change. In Desalination-Challenges and Opportunities; Books on Demand: Norderstedt, Germany, 2019; pp. 1–27. [Google Scholar]
- Solazzo, E.; Crippa, M.; Guizzardi, D.; Muntean, M.; Choulga, M.; Janssens-Maenhout, G. Uncertainties in the Emissions Database for Global Atmospheric Research (EDGAR) emission inventory of greenhouse gases. Atmos. Chem. Phys. 2021, 21, 5655–5683. [Google Scholar] [CrossRef]
- Lottering, S.; Mafongoya, P.; Lottering, R. Assessing the social vulnerability of small-scale farmer’s to drought in uMsinga, KwaZulu-Natal. Int. J. Disaster Risk Reduct. 2021, 65, 102568. [Google Scholar] [CrossRef]
- Rasul, G. Twin challenges of COVID-19 pandemic and climate change for agriculture and food security in South Asia. Environ. Chall. 2021, 2, 100027. [Google Scholar] [CrossRef]
- Gu, D. Exposure and Vulnerability to Natural Disasters for World’s Cities; United Nations: New York, NY, USA, 2019; pp. 1–41. [Google Scholar]
- World Health Organization. UN Report: Global Hunger Numbers Rose to as Many as 828 Million in 2021. Available online: https://www.who.int/news/item/06-07-2022-un-report--global-hunger-numbers-rose-to-as-many-as-828-million-in-2021 (accessed on 16 February 2024).
- Fróna, D.; Szenderák, J.; Harangi-Rákos, M. The challenge of feeding the world. Sustainability 2019, 11, 5816. [Google Scholar] [CrossRef]
- Ketiem, P.; Makeni, P.; Maranga, E.; Omondi, P. Integration of climate change information into drylands crop production practices for enhanced food security: A case study of Lower Tana Basin in Kenya. Afr. J. Agric. Res. 2017, 12, 1763–1771. [Google Scholar]
- Ikhuoso, O.A.; Adegbeye, M.; Elghandour, M.; Mellado, M.; Al-Dobaib, S.; Salem, A. Climate change and agriculture: The competition for limited resources amidst crop farmers-livestock herding conflict in Nigeria-A review. J. Clean. Prod. 2020, 272, 123104. [Google Scholar] [CrossRef]
- Chabejong, N.E. A review on the impact of climate change on food security and malnutrition in the Sahel region of Cameroon. In Climate Change and Health: Improving Resilience and Reducing Risks; Springer: Cham, Switzerland, 2016; pp. 133–148. [Google Scholar]
- Anderson, R.; Bayer, P.E.; Edwards, D. Climate change and the need for agricultural adaptation. Curr. Opin. Plant Biol. 2020, 56, 197–202. [Google Scholar] [CrossRef]
- Castellano, M.J.; Archontoulis, S.V.; Helmers, M.J.; Poffenbarger, H.J.; Six, J. Sustainable intensification of agricultural drainage. Nat. Sustain. 2019, 2, 914–921. [Google Scholar] [CrossRef]
- Cassman, K.G.; Grassini, P. A global perspective on sustainable intensification research. Nat. Sustain. 2020, 3, 262–268. [Google Scholar] [CrossRef]
- Zabel, F.; Delzeit, R.; Schneider, J.M.; Seppelt, R.; Mauser, W.; Václavík, T. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat. Commun. 2019, 10, 2844. [Google Scholar] [CrossRef]
- Hossain, A.; Krupnik, T.J.; Timsina, J.; Mahboob, M.G.; Chaki, A.K.; Farooq, M.; Bhatt, R.; Fahad, S.; Hasanuzzaman, M. Agricultural land degradation: Processes and problems undermining future food security. In Environment, Climate, Plant and Vegetation Growth; Springer: Berlin/Heidelberg, Germany, 2020; pp. 17–61. [Google Scholar]
- Muoghalu, L.; Akanwa, A. Ecological Intensification for Sustainable Agriculture: The Nigerian Perspective. In Ecological Intensification of Natural Resources for Sustainable Agriculture; Springer: Singapore, 2021; pp. 521–564. [Google Scholar]
- Assennato, F.; Smiraglia, D.; Cavalli, A.; Congedo, L.; Giuliani, C.; Riitano, N.; Strollo, A.; Munafò, M. The Impact of Urbanization on Land: A Biophysical-Based Assessment of Ecosystem Services Loss Supported by Remote Sensed Indicators. Land 2022, 11, 236. [Google Scholar] [CrossRef]
- Wang, X. Managing land carrying capacity: Key to achieving sustainable production systems for food security. Land 2022, 11, 484. [Google Scholar] [CrossRef]
- de Oliveira, J.A.P.; Bellezoni, R.A.; Shih, W.-y.; Bayulken, B. Innovations in Urban Green and Blue Infrastructure: Tackling local and global challenges in cities. J. Clean. Prod. 2022, 362, 132355. [Google Scholar] [CrossRef]
- Djan, M.A. Urban Food Security: Examining the Unique Challenges and Opportunities Associated with Ensuring Food Security in Urban Areas. Eur. J. Nutr. Food Saf. 2023, 15, 42–52. [Google Scholar] [CrossRef]
- Qiu, J.; Zhao, H.; Chang, N.-B.; Wardropper, C.B.; Campbell, C.; Baggio, J.A.; Guan, Z.; Kohl, P.; Newell, J.; Wu, J. Scale up urban agriculture to leverage transformative food systems change, advance social–ecological resilience and improve sustainability. Nat. Food 2024, 5, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Hawes, J.K.; Goldstein, B.P.; Newell, J.P.; Dorr, E.; Caputo, S.; Fox-Kämper, R.; Grard, B.; Ilieva, R.T.; Fargue-Lelièvre, A.; Poniży, L. Comparing the carbon footprints of urban and conventional agriculture. Nat. Cities 2024, 1, 164–173. [Google Scholar] [CrossRef]
- Tendero, M.; Guyot Phung, C. The revival of urban agriculture: An opportunity for the composting stream. Field Actions Sci. Rep. J. Field Actions 2019, 20, 40–51. [Google Scholar]
- Qiu, G.; Li, H.; Zhang, Q.; Chen, W.; Liang, X.; Li, X. Effects of evapotranspiration on mitigation of urban temperature by vegetation and urban agriculture. J. Integr. Agric. 2013, 12, 1307–1315. [Google Scholar] [CrossRef]
- Siegner, A.; Sowerwine, J.; Acey, C. Does urban agriculture improve food security? Examining the nexus of food access and distribution of urban produced foods in the United States: A systematic review. Sustainability 2018, 10, 2988. [Google Scholar] [CrossRef]
- Ilieva, R.T.; Cohen, N.; Israel, M.; Specht, K.; Fox-Kämper, R.; Fargue-Lelièvre, A.; Poniży, L.; Schoen, V.; Caputo, S.; Kirby, C.K. The socio-cultural benefits of urban agriculture: A review of the literature. Land 2022, 11, 622. [Google Scholar] [CrossRef]
- Hellin, J.; Fisher, E.; Taylor, M.; Bhasme, S.; Loboguerrero, A.M. Transformative adaptation: From climate-smart to climate-resilient agriculture. CABI Agric. Biosci. 2023, 4, 30. [Google Scholar] [CrossRef]
- Atique, F.; Lindholm-Lehto, P.; Pirhonen, J. Is Aquaponics Beneficial in Terms of Fish and Plant Growth and Water Quality in Comparison to Separate Recirculating Aquaculture and Hydroponic Systems? Water 2022, 14, 1447. [Google Scholar] [CrossRef]
- Szekely, I.; Jijakli, M.H. Bioponics as a Promising Approach to Sustainable Agriculture: A Review of the Main Methods for Producing Organic Nutrient Solution for Hydroponics. Water 2022, 14, 3975. [Google Scholar] [CrossRef]
- Szekely, I.; Zeaiter, Z.; Jijakli, M.H. Development of a Simple Bioponic Method Using Manure and Offering Comparable Lettuce Yield than Hydroponics. Water 2023, 15, 2335. [Google Scholar] [CrossRef]
- IRENA; FAO. Renewable Energy and Agri-food Systems: Advancing Energy and Food Security towards Sustainable Development Goals; International Renewable Energy Agency and Food and Agriculture Organization of the United Nations: Abu Dhabi, United Arab Emirates; Rome, Italy, 2021; pp. 1–92. [Google Scholar]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2023. In Urbanization, Agrifood Systems Transformation and Healthy Diets across the Rural–Urban Continuum; FAO: Rome, Italy; IFAD: Rome, Italy; UNICEF: Rome, Italy; WFP: Rome, Italy; WHO: Rome, Italy, 2023; pp. 1–316. [Google Scholar]
- Iida, A.; Yamazaki, T.; Hino, K.; Yokohari, M. Urban agriculture in walkable neighborhoods bore fruit for health and food system resilience during the COVID-19 pandemic. npj Urban Sustain. 2023, 3, 4. [Google Scholar] [CrossRef]
- Gomez, M.; Mejia, A.; Ruddell, B.L.; Rushforth, R.R. Supply chain diversity buffers cities against food shocks. Nature 2021, 595, 250–254. [Google Scholar] [CrossRef]
- Langemeyer, J.; Madrid-Lopez, C.; Beltran, A.M.; Mendez, G.V. Urban agriculture—A necessary pathway towards urban resilience and global sustainability? Landsc. Urban Plan. 2021, 210, 104055. [Google Scholar] [CrossRef]
- Bennedetti, L.V.; de Almeida Sinisgalli, P.A.; Ferreira, M.L.; Lemes de Oliveira, F. Challenges to Promote Sustainability in Urban Agriculture Models: A Review. Int. J. Environ. Res. Public Health 2023, 20, 2110. [Google Scholar] [CrossRef] [PubMed]
- Fox-Kämper, R.; Kirby, C.K.; Specht, K.; Cohen, N.; Ilieva, R.; Caputo, S.; Schoen, V.; Hawes, J.K.; Ponizy, L.; Béchet, B. The role of urban agriculture in food-energy-water nexus policies: Insights from Europe and the US. Landsc. Urban Plan. 2023, 239, 104848. [Google Scholar] [CrossRef]
- Marini, M.; Caro, D.; Thomsen, M. Investigating local policy instruments for different types of urban agriculture in four European cities: A case study analysis on the use and effectiveness of the applied policy instruments. Land Use Policy 2023, 131, 106695. [Google Scholar] [CrossRef]
- Abrahms, B.; Carter, N.H.; Clark-Wolf, T.; Gaynor, K.M.; Johansson, E.; McInturff, A.; Nisi, A.C.; Rafiq, K.; West, L. Climate change as a global amplifier of human–wildlife conflict. Nat. Clim. Chang. 2023, 13, 224–234. [Google Scholar] [CrossRef]
- Hussain, S.; Amin, A.; Mubeen, M.; Khaliq, T.; Shahid, M.; Hammad, H.M.; Sultana, S.R.; Awais, M.; Murtaza, B.; Amjad, M.; et al. Climate Smart Agriculture (CSA) Technologies. In Building Climate Resilience in Agriculture: Theory, Practice and Future Perspective; Jatoi, W.N., Mubeen, M., Ahmad, A., Cheema, M.A., Lin, Z., Hashmi, M.Z., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 319–338. [Google Scholar]
- van Wijk, M.T.; Merbold, L.; Hammond, J.; Butterbach-Bahl, K. Improving assessments of the three pillars of climate smart agriculture: Current achievements and ideas for the future. Front. Sustain. Food Syst. 2020, 4, 558483. [Google Scholar] [CrossRef]
- Azadi, H.; Siamian, N.; Burkart, S.; Moghaddam, S.M.; Goli, I.; Dogot, T.; Lebailly, P.; Teklemariam, D.; Miceikienė, A.; Van Passel, S. Climate smart agriculture: Mitigation and adaptation strategies at the global scale. In Climate-Induced Innovation: Mitigation and Adaptation to Climate Change; Springer: Berlin/Heidelberg, Germany, 2022; pp. 81–140. [Google Scholar]
- Matteoli, F.; Schnetzer, J.; Jacobs, H. Climate-Smart Agriculture (CSA): An Integrated Approach for Climate Change Management in the Agriculture Sector. In Handbook of Climate Change Management: Research, Leadership, Transformation; Springer: Cham, Switzerland, 2020; pp. 1–29. [Google Scholar]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- The EndNote Team. EndNote, EndNote 20.6; Clarivate: Philadelphia, PA, USA, 2013.
- Microsoft Corporation. Microsoft Excel 365, Microsoft 365; Microsoft Corporation: Washington, DC, USA, 2024.
- RStudio Team Integrated Development Environment for R; RStudio 2023.12.0+369 “Ocean Storm” Release; RStudio, PBC: Boston, MA, USA, 2023; Available online: https://dailies.rstudio.com/version/2023.12.0+369/ (accessed on 24 February 2024).
- Makita, K.; Fèvre, E.M.; Waiswa, C.; Eisler, M.C.; Thrusfield, M.; Welburn, S.C. Herd prevalence of bovine brucellosis and analysis of risk factors in cattle in urban and peri-urban areas of the Kampala economic zone, Uganda. BMC Vet. Res. 2011, 7, 60. [Google Scholar] [CrossRef]
- Matthys, B.; Tschannen, A.B.; Tian-Bi, N.T.; Como, H.; Diabat, S.; Traor, M.; Vounatsou, P.; Raso, G.; Gosoniu, L.; Tanner, M.; et al. Risk factors for Schistosoma mansoni and hookworm in urban farming communities in western Côte d’Ivoire. Trop. Med. Int. Health 2007, 12, 709–723. [Google Scholar] [CrossRef]
- Amoah, P.; Keraita, B.; Akple, M.; Drechsel, P.; Abaidoo, R.C.; Konradsen, F. Low-Cost Options for Reducing Consumer Health Risks from Farm to Fork Where Crops Are Irrigated with Polluted Water in West Africa; IWMI Research Reports Series; IWMI: Colombo, Sri Lanka, 2011; pp. 1–37. [Google Scholar]
- Keraita, B.; Drechsel, P.; Konradsen, F. Perceptions of farmers on health risks and risk reduction measures in wastewater-irrigated urban vegetable farming in Ghana. J. Risk Res. 2008, 11, 1047–1061. [Google Scholar] [CrossRef]
- Lwasa, S.; Mugagga, F.; Wahab, B.; Simon, D.; Connors, J.; Griffith, C. Urban and peri-urban agriculture and forestry: Transcending poverty alleviation to climate change mitigation and adaptation. Urban Clim. 2014, 7, 92–106. [Google Scholar] [CrossRef]
- Keraita, B.; Konradsen, F.; Drechsel, P.; Abaidoo, R.C. Reducing microbial contamination on wastewater-irrigated lettuce by cessation of irrigation before harvesting. Trop. Med. Int. Health TM IH 2007, 12 (Suppl. S2), 8–14. [Google Scholar] [CrossRef]
- Keraita, B.; Konradsen, F.; Drechsel, P.; Abaidoo, R.C. Effect of low-cost irrigation methods on microbial contamination of lettuce irrigated with untreated wastewater. Trop. Med. Int. Health TM IH 2007, 12 (Suppl. S2), 15–22. [Google Scholar] [CrossRef]
- Gallaher, C.M.; Mwaniki, D.; Njenga, M.; Karanja, N.K.; WinklerPrins, A.M.G.A. Real or perceived: The environmental health risks of urban sack gardening in Kibera slums of Nairobi, Kenya. EcoHealth 2013, 10, 9–20. [Google Scholar] [CrossRef]
- McLees, L. Access to land for urban farming in Dar es Salaam, Tanzania: Histories, benefits and insecure tenure. J. Mod. Afr. Stud. 2011, 49, 601–624. [Google Scholar] [CrossRef]
- Cadilhon, J.-J.; Pham, N.D.; Maass, B.L. The Tanga Dairy Platform: Fostering Innovations for more Efficient Dairy Chain Coordination in Tanzania. Int. J. Food Syst. Dyn. 2016, 7, 81–91. [Google Scholar]
- Dube, T.; Sibanda, S.; Chiwara, P. Adapting peri-urban agriculture to climate change in Bulawayo, Zimbabwe: A qualitative assessment. Cogent Soc. Sci. 2021, 7, 1944486. [Google Scholar] [CrossRef]
- Mashi, S.A.; Inkani, A.I.; Obaro, D.O. Determinants of awareness levels of climate smart agricultural technologies and practices of urban farmers in Kuje, Abuja, Nigeria. Technol. Soc. 2022, 70, 102030. [Google Scholar] [CrossRef]
- Chitakira, M.; Ngcobo, N.Z.P. Uptake of Climate Smart Agriculture in Peri-Urban Areas of South Africa’s Economic Hub Requires Up-Scaling. Front. Sustain. Food Syst. 2021, 5, 706738. [Google Scholar] [CrossRef]
- Ebenso, B.; Otu, A.; Giusti, A.; Cousin, P.; Adetimirin, V.; Razafindralambo, H.; Effa, E.; Gkisakis, V.; Thiare, O.; Levavasseur, V.; et al. Nature-Based One Health Approaches to Urban Agriculture Can Deliver Food and Nutrition Security. Front. Nutr. 2022, 9, 773746. [Google Scholar] [CrossRef] [PubMed]
- Feyissa, A.A.; Senbeta, F.; Tolera, A.; Diriba, D.; Boonyanuwat, K. Enteric methane emission factors of smallholder dairy farming systems across intensification gradients in the central highlands of Ethiopia. Carbon Balance Manag. 2023, 18, 23. [Google Scholar] [CrossRef]
- Mbosso, C.; Boulay, B.; Padulosi, S.; Meldrum, G.; Mohamadou, Y.; Niang, A.B.; Coulibaly, H.; Koreissi, Y.; Sidibé, A. Fonio and Bambara groundnut value chains in mali: Issues, needs, and opportunities for their sustainable promotion. Sustainability 2020, 12, 4766. [Google Scholar] [CrossRef]
- Anum, R.; Ankrah, D.A.; Anaglo, J.N. Influence of demographic characteristics and social network on peri-urban smallholder farmers adaptation strategies—Evidence from southern Ghana. Cogent Food Agri. 2022, 8, 2130969. [Google Scholar] [CrossRef]
- Wuyep, S.Z.; Rampedi, I.T.; Ifegbesan, A.P. The role of urban vegetable production in Jos (Nigeria) as a source of livelihood. Afr. J. Food Agric. Nutr. Dev. 2021, 21, 18533–18551. [Google Scholar] [CrossRef]
- Mireri, C. Environmental and public health risks of urban agriculture in Kisumu city, Kenya. Afr. J. Food Agric. Nutr. Dev. 2022, 22, 19075–19087. [Google Scholar] [CrossRef]
- Adegun, O.B.; Olusoga, O.O.; Mbuya, E.C. Prospects and problems of vertical greening within low-income urban settings in sub-Sahara Africa. J. Urban Ecol. 2022, 8, juac016. [Google Scholar] [CrossRef]
- Tokula, A.E.; Adekiya, O.A. Spatial Analysis of Agricultural Land Use Change and Farmers Adaptation to the Land Loss in Anyigba, Kogi State, Nigeria. J. Appl. Sci. Environ. Manag. 2018, 22, 783–789. [Google Scholar] [CrossRef]
- Odhong, C.; Wilkes, A.; van Dijk, S.; Vorlaufer, M.; Ndonga, S.; Sing’ora, B.; Kenyanito, L. Financing Large-Scale Mitigation by Smallholder Farmers: What Roles for Public Climate Finance? Front. Sustain. Food Syst. 2019, 3, 3. [Google Scholar] [CrossRef]
- Duguma, B. Productive and reproductive performance of crossbred and indigenous dairy cows at smallholdings in selected towns of Jimma Zone, Ethiopia. Anim. Prod. Sci. 2021, 61, 92–100. [Google Scholar] [CrossRef]
- Odudu, C.O. An examination of tenure security for urban crop farming in Lagos, Nigeria. Ethiop. J. Environ. Stud. Manag. 2015, 8, 308–317. [Google Scholar] [CrossRef]
- Owens, G.R. ‘We are not farmers’: Dilemmas and prospects of residential suburban cultivators in contemporary Dar es Salaam, Tanzania. J. Mod. Afr. Stud. 2016, 54, 443–467. [Google Scholar] [CrossRef]
- Wafula, W.M.; Wasonga, O.V.; Koech, O.K.; Kibet, S. Factors influencing migration and settlement of pastoralists in Nairobi City, Kenya. Pastoralism 2022, 12, 2. [Google Scholar] [CrossRef]
- Shikur, S.; Haji, J.; Leza, T. Factors Affecting Choice of Livelihood Strategies in Peri-Urban Communities of Hossana Town, Southern Ethiopia. East Afr. J. Sci. 2021, 15, 129–140. [Google Scholar]
- Tigabu, E.; Asrat, D.; Kassa, T.; Sinmegn, T.; Molla, B.; Gebreyes, W. Assessment of Risk Factors in Milk Contamination with Staphylococcus aureus in Urban and Peri-Urban Small-Holder Dairy Farming in Central Ethiopia. Zoonoses Public Health 2015, 62, 637–643. [Google Scholar] [CrossRef]
- Abass, K.; Ganle, J.; Adaborna, E. Coliform Contamination of Peri-urban Grown Vegetables and Potential Public Health Risks: Evidence from Kumasi, Ghana. J. Community Health 2016, 41, 392–397. [Google Scholar] [CrossRef]
- Balogun, O.S.; Balogun, O.L.; Olorukooba, M.M.; Emeghara, U.U.; Abayomi, E.Z.; Alabi, O.F.; Tor, L.G. Poverty and welfare status of urban farming households in Kaduna Metropolis Kaduna State, Nigeria. Ethiop. J. Environ. Stud. Manag. 2021, 14, 306–318. [Google Scholar]
- Modibedi, T.P.; Masekoameng, M.R.; Maake, M.M.S. The contribution of urban community gardens to food availability in Emfuleni Local Municipality, Gauteng Province. Urban Ecosyst. 2021, 24, 301–309. [Google Scholar] [CrossRef]
- Adebiyi, J.A.; Olabisi, L.S. Participatory Causal Loop Mapping of the Adoption of Organic Farming in Nigeria. Environ. Manag. 2022, 69, 410–428. [Google Scholar] [CrossRef]
- Menyuka, N.N.; Sibanda, M.; Bob, U. Perceptions of the Challenges and Opportunities of Utilising Organic Waste through Urban Agriculture in the Durban South Basin. Int. J. Environ. Res. Public Health 2020, 17, 1158. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.S.; Gari, S.R.; Goodson, M.L.; Walsh, C.L.; Dessie, B.K.; Ambelu, A. Prevalence and risk factors of childhood diarrhea among wastewater irrigating urban farming households in Addis Ababa. PLoS ONE 2023, 18, e0288425. [Google Scholar] [CrossRef]
- Vidogbéna, F.; Adégbidi, A.; Tossou, R.; Assogba-Komlan, F.; Martin, T.; Ngouajio, M.; Simon, S.; Parrot, L.; Garnett, S.T.; Zander, K.K. Exploring factors that shape small-scale farmers’ opinions on the adoption of eco-friendly nets for vegetable production. Environ. Dev. Sustain. 2016, 18, 1749–1770. [Google Scholar] [CrossRef]
- Xie, W.; Zhou, G.; Yang, H.; Chen, X.; Wang, C.; Ji, J. Response of Food Production and Trade to the Global Socio-Ecological System Network. Land 2023, 12, 1762. [Google Scholar] [CrossRef]
- Frimpong, F.; Asante, M.D.; Peprah, C.O.; Amankwaa-Yeboah, P.; Danquah, E.O.; Ribeiro, P.F.; Aidoo, A.K.; Agyeman, K.; Asante, M.O.O.; Keteku, A.; et al. Water-smart farming: Review of strategies, technologies, and practices for sustainable agricultural water management in a changing climate in West Africa. Front. Sustain. Food Syst. 2023, 7, 1110179. [Google Scholar] [CrossRef]
- Guan, Y.; Yan, J.; Shan, Y.; Zhou, Y.; Hang, Y.; Li, R.; Liu, Y.; Liu, B.; Nie, Q.; Bruckner, B. Burden of the global energy price crisis on households. Nat. Energy 2023, 8, 304–316. [Google Scholar] [CrossRef]
- Blanchy, G.; Bragato, G.; Di Bene, C.; Jarvis, N.; Larsbo, M.; Meurer, K.; Garré, S. Soil and crop management practices and the water regulation functions of soils: A qualitative synthesis of meta-analyses relevant to European agriculture. Soil 2023, 9, 1–20. [Google Scholar] [CrossRef]
- Hatew, B.; Peñagaricano, F.; Balehegn, M.; Jones, C.S.; Dahl, G.E.; Adesogan, A.T. Synergies of feed, management trainings, and genetics on milk production of dairy cows in the tropics: The case of Ethiopian smallholder farmers. Front. Anim. Sci. 2023, 4, 1119786. [Google Scholar] [CrossRef]
- Ali, A.; Bhattacharjee, B. Nutrition security, constraints, and agro-diversification strategies of neglected and underutilized crops to fight global hidden hunger. Front. Nutr. 2023, 10, 1144439. [Google Scholar] [CrossRef]
- Owolodun, B.; Merten, S. Food Security from the Forest: The Case of the Commodification of Baobab Fruit (Adansonia digitata L.) in Boundou Region, Senegal. Land 2023, 12, 1423. [Google Scholar] [CrossRef]
- Goufa, M.; Makeroufas, E.; Gerakari, M.; Sarri, E.; Ragkos, A.; Bebeli, P.J.; Balestrazzi, A.; Tani, E. Understanding the Potential to Increase Adoption of Orphan Crops: The Case of Lathyrus spp. Cultivation in Greece. Agronomy 2024, 14, 108. [Google Scholar] [CrossRef]
- Cruz Colazo, J.; de Dios Herrero, J.; Sager, R.; Guzmán, M.L.; Zaman, M. Contribution of integrated crop livestock systems to climate smart agriculture in Argentina. Land 2022, 11, 2060. [Google Scholar] [CrossRef]
- Zhan, J. The sustainable management of land systems. Front. Sustain. Resour. Manag. 2023, 2, 1240771. [Google Scholar] [CrossRef]
- Méndez-Zambrano, P.V.; Tierra Pérez, L.P.; Ureta Valdez, R.E.; Flores Orozco, Á.P. Technological Innovations for Agricultural Production from an Environmental Perspective: A Review. Sustainability 2023, 15, 16100. [Google Scholar] [CrossRef]
- Jellason, N.P.; Robinson, E.J.Z.; Ogbaga, C.C. Agriculture 4.0: Is Sub-Saharan Africa Ready? Appl. Sci. 2021, 11, 5750. [Google Scholar] [CrossRef]
- Gaitán, L.; Läderach, P.; Graefe, S.; Rao, I.; Van der Hoek, R. Climate-smart livestock systems: An assessment of carbon stocks and GHG emissions in Nicaragua. PLoS ONE 2016, 11, e0167949. [Google Scholar] [CrossRef] [PubMed]
- Perini, F.; Ceccobelli, S.; Crooijmans, R.; Tiambo, C.; Lasagna, E. Global green strategies and capacities to manage a sustainable animal biodiversity. Front. Genet. 2023, 14, 1213080. [Google Scholar] [CrossRef]
- Selvan, T.; Panmei, L.; Murasing, K.K.; Guleria, V.; Ramesh, K.R.; Bhardwaj, D.; Thakur, C.; Kumar, D.; Sharma, P.; Umedsinh, R.D. Circular economy in agriculture: Unleashing the potential of integrated organic farming for food security and sustainable development. Integr. Org. Farming Syst. Approach Effic. Food Prod. Environ. Sustain 2023, 7, 1170380. [Google Scholar] [CrossRef]
- Brzozowski, L.; Mazourek, M. A sustainable agricultural future relies on the transition to organic agroecological pest management. Sustainability 2018, 10, 2023. [Google Scholar] [CrossRef]
- Bouri, M.; Arslan, K.S.; Şahin, F. Climate-Smart Pest Management in Sustainable Agriculture: Promises and Challenges. Sustainability 2023, 15, 4592. [Google Scholar] [CrossRef]
- Gugissa, D.A.; Abro, Z.; Tefera, T. Achieving a climate-change resilient farming system through push–pull technology: Evidence from maize farming systems in Ethiopia. Sustainability 2022, 14, 2648. [Google Scholar] [CrossRef]
- Mosso, C.; Pons, D.; Beza-Beza, C. A Long Way toward Climate Smart Agriculture: The Importance of Addressing Gender Inequity in the Agricultural Sector of Guatemala. Land 2022, 11, 1268. [Google Scholar] [CrossRef]
- Tione, S.E.; Nampanzira, D.; Nalule, G.; Kashongwe, O.; Katengeza, S.P. Anthropogenic Land Use Change and Adoption of Climate Smart Agriculture in Sub-Saharan Africa. Sustainability 2022, 14, 14729. [Google Scholar] [CrossRef]
- Abdillah, K.K.; Manaf, A.A.; Awang, A.H. Land tenure security for low-income residents’ urban livelihoods: A human development approach review of temporary occupation license. Land Use Policy 2022, 119, 106223. [Google Scholar] [CrossRef]
- Chen, D.; Hu, W. Temporal and Spatial Effects of Heavy Metal-Contaminated Cultivated Land Treatment on Agricultural Development Resilience. Land 2023, 12, 945. [Google Scholar] [CrossRef]
Country | Number of Articles | Most Relevant Institution | Number of Articles |
---|---|---|---|
Nigeria | 13 | University of Ibadan | 4 |
Ethiopia | 11 | Addis Ababa University | 6 |
Kenya | 10 | University of Nairobi | 4 |
Ghana | 8 | Kwame Nkrumah University of Science and Technology | 3 |
South Africa | 6 | University of South Africa | 3 |
United States | 5 | Michigan State University | 4 |
Uganda | 4 | Makerere University | 3 |
United Kingdom | 3 | University of Sheffield | 3 |
Climate-Smart Agricultural Practices/Adaptation Strategies | Implications for Food Security | Implications for Income Security | Source/s |
---|---|---|---|
Efficient/improved water management—drought-tolerant seed varieties, improved water harvesting, drip irrigation | Enhances crop resilience and water use efficiency, ensuring stable yields | Stabilized yields and enhanced productivity improve farm income | [58,63,64] |
Conservation agriculture and agroecology—mulching, cover cropping, crop rotation | Improves soil moisture retention and crop resilience, enhancing productivity | Increased crop yields lead to surplus produce for sale, improving income | [65,66] |
Improved livestock management—improved feed to reduce methane emission, vaccination for commercial farms | Increases animal productivity and crop resilience, ensuring consistent production | Higher milk yields and quality improve farmers’ income from better market prices | [53,67] |
Crop diversification and enhancement—underutilised species like Fonio and Bambara Groundnut, crop rotation | Contributes to food availability during hunger periods, enhances resilience | Economic potential for agro-processing, especially for women | [68,69,70] |
Sustainable land use and management—the practice of UA on privately owned land, vertical greening systems | Reduces risks associated with UA pollution, enhances food availability | Creates employment and income generation opportunities from the sale of produce | [71,72,73] |
Technological innovation for agroecological support—digital technology for agroecological support | Increases yield and diversifies diets in urban contexts, plus reduces pesticide use | Increase yield with less expensive inputs, opens new business opportunities | [66] |
Livestock, financial and genetic resource management—low-emission practices, crossbred and indigenous dairy cows | Enhances dairy productivity and carbon sequestration, increasing milk availability | Affordable finance and improved productivity increase income for dairy farmers | [74,75,76] |
Agricultural systems and practices—mixed farming/economy, urban and peri-urban pastoralism | Contributes to household food supplies and diet diversification | Offers additional income through the sale of surplus, diversifies income-sources | [77,78,79] |
Ecosystem and environmental management—practices reducing risk of contamination, waste irrigation water for peri-urban-grown vegetables | Improves milk quality and safety, addresses health risks from contaminated water | Effective hygiene practices stabilize income through consistent acceptance of milk at the sales point | [59,80,81] |
Community and social initiatives—collective action, membership in urban farmer groups | - | Association with membership groups correlates to urban farmers’ economic status | [62,82,83] |
Organic farming and soil fertility management—organic farming practices facilitated by knowledge sharing | Improves soil health and increases yields, enhancing food security | Increases economic viability, leading to improved income security | [84,85,86] |
Pest management and crop production—use of eco-friendly nets to reduce pesticide use, cleaner production practices | Enhances vegetable quality by reducing pesticide-related diseases | Reduces pesticide costs, improves vegetable yields and income from sales | [80,87] |
Other strategies and enhancing adaptive capacity—urban community gardens, lobbying policy change | Ensures food availability through fresh vegetables, ensures yearly milk availability | Source of income and policy support provide fair milk prices | [62,83] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khumalo, N.Z.; Sibanda, M.; Mdoda, L. Implications of a Climate-Smart Approach to Food and Income Security for Urban Sub-Saharan Africa: A Systematic Review. Sustainability 2024, 16, 1882. https://doi.org/10.3390/su16051882
Khumalo NZ, Sibanda M, Mdoda L. Implications of a Climate-Smart Approach to Food and Income Security for Urban Sub-Saharan Africa: A Systematic Review. Sustainability. 2024; 16(5):1882. https://doi.org/10.3390/su16051882
Chicago/Turabian StyleKhumalo, Nolwazi Z., Melusi Sibanda, and Lelethu Mdoda. 2024. "Implications of a Climate-Smart Approach to Food and Income Security for Urban Sub-Saharan Africa: A Systematic Review" Sustainability 16, no. 5: 1882. https://doi.org/10.3390/su16051882
APA StyleKhumalo, N. Z., Sibanda, M., & Mdoda, L. (2024). Implications of a Climate-Smart Approach to Food and Income Security for Urban Sub-Saharan Africa: A Systematic Review. Sustainability, 16(5), 1882. https://doi.org/10.3390/su16051882