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Abstract: The need to rapidly reduce greenhouse gases (GHGs) has accelerated the adoption of
circular economy (CE) practices. However, this has proved challenging for small and medium
enterprises (SMEs), who lack the financial, organizational, and informational capabilities to adopt
circular business models. This paper highlights some of the SMEs’ challenges in adopting CE practices.
It focuses on the need to calculate their carbon footprint (CF) by drawing on the literature examining
the effect of information technologies (IT) on adopting CE strategies. This study aims to present a
CF calculation tool used to calculate the CF of SMEs. The tool’s design is based on the Life Cycle
Assessment (LCA) methodology, which assesses the environmental impact of a particular service
or product over the different stages of its life cycle. The tool was tested in a small cheese factory in
northern Greece, an SME representative of the country’s average SME. The production process was
mapped, a GHG inventory was created, and the total emissions related to the production of a specific
product were estimated. Our results show that adopting such CF calculation tools can have various
implications regarding the organizational structure of SMEs, leading to cost reductions and reducing
potential environmental impacts. The final aim is to test this tool at a large scale.

Keywords: circular economy; life-cycle assessment; carbon footprint; information systems

1. Introduction

Since the industrial revolution, the concentration of greenhouse gases (GHGs) in
the atmosphere has gradually increased beyond Earth’s absorbing capacity, leading to
global warming and anthropogenic climate change. In March 2023, the Intergovernmental
Panel on Climate Change (IPCC) finalized its Sixth Assessment Report, stating that global
warming will likely exceed 1.5 ◦C during this century. Natural ecosystems and human
populations are already experiencing the negative impacts of climate change, which, unless
mitigated, could lead to further environmental, social, and economic implications [1–5].
Moreover, if global warming is to be limited to 1.5 ◦C, significant GHG reductions must be
achieved during this decade [1,5–8].

This transition towards a low-carbon future has been widely examined in light of the
broad concept of sustainable development, which, since its initial definition in 1987 by the
Brundtland Commission [9], has evolved and been adopted in various social, environmen-
tal, economic, and technological frameworks [10–12]. In this context, the circular economy
(CE) model has emerged as the newest approach towards addressing sustainability goals,
among which improving environmental quality is of utmost importance [13]. Tracing back
to the work of Kenneth Boulding [14] and later to that of Pearce and Turner [15], CE has been
extensively studied in business [16–20], academic [13,21–27], and policy contexts [28–36].

Although the link between CE and climate change has not been extensively examined
in the academic literature, adopting CE strategies is generally considered to have a positive
effect on the reduction of GHGs [37–43]. The Ellen MacArthur Foundation defines CE as
“an industrial system that is restorative or regenerative by intention and design”. This
system promotes renewable energy, phases out toxic chemicals, encourages product reuse,
and eliminates waste production [44]. Consequently, CE strategies can reduce GHGs by
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improving industrial production processes that minimize waste production and energy
consumption [37–41], promoting eco-innovation and product eco-design [38,40,41], and
utilizing renewable energy [37,39–41]. So far, international research has examined specific
themes regarding the relationship between CE and climate change. Among these, the most
important are (1) the implementation of CE business models in industry [38–41], (2) the
adoption of different approaches to waste management according to the different life stages
of a product/service [39–41], (3) the transformation of the current energy systems through
the adoption of renewable energy [37,39–41], and (4) the implementation of closed-loop
supply chains [40–42]. Moreover, specific sectors such as construction [40,41,43,45,46],
transportation [41,47,48], and agriculture [40,41,49] have been more carefully examined.

The core principles of CE, the 4R framework (reduce, reuse, recycle, and recover),
and the systems perspective framework (micro, meso, and macro) [13] have been used
as a basis for developing different methodologies for achieving the aim of sustainable
development [50–55]. One example of such a methodology is product and service life-cycle
assessment (LCA) [50–55]. A product’s LCA is based on the use of methodologies that
assess the environmental impact of a particular service or product over the different stages
of its life cycle. From acquiring the materials used in the production of the product to
producing, distributing, and storing the product itself until its use and final disposal, each
step focuses on inputs and outputs in the form of materials, energy, and waste [56–59].
This paper concentrates on a particular environmental impact category of a product’s LCA:
climate change.

The need to limit climate change demands that businesses reduce their GHG emissions
or carbon footprint (CF). Therefore, calculating the CF has emerged as a new business
process necessary for setting GHG emission reduction goals, assessing performance towards
these goals, and eventually reducing GHG emissions. The most common types of CFs are
corporate CFs, which are calculated based on the GHG emissions produced at the company
level [60], and product CFs, which are calculated based on the GHGs emitted during the life
cycle of a specific product [56]. Therefore, a product’s CF can be used to assess the impact
of a product’s life cycle on climate change and consequently form the basis for assessing
CE strategies.

This study focuses on small and medium enterprises (SMEs) and the rationale behind
calculating the CF of their products. Between 2021 and 2022, SMEs accounted for 99.8%
of all enterprises in the non-financial business sector in the EU-27 [61,62], while approx-
imately 93.5% of these enterprises were micro-SMEs, i.e., SMEs that employ fewer than
ten staff [61,62]. Although data are scarce, it has been estimated that the average SME
enterprise emits approximately 75 tons of greenhouse gas (GHG) emissions, which is very
little compared to the 22,345 tons of GHG emissions for the average large enterprise [61].
However, due to the large number of SMEs in the overall enterprise population, their share
of total annual emissions is 63.3% of all GHG emissions in the enterprise population [61].
Consequently, significant GHG reductions are necessary globally if global warming is to
be limited to a global 1.5 ◦C, which cannot be achieved unless SMEs also reduce their
GHG emissions.

As discussed above, adopting CE strategies can contribute to reducing GHGs, and
the LCA methodology can be used to assess such strategies. However, SMEs’ financial,
organizational, and informational capabilities are often limited. Therefore, they must assess
their CE strategies to limit potential resource waste. CF can be used as a primary metric
for assessing the climate change impact of different CE strategies. For this reason, SMEs
need to calculate and manage their CF at the company and product level. This paper
highlights some of the SMEs’ challenges in adopting CE practices. It focuses on the need to
use CF calculation tools by drawing on the literature examining the effect of information
technologies (IT) on adopting CE strategies.

We recommend some basic features that a CF calculation tool should have to be easily
adopted by SMEs. Finally, we present a tool developed for calculating the product CF
of SMEs and test this tool in a small cheese factory in northern Greece. This study is
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part of a project funded by the Hellenic Ministry of Development and Investments and
the European structural and investment funds. The aim of the project was to create a
system for collecting and analyzing data for calculating the CF in SMEs. The following
sections provide a framework for analyzing SMEs’ barriers to adopting CE strategies based
on previous academic research. Then, we review the basic IT systems that, according to
international research, can accelerate the transition towards CE. The description of the CF
calculation tool follows along with a small case study. Finally, we discuss how the tool can
help SMEs overcome adoption barriers regarding CE strategies.

1.1. Small and Medium Enterprises (SMEs) and Circular Economy (CE)

Although large corporations often receive the most public attention regarding their
environmental performance, SMEs have also been receiving increased pressure to improve
their environmental performance. International research has extensively examined this
relationship, i.e., between the adoption of green strategies, environmental performance, and
corporate performance [63–68]. However, most of the same research has also highlighted
the internal and external barriers that make SMEs hesitant about adopting environmental
strategies. According to the European Union’s latest annual report on European SMEs,
more than two-thirds of SMEs had adopted some resource-efficiency-related strategy, with
minimizing waste and saving energy and materials being the most common strategies
adopted [61]. However, in most cases, SMEs were restricted to implementing sporadic
activities and did not attempt to completely re-design their products and processes [61].

Exploring the dynamic relationship between CE and SMEs, especially in the EU con-
text [69–82], has received extensive attention among academics, while there is a substantial
body of literature devoted to mapping the barriers that companies face in adopting CE
strategies [83–98]. These barriers can be arranged into two broad categories based on a
company’s level of influence, i.e., internal and external. Internal barriers are inherent to
a company’s business practices and values, and external are those associated with stake-
holders and are beyond the direct influence of the company. Based on our literature review,
internal barriers can be classified as financial/economic, technological, organizational,
informational, and cultural. At the same time, external barriers can also be classified as
institutional/regulatory, supply-chain-related, and cultural. A summary of these barriers
and the respective literature is presented in Table 1.

Table 1. Barriers to the adoption of CE strategies.

Category Barriers—Main Themes Relevant Research

Internal

Economic/
Financial

Large capital requirements
Lack of capital/financial resources
Unclear financial case/return of investment

[70,83–97]

Technological Product design and quality
Lack of technology and technical skills [22,83–86,89–98]

Organizational
Incompatibility with the current organizational structure
Administrative burden
Weak management support

[83,85,86,89–93,96]

Informational Insufficient information and knowledge regarding the benefits of CE [83,85–88,90–93,96,98]

Cultural
Hesitant company culture
Attitude towards sustainability and circularity
Risk aversion

[75,83,85,87,90,91,95,96,98]
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Table 1. Cont.

Category Barriers—Main Themes Relevant Research

External

Institutional/
Regulatory

Unclear international policy regarding CE
Weak government support [66,83,84,86,87,90–93,95–98]

Supply Chain Finding appropriate suppliers and partners
Failure to collaborate with suppliers and partners [83,85–87,90–93,95,96]

Cultural Consumer awareness
“Intention-action gap” [69] [83,84,86,90–93,95,96,98]

One of the aims of this study is to provide a rationale for SMEs to calculate the
CF of their products systematically. For this, we draw on the literature examining the
barriers SMEs face in adopting CE strategies and elaborate on how calculating the CF of
products can address some of these barriers. Although studies have yet to examine the
benefits of calculating the CF of various activities, such as energy production [99,100], food
production and farming [101,102], waste reduction [103], and packaging [104], they need to
address specific products Moreover, studies have yet to examine how specific CE barriers
can be addressed by calculating the CF of products. CF is a significant indicator of both
sustainability and circularity. Companies need to be able to measure it to assess the CE
strategies they have adopted.

From the standpoint of sustainability, a substantial body of literature has critically exam-
ined the limits of CE regarding the transformation of current business models [26,105–109].
This is particularly important for climate change because many CE strategies require ad-
ditional energy and material resources, which produce emissions, making the interplay
between climate change and circularity rather complex [105,107,109]. Calculating the CF at
the product level breaks a product’s lifecycle into different stages, from procurement of the
raw materials used in the production stage to the final disposal after its use, while mapping
the energy inputs and material outputs at each stage. Therefore, it can highlight potential
CE strategies that can lead to emission reductions by providing a detailed assessment of
the different flows of energy and materials at each lifecycle stage.

Regarding SMEs and the barriers they face in adopting CE strategies, calculating the
CF of products can mitigate some of the significant internal barriers. Since CE strategies
often require large capital investments, the fact that SMEs have limited capital or finan-
cial resources discourages them from implementing CE strategies, especially when those
strategies do not guarantee an increased rate of return. As explained above, the CF of
products is a significant indicator of circularity, especially when calculated at a level that
allows for the direct comparison of similar products/services. Additionally, since emissions
are associated with energy and material consumption, a CE strategy that reduces the CF
of a product is more likely to reduce the consumption of energy and raw materials and,
consequently, the production costs. Therefore, calculating a product’s CF and estimating
how it changes when a CE strategy is implemented can provide a rough assessment of
whether investing in the particular strategy will pay off.

Moreover, calculating the CF of products can help SMEs overcome the organizational
and informational barriers associated with adopting CE strategies. Calculating a product’s
CF requires a clear definition of the GHG inventory boundaries and processes attributed to
the product’s lifecycle that is analyzed [56]. Therefore, it indirectly maps the organizational
and operational boundaries of the company that produces the product, thus allowing for
a better understanding of its organizational structure. This could help SMEs choose CE
strategies that do not challenge their current organizational structure or allow for better
integration of CE strategies into their core business processes. Furthermore, calculating a
product’s CF before adopting CE strategies could enhance management support and reduce
the administrative burden of implementing CE strategies. Weak management support
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is often attributed to the lack of information and knowledge regarding the benefits of
CE strategies and the increased administrative burden that results from changes in the
current business structure [38]. However, since a product’s CF analysis provides detailed
information regarding all lifecycle stages, it can reduce uncertainty and allow for a better
understanding of the benefits of CE.

Finally, regarding the external barriers to adopting CE strategies, calculating a prod-
uct’s CF allows for a better assessment of suppliers and business partners. Since calculating
the CF of a product is based on the LCM methodology, it incorporates the climate change
impact of the procurement of raw materials or semi-final products used in the production
process [56]. Information related to the CF of raw materials and other inputs, as well as
information related to the transportation of the above, can help SMEs assess suppliers
and business partners that are necessary for the implementation of CE strategies. How-
ever, information regarding the climate change practices of suppliers or partners is only
sometimes available. Therefore, collecting data to assess suppliers and partners requires
additional resources and could eventually increase the administrative burden of potential
CE strategies.

Addressing the internal and external barriers to adopting CE strategies has proven
particularly troublesome for SMEs, so they must utilize innovative IT technologies. In the
following section, we elaborate on the role of IT technologies in implementing CE strategies.
In the above context, we also examine the development and adoption of CF calculation
programs. We conclude by pointing out some basic features that a CF program should have
in order to be easily adopted by SMEs.

1.2. Information Technology (IT) and Circular Economy (CE)

The role of information technology (IT) in accelerating the deployment of circular
economy (CE) business models [110–113] and sustainability [114] has been extensively
examined in academic research [111]. The so-called “Industry 4.0” technologies, such as
the Internet of Things (IoT), cloud computing, big data, artificial intelligence (AI), cyber-
physical systems (CPS), blockchain, augmented and virtual reality (AR and VR), additive
manufacturing (3D printing) and 5G, have been examined as enabling technologies that
could help the transition from linear to circular business models. A review of the above
technologies and their supportive research is presented in Table 2. Some of these studies
provide a general description of the relationship between CE and Industry 4.0 technolo-
gies [110–113,115], while others focus on specific technologies [116–120] and specific aspects
of CE, such as sustainable supply chain management [116,117,119], sustainable product
management [121,122], sustainable manufacturing [117,122], and remanufacturing [123].

Table 2. IT systems in CE.

Technology Definition Relevant
Research

IoT
A computational system that allows the collection and
sharing of products, services, processes, and data in
real-time [124,125]

[110–116,121–130]

Cloud
Computing

Technology that allows remote access to business processes
facilitates user interaction and information sharing and
enables the visualization of all manufacturing resources and
processes [125]

[112,114,115,121,124,125,129]

AI Technology that incorporates machine learning capabilities
in manufacturing processes [125] [111,113,115,117,121,122,125,129]

Big Data Technology systems that capture, store, manage, and
process high volumes of data [125] [110–115,117,118,121,125,126,129]



Sustainability 2024, 16, 1905 6 of 23

Table 2. Cont.

Technology Definition Relevant
Research

CPS Technology that enables automation of industrial operations
in real-time [125] [110,112,113,115,119,120,122,124,125]

Blockchain A system that enables decentralized data storage and
sharing of computational resources [131] [112,115,121,131]

AR and VR Technologies that allow the use of digital tools to access
virtual spaces in physical spaces [125] [112,113,119,123,125]

Additive
manufacturing

Technology that allows prototyping of parts of products (3D
printing) [125] [110,113,114,123–125]

5G
Flexible and low energy consumption technology that
allows connectivity between systems that rely on IoT
devices [127]

[112,127,128]

However, those technologies often require digital maturity and organizational and op-
erational capabilities that many companies, especially SMEs, do not often possess [132–135].
Among the significant challenges SMEs face in adopting Industry 4.0 technologies are
limited financial resources, limited technical knowledge and technology awareness, and
organizational resistance [132–135]. Therefore, in order to be successfully adopted by SMEs,
they must be perceived as highly beneficial to their core business activities [133] and be
able to be implemented at a low cost [135], preferably by exploiting existing resources [135].
Moreover, they should allow for the following [134,135]:

1. Integration of IoT systems for better supply chain management and data documentation.
2. Optimization of the production process.
3. Traceability would allow for increased control over the production process and limit er-

rors.
4. Data collection, processing, and information visualization would help SMEs utilize

relevant information.

Although calculating the carbon footprint (CF) at the company or product level is
not the same as adopting CE business models, utilizing information best is as important
in CF calculation as in any CE strategy. Consequently, Industry 4.0 technologies can also
be used in the CF calculation. The CF calculation tool developed and presented in the
following section can be classified as cloud computing technology since it is a web-based
application that allows remote access to business processes and facilitates user interaction
and information sharing of all manufacturing resources and processes [93,97]. Moreover, its
design can incorporate IoT features such as recording data in real-time, e.g., from electricity
consumption meters.

Currently, there are several carbon footprint calculation tools available in the market.
Some of them are best suited for calculating household emissions, such as the Cool Cli-
mate calculator, the WWF footprint calculator, and the UN carbon footprint calculator. In
contrast, others are more suitable for calculating a business’s carbon footprint, such as the
EPA Simplified GHG Emissions Calculator (EPA Center for Corporate Climate Leadership,
www2.epa.gov/climateleadership, 1200 Pennsylvania Ave., NW (Mail Code 6202A), Wash-
ington, DC 20460, USA), Terrapass Business Calculator (Terrapass, https://terrapass.co.
uk/carbon-footprint-calculator), and CarbonTrust (The Carbon Trust, Level 5, Arbor, 255
Blackfriars Road, London, SE1 9AX, U.K., https://www.carbontrust.com/our-work-and-
impact/guides-reports-and-tools/sme-carbon-footprint-calculator). Additionally, some
tools are designed for specific sectors, such as the CoolFarm (The Cool Farm, 87b Westgate,
Grantham, Lincolnshire, NG31 6LE England, https://app.coolfarmtool.org/account/login/
?next=/) tool for the farming sector or the Green Key carbon calculation tool (Also known

www2.epa.gov/climateleadership
https://terrapass.co.uk/carbon-footprint-calculator
https://terrapass.co.uk/carbon-footprint-calculator
https://www.carbontrust.com/our-work-and-impact/guides-reports-and-tools/sme-carbon-footprint-calculator
https://www.carbontrust.com/our-work-and-impact/guides-reports-and-tools/sme-carbon-footprint-calculator
https://app.coolfarmtool.org/account/login/?next=/
https://app.coolfarmtool.org/account/login/?next=/
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as the “Hotel Carbon Measurement Initiative” (HMCI) tool developed by the Sustainable
Hospitality Alliance (SHA), a registered charity in England and Wales (1188731), Company
limited by guarantee (12373950) https://www.greenkey.global/carbon-calculation-tool-2)
tool for the tourism sector. Moreover, some of these tools are targeted mainly at households
or businesses in specific countries, such as the EPA Simplified GHG Emissions Calculator
and Terrapass, which are targeted mainly at a US audience. In contrast, the WWF and the
CarbonTrust footprint calculator target UK residents and enterprises, respectively. Addi-
tionally, several LCA software tools, such as GaBi (The GaBi Software has been renamed
as “Sphera LCA” modelling and reporting software, Sphera, Chicago, IL, USA, https:
//sphera.com/product-sustainability-software/), SimaPro (SimaPro, PRé Sustainability,
Stationsplein 121, 3818 LE Amersfoort, The Netherlands, https://simapro.com/business/),
and Umberto (Umberto Software, iPoint-systems gmbh, Ludwig-Erhard-Str. 58, 72760,
Reutlingen–Germany, https://www.ifu.com/product-carbon-footprint/), are suitable for
LCA analysis.

Regarding the carbon footprint of SMEs, some tools have been customized to the
needs of SMEs, such as the SME Carbon Footprint Calculator by CarbonTrust, which has
been designed for UK-based SMEs, and the Terrapass calculator, which can be customed for
small businesses but is also targeted for a US audience. Regarding LCA analysis, commonly
used tools, such as GaBi, SimaPro, and Umberto, are targeted at larger businesses and
generally require skilled personnel who have to be trained in order to use them. Moreover,
they are often not cloud-based, which limits their flexibility. On the other hand, the fact
that databases often back them allows for mapping complex life-cycle models and multiple
scenario analysis, which is impossible with tools such as the one presented in this paper.
Nevertheless, SMEs often do not require such complex analysis. Most importantly, they
lack the technical expertise to operate such tools, the organizational resources to implement
such LCA analysis, and most importantly, the financial resources to afford such tools.
Finally, for SMEs that are not based in English-speaking countries, the fact that all carbon
footprint tools are in English can also pose a limitation because the terminology used in
these tools requires an advanced knowledge level of the English language, which should
not be taken for granted for the personnel employed in SMEs.

The tool presented in this study aims to address some of the issues described above.
In the following sections, we present the methods and materials used in developing the CF
calculation tool and the tool itself.

2. Materials and Methods

The LCA methodology has been used to analyze and evaluate circular business
models [50–52]. Recent studies that include both LCA evaluation and circular assess-
ment have been conducted in manufacturing [51,55,136–140], farming and livestock rais-
ing [54,141,142], and built environment [53]. The product CF methodology presented in
this paper follows the LCA methodology, which examines all the stages of a product’s life
cycle, from the extraction of raw materials, the processing and transformation process, the
distribution of the final product, its use, and final disposal. This study is based on the LCA
methodology provided by the GHG Protocol [56], the ISO 14040 [57], ISO 14044 [143], and
ISO 14067 [144] standards, and the BSI/DEFRA/Carbon Trust PAS 2050 standard [59].

A carbon footprint consists of the flow of services, materials, and energy that become
the product, create it, and transport it through its life cycle. These include the raw materials,
the processes that create the product, the materials used to improve its quality, and the
energy used to move, create, and store the product. The LCA stages that were used as a basis
for developing the CF calculation tool presented in this study are the five essential stages
of a product’s life cycle as defined by the Greenhouse Gas Protocol: material acquisition
and pre-processing, production, distribution and storage, use, and end-of-life. These
interconnected stages make up the life cycle of a product and provide a helpful way of
organizing processes, collecting data, and calculating the CF of a product.

https://www.greenkey.global/carbon-calculation-tool-2
https://sphera.com/product-sustainability-software/
https://sphera.com/product-sustainability-software/
https://simapro.com/business/
https://www.ifu.com/product-carbon-footprint/
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An LCA can be conducted at different levels. The cradle-to-grave LCA examines a
product’s life cycle, from acquiring the raw materials used in the production process to
its final disposal. At the same time, the cradle-to-gate LCA stops at the point where the
product is at the “factory gate”, ready to be shipped either for final consumption or as
input to another life cycle. Finally, the cradle-to-cradle LCA, considered the most complete,
focuses on the product’s life cycle as well as on the recycling stage. The LCA methodology
used in the study follows the cradle-to-gate perspective. We chose this LCA type because it
can be easily applied to the average SME. As discussed above, SMEs often have limited
financial and organizational resources. Therefore, calculating emissions related to processes
not directly controlled by them, especially those that occur after the product has left the
“factory gate”, can be quite troublesome and sometimes non-applicable.

For this reason, we did not include modules to map the stages of using and disposing
of the final product. The only stage that was implemented, which takes place after the
final product has left the factory gate, is the distribution stage. This module can be used by
SMEs that can acquire data related to the distribution of their products.

The product CF calculation tool was designed based on the needs of SMEs in order to
help them.

1. Map their business processes according to the LCA method
2. Calculate the product CF
3. Gain a better insight into the carbon impact of their business
4. Identify carbon-intensive procedures in their business cycle

In the following sections, we describe the tool developed along with a small case study
in which the tool was applied. First, we present our case study and then proceed with the
description of the tool.

2.1. Case Study

In this paper, we present the case of a small cheese manufacturing factory in northern
Greece that produces a type of semihard to hard, elastic cheese that is served grilled (similar
to the “halloumi” cheese). This type of cheese is popular in restaurants because it can be
easily cooked and can accompany various dishes due to its light taste. During production,
whey is produced as a by-product, which is sold to an external partner as biofuel. At the
time of the research, the enterprise employed 12 staff, and its annual turnover was less than
€2 million, which classifies the company to the micro-SME category (a strict classification
would put the enterprise in the small SME category due to the number of employees,
which should be under 10, but we believe that this particular enterprise should be classified
as a micro-SME, mainly due to its annual turnover and the fact that it is very close to
the employee limit) [145]. We deliberately chose a micro-SME because, as mentioned in
the latest 2023 SME Country Fact Sheet, the Greek SME landscape has a higher share of
microenterprises than the EU average. Moreover, according to the same report, more people
are employed in micro-SMEs compared to the EU (46.6% against 29.4% in the EU) [145].
Therefore, this particular enterprise is representative of the average Greek SME enterprise.

The environmental impacts of the production of dairy products have been extensively
examined in the academic literature, with research focusing on the production of various
dairy products such as milk [146–152], butter [146,147], cheese [146,148,152–161], and
yogurt [147,150,162]. Most studies have highlighted the fact that raw milk is responsible for
the majority of GHG emissions related to the production of dairy products [146,148,149,151,
153–159] since its production results in GHGs emitted from animal enteric fermentation,
manure management, and land use. Further sources contributing to the CF of dairy
products can be traced in the dairy processing phase [146,153,154,158,160] and are mainly
related to energy consumption.

The tool that is presented in this study does not provide estimates of the carbon
footprint of raw milk; therefore, in order to estimate the carbon footprint based on the
cradle-to-gate methodology, we will use an estimate of the carbon footprint of milk based
on the research of Laca et al. [160]. We will use the estimated 1.22 kg CO2eq per kg of fat
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and protein-corrected milk obtained by semi-confinement dairy farm systems in northern
Spain. Since the company that manufactures the product that we study (cheese) is stationed
in northern Greece, and its suppliers are also stationed in the same area, this estimate of
the carbon footprint of milk is appropriate for our analysis. The production process of the
product is presented in Figure 1.
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Figure 1. The production process of cheese.

2.2. Data Collection

The emission factors used in calculating the CF of the respected product were based on
the guidelines and data provided by the IPCC [163] and the EEA [164]. The emission factors
used to calculate emissions from electricity consumption were based on the values annually
announced for each energy supplier by the “Administrator of Renewable Energy Sources
and Guarantees of Origin”, the organization responsible for managing the renewable
energy sources of the Greek national interconnected electricity system.

Regarding the product’s production process, a dataset including the time of each
production stage, the inputs and outputs, the equipment used, and their respective energy
consumption was compiled based on the company’s HACCPC (Hazard Analysis and Criti-
cal Control Points) certification, which includes an analytical description of the product’s
production process. Finally, the calculation of the carbon footprint of the particular batch,
which is presented in the following section, real-time data were collected, in addition to
those included in the database above. Real-time data included the number of inputs and
outputs of each production stage.
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3. Tool’s Description and Results

The main interface of the tool consists of four basic modules:

1. The dashboard, which provides an overview of the company’s emissions at the
corporate level

2. The company, where the user can map the company’s structure by adding different
departments (facilities), equipment used in those departments, and company-owned
vehicles.

3. The QMS (abbreviation for Quality Management System) allows the user to design
the production process; create an inventory of materials (raw materials, semi-ready
products, and final products), suppliers, customers, and distributors; and manage
orders, receipts, and storage of the materials.

4. The ENV is where the user can manage any energy-related information, such as
adding power sources and their respective emission factors and keeping a record of
energy-related bills.

The mapping of the business processes begins with defining the facilities that will be
included in the analysis. Each facility can be divided into different zones (e.g., production
sites, offices, parking lots). This categorization facilitates the calculation of the carbon
footprint of products, as it makes it possible to separate the processes that are directly
attributed to the production of the product from those that are not, a prerequisite required
by the GHG Protocol Carbon Footprint Standard. Our case study separates the main facility
into two zones: the PRODUCTION FACILITY and the OFFICES (Figure 2).

Sustainability 2024, 16, x FOR PEER REVIEW 10 of 23 
 

2. The company, where the user can map the company’s structure by adding different 
departments (facilities), equipment used in those departments, and company-owned 
vehicles. 

3. The QMS (abbreviation for Quality Management System) allows the user to design 
the production process; create an inventory of materials (raw materials, semi-ready 
products, and final products), suppliers, customers, and distributors; and manage 
orders, receipts, and storage of the materials. 

4. The ENV is where the user can manage any energy-related information, such as add-
ing power sources and their respective emission factors and keeping a record of en-
ergy-related bills. 
The mapping of the business processes begins with defining the facilities that will be 

included in the analysis. Each facility can be divided into different zones (e.g., production 
sites, offices, parking lots). This categorization facilitates the calculation of the carbon foot-
print of products, as it makes it possible to separate the processes that are directly at-
tributed to the production of the product from those that are not, a prerequisite required 
by the GHG Protocol Carbon Footprint Standard. Our case study separates the main fa-
cility into two zones: the PRODUCTION FACILITY and the OFFICES (Figure 2). 

 
Figure 2. Data recorded for production equipment (pasteurizer). 

The next step is to create an equipment inventory containing all the equipment used 
in the production process. For each type of equipment, the following information is re-
quired: the name of the equipment, its categorization (whether it is used in the production 
process or at the offices), its power source and the respective measurement unit, its status 
(whether it is functional, under maintenance or malfunctioning), its power source (in our 
case, all the equipment in the production process are powered by electricity, provided by 
a power supplier) and the desired conversion method (one can choose to calculate CO2 
equivalents, kg of CO2, CH4, N2O). Figure 2 shows the data recorded for a pasteurizer used 
in the production facility, and Figure 3 shows all the equipment used in the production 
process. 
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The next step is to create an equipment inventory containing all the equipment used in
the production process. For each type of equipment, the following information is required:
the name of the equipment, its categorization (whether it is used in the production process
or at the offices), its power source and the respective measurement unit, its status (whether
it is functional, under maintenance or malfunctioning), its power source (in our case, all
the equipment in the production process are powered by electricity, provided by a power
supplier) and the desired conversion method (one can choose to calculate CO2 equivalents,
kg of CO2, CH4, N2O). Figure 2 shows the data recorded for a pasteurizer used in the
production facility, and Figure 3 shows all the equipment used in the production process.
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The application can be designed to accept any conversion method since the emission
factors used in calculating the desired output are also treated as a separate process that the
user can create. For example, the company that manufactures the product owns a large
truck that is powered by diesel. The truck is categorized as a EURO 6 heavy-duty vehicle
(Figure 4). Figure 5 provides a snapshot of how the emission factor related to this particular
vehicle is implemented. The user can create the respective power source (i.e., diesel) and
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Consequently, when the user enters data regarding the distance traveled with this
particular vehicle, the tool automatically calculates the emissions related to this particular
travel distance. The same procedure is followed when the user enters data on the vehicles
that suppliers or distributors own. Each vehicle can be identified by its unique license plate
number, which makes it easy for the user to enter data related to the receipt of materials.
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Creating the materials inventory is another essential stage in mapping the business
process (Figure 6). The materials inventory contains all materials used in the production
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When the user creates a production line, the materials are used as input or output of
the different production stages. For example, when the user creates a production line for
cheese, he creates the different production stages. For each stage, he enters the respective
inputs (raw materials, semi-ready products), the production equipment, and the output of
this process. In Figure 7, the coagulation stage of cheese production is presented.
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After creating the production line, the user can enter data related to different produc-
tion numbers (which can be identified via their LOT number). For example, a production
with the lot number 10002 is presented in Figure 8.
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Figure 8. An overview of the production line.

For each production stage, the user enters the output material (final product, by-
product, or semi-ready product), its quantity, and unit of measurement. Then, he enters
the production equipment and the respective hours of operation, the raw materials, and
the semi-ready products of previous stages. In this way, emissions related to energy
consumption are allocated to each production stage. Figure 9 shows the total emissions
related to the specific product LOT number as well as the emissions/kg of the final product.
Emissions related to the operation of each type of equipment are available, as well as
emissions related to company, supplier, and distributor vehicles. Each batch of products
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can be identified by its specific LOT number and unique QR code, which is automatically
generated for each LOT number.
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The results presented in Figure 9 show that 342.7 kg of CO2 was emitted during the
production of 167 kg of the final product. These emissions include the transportation
of raw materials and the storage of raw milk before processing. They do not include
emissions related to refrigerants, heating and cooling of premises, and packaging; for
the production of 167 kg of cheese, 1350 kg of raw milk was used, which corresponds to
approximately 1647 kg CO2eq based on the research of Laca et al. [160]. Therefore, the
total emissions related to the production of this batch of cheese are 1989.7 kg CO2eq, or
11.91 kg CO2eq/kg of product. This estimate is similar to the results of other studies, which
provide estimates of the carbon footprint of cheese production ranging between 10.2 and
16.9 [151,152,154,157,158].

4. Discussion

Drawing on the literature examining the barriers SMEs face in adopting CE strategies,
we designed a CF calculation tool considering the financial, technological, organizational,
informational, and cultural barriers that may emerge when SMEs try to create an emissions
inventory and calculate their product CF. Regarding the financial and technological barriers,
we argued that SMEs often lack the economic and technological capabilities to adopt CE
practices. Therefore, it is essential that those practices can be adopted at a low cost and
fully exploit the company’s current resources, thus minimizing the need for extensive
investments. The tool that was developed is a web-based application; it requires minimal
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financial resources to adopt. Moreover, its design is user-friendly and does not require
specialized technical skills.

In addressing the organizational, informational, and cultural barriers towards the
adoption of the tool, because most of the SMEs lack specialized knowledge regarding carbon
footprint calculation methodologies, we deliberately avoided using terminology such as
scope 1, 2, 3, direct/indirect emissions, purchased energy, organizational/operational
boundaries, which are used in most carbon accounting standards. One of our aims in
developing this tool was to minimize the need for users to be accustomed to the process
of identifying and categorizing emission sources because that would require additional
training for the user to be able to use the tool, and in our opinion, would discourage the
adoption of the tool.

Additionally, we organized the tool based on mainstream operations, i.e., orders, distri-
bution, customers, and suppliers, since most SMEs are accustomed to them. The users have
to add some additional information (type of vehicle) when processing mainstream data,
such as orders and receipts, which increases the administrative burden to some degree but
does not require mapping emission sources separately from mainstream operations, which
would considerably raise the administrative cost. The fact that this is a web application
allows for multiple users to have access to the tool. Therefore, each user can record data
according to his/her area of expertise. For example, personnel directly involved in the
production process can enter data needed for mapping the production equipment, and
data related to the distribution of products can be entered by personnel who manage distri-
butions. This procedure facilitates data collection and shares the administrative burden
among all participants. Also, we organized data entry based on the product’s production
stages, allowing users to monitor emissions related to each stage, identify hotspots, and
thus optimize the production procedure. However, a necessary condition for this procedure
is for all participants to be willing to share this additional burden. Therefore, overcoming
the cultural barriers is still a matter that needs to be addressed.

Regarding the technological features the tool should have to be successfully incor-
porated into core business activities, integration, traceability, and data management are
all achieved. The system developed allows for integrating IoT devices, such as energy or
temperature meters. Additionally, it offers traceability both at the production stage, using
a unique LOT number assigned in each product batch, and at the reception of the inputs
stage since it allows the mapping of suppliers and their respective vehicles. Regarding
data collection and processing, the application allows for data mapping and visualization
of the production process at each stage, making it easier for the user to extract relevant
information. Finally, this tool was developed to address the needs of Greek SMEs; therefore,
in its commercial form, it is in Greek, not in English, as presented in this paper, which
overcomes potential limitations regarding the English language skills necessary for using
other CF calculation tools.

As discussed in the literature review section, overcoming the internal organizational
barriers regarding adopting CE practices is essential in successfully implementing these
practices. Among those, incompatibility with the company’s current organizational struc-
ture often increases the administrative burden of CE practices and reduces their potential
positive effects on its environmental performance. Calculating the CF of an SME can form a
basis for assessing the various CE practices in terms of environmental impact, operational
changes, and cost implications. Regarding the operational changes that are most likely to
be implemented by SMEs, these include restructuring an SME’s processes according to the
life-cycle stages required by the LCA methodology, which could potentially increase the
organizational burden of a company. That is why, in developing this tool, we decided not
to follow the strict categorization of the stages described by GHG protocol and to allow
for a more flexible organization of the processes implemented in the tool. The protocol
also notes that the company may organize the stages better to reflect the life cycle of its
particular product. For example, a company may want to split one stage into multiple
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stages (such as separating distribution from storage) or use a term that better describes the
stages’ processes.

In terms of cost implications and potential environmental impact for SMEs, the fact that
the tool allows for a detailed mapping of a company’s life-cycle stages allows for a better
understanding of the environmental impacts of each stage and how the emissions related
to each stage are allocated between the equipment that is used in each stage. Therefore, it
allows for comparing different alternatives regarding adopting specific technologies and
their impact on the environment, particularly on energy consumption and carbon emissions.
Moreover, since, most times, reducing energy consumption also results in cost reduction,
the CF calculation tool can be used to map alternatives regarding reducing production
costs, energy consumption, and carbon emissions.

5. Conclusions

This research aimed to develop a CF calculation tool that can be adjusted to the
needs of SMEs. The beta version presented in this paper was used to map a small cheese
factory’s production process and calculate the CF of one of its products. The development
of this tool can contribute to advancing the calculation of CF in SMEs in the following
manner. First, it allows for a complete mapping of the LCA stages of a particular product or
service according to the structure of their current processes. Second, specialized knowledge
regarding the boundaries and the scopes of carbon reporting is not necessary when using
the specific tool; its design is more aligned with daily business processes, such as the
reception of raw material, production, storage, etc. Finally, it allows for comparisons
between different production processes since emissions are allocated to each stage and the
equipment used in the particular stage, making it easier for managers to identify energy
consumption hotspots.

This version has several limitations that are to be addressed at a later stage of the
project. First, it does not provide a process for the fugitive emissions related to the use
of refrigerants to be included in the product’s emission inventory. Second, it does not
consider emissions related to the production of raw materials, the consumption of the final
product, and its disposal. Regarding the production of raw materials, a process should be
implemented that would allow the user to enter emission factors related to the production
of specific materials based on the results of international research. Emissions related to the
consumption and disposal of the final product should also be incorporated into the tool
based on preestablished consumption patterns. These elements will be added in the second
phase of the project. Future research should focus on testing the CF calculation tool at a
large scale and gathering data related to the usability of the tool. Moreover, a comparative
analysis of other existing CF calculation tools should be conducted.

Our research has several implications. Regarding policymaking, specific standards
for calculating the CF in SMEs should be designed, and the adoption of CF calculation
tools should be promoted. Research programs that develop tools appropriate for all SMEs
and tools for specific sectors of particular interest to each country, such as the dairy or
tourist sectors, should also be funded. Business associations should facilitate collaboration
between SMEs and program developers, reducing information gaps and allowing for more
appropriate development of calculation tools. Finally, developers should design tools
that can integrate IoT technologies, directly import data from devices such as sensors or
meters, and have simplified user interfaces with more graphic elements that do not require
specialized knowledge.

6. Patents

The software presented in this paper, “Kwattum”, is owned by Kloni Paraskevi SP,
Agia Paraskevi P.O. Box 609, P.C. 57001, Thermi, Thessaloniki, Greece.
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33. Avdiushchenko, A.; Zając, P. Circular Economy Indicators as a Supporting Tool for European Regional Development Policies.
Sustainability 2019, 11, 3025. [CrossRef]

34. Camilleri, M.A. European Environment Policy for the Circular Economy: Implications for Business and Industry Stakeholders.
Sustain. Dev. 2020, 28, 1804–1812. [CrossRef]

35. Ignatyeva, M.; Yurak, V.; Dushin, A.; Strovsky, V.; Zavyalov, S.; Malyshev, A.; Karimova, P. How Far Away Are World Economies
from Circularity: Assessing the Capacity of Circular Economy Policy Packages in the Operation of Raw Materials and Industrial
Wastes. Sustainability 2021, 13, 4394. [CrossRef]

36. Ikiz Kaya, D.; Pintossi, N.; Dane, G. An Empirical Analysis of Driving Factors and Policy Enablers of Heritage Adaptive Reuse
within the Circular Economy Framework. Sustainability 2021, 13, 2479. [CrossRef]

37. Hailemariam, A.; Erdiaw-Kwasie, M.O. Towards a Circular Economy: Implications for Emission Reduction and Environmental
Sustainability. Bus. Strategy Environ. 2023, 32, 1951–1965. [CrossRef]

38. Khanna, M.; Gusmerotti, N.M.; Frey, M. The Relevance of the Circular Economy for Climate Change: An Exploration through the
Theory of Change Approach. Sustainability 2022, 14, 3991. [CrossRef]

39. Cantzler, J.; Creutzig, F.; Ayargarnchanakul, E.; Javaid, A.; Wong, L.; Haas, W. Saving Resources and the Climate? A Systematic
Review of the Circular Economy and Its Mitigation Potential. Environ. Res. Lett. 2020, 15, 123001. [CrossRef]

40. Ellen MacArthur Foundation. Completing the Picture. 2019. How the Circular Economy Tackles Climate Change. Available online:
https://www.ellenmacarthurfoundation.org/publications/completing-the-picture-climate-change (accessed on 11 August 2023).

41. Yang, M.; Chen, L.; Wang, J.; Msigwa, G.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Yap, P.-S. Circular Economy Strategies for
Combating Climate Change and Other Environmental Issues. Environ. Chem. Lett. 2023, 21, 55–80. [CrossRef]

42. Atabaki, M.S.; Mohammadi, M.; Naderi, B. New Robust Optimization Models for Closed-Loop Supply Chain of Durable Products:
Towards a Circular Economy. Comput. Ind. Eng. 2020, 146, 106520. [CrossRef]

43. Çimen, Ö. Construction and Built Environment in Circular Economy: A Comprehensive Literature Review. J. Clean. Prod. 2021,
305, 127180. [CrossRef]

44. Ellen MacArthur Foundation. Towards the Circular Economy Vol. 1: An Economic and Business Rationale for an Accelerated
Transition. Available online: https://www.ellenmacarthurfoundation.org/towards-the-circular-economy-vol-1-an-economic-
and-business-rationale-for-an (accessed on 2 January 2024).

45. Orsini, F.; Marrone, P. Approaches for a Low-Carbon Production of Building Materials: A Review. J. Clean. Prod. 2019, 241, 118380.
[CrossRef]

46. Gallego-Schmid, A.; Chen, H.-M.; Sharmina, M.; Mendoza, J.M.F. Links between Circular Economy and Climate Change
Mitigation in the Built Environment. J. Clean. Prod. 2020, 260, 121115. [CrossRef]

47. De Abreu, V.H.S.; Da Costa, M.G.; Da Costa, V.X.; De Assis, T.F.; Santos, A.S.; D’Agosto, M.d.A. The Role of the Circular Economy
in Road Transport to Mitigate Climate Change and Reduce Resource Depletion. Sustainability 2022, 14, 8951. [CrossRef]

48. Chen, T.D.; Kockelman, K.M. Carsharing’s Lifecycle Impacts on Energy Use and Greenhouse Gas Emissions. Transp. Res. Part. D
Transp. Environ. 2016, 47, 276–284. [CrossRef]

https://doi.org/10.1016/j.jclepro.2016.12.048
https://doi.org/10.1016/j.jclepro.2015.09.007
https://doi.org/10.3390/su8010043
https://doi.org/10.3390/su9101810
https://doi.org/10.1016/j.jclepro.2015.12.042
https://doi.org/10.1007/s10551-015-2693-2
https://doi.org/10.1111/jiec.12603
https://doi.org/10.1016/j.procs.2022.08.079
https://doi.org/10.1016/j.jclepro.2012.11.020
https://doi.org/10.1111/jiec.12597
https://doi.org/10.1016/j.spc.2020.09.008
https://doi.org/10.3390/su13094916
https://doi.org/10.3390/su11113025
https://doi.org/10.1002/sd.2113
https://doi.org/10.3390/su13084394
https://doi.org/10.3390/su13052479
https://doi.org/10.1002/bse.3229
https://doi.org/10.3390/su14073991
https://doi.org/10.1088/1748-9326/abbeb7
https://www.ellenmacarthurfoundation.org/publications/completing-the-picture-climate-change
https://doi.org/10.1007/s10311-022-01499-6
https://doi.org/10.1016/j.cie.2020.106520
https://doi.org/10.1016/j.jclepro.2021.127180
https://www.ellenmacarthurfoundation.org/towards-the-circular-economy-vol-1-an-economic-and-business-rationale-for-an
https://www.ellenmacarthurfoundation.org/towards-the-circular-economy-vol-1-an-economic-and-business-rationale-for-an
https://doi.org/10.1016/j.jclepro.2019.118380
https://doi.org/10.1016/j.jclepro.2020.121115
https://doi.org/10.3390/su14148951
https://doi.org/10.1016/j.trd.2016.05.012


Sustainability 2024, 16, 1905 19 of 23

49. Esposito, B.; Sessa, M.R.; Sica, D.; Malandrino, O. Towards Circular Economy in the Agri-Food Sector. A Systematic Literature
Review. Sustainability 2020, 12, 7401. [CrossRef]

50. Peña, C.; Civit, B.; Gallego-Schmid, A.; Druckman, A.; Pires, A.C.-; Weidema, B.; Mieras, E.; Wang, F.; Fava, J.; Canals, L.M.I.; et al.
Using Life Cycle Assessment to Achieve a Circular Economy. Int. J. Life Cycle Assess. 2021, 26, 215–220. [CrossRef]

51. Bjørnbet, M.M.; Vildåsen, S.S. Life Cycle Assessment to Ensure Sustainability of Circular Business Models in Manufacturing.
Sustainability 2021, 13, 11014. [CrossRef]

52. Rigamonti, L.; Mancini, E. Life Cycle Assessment and Circularity Indicators. Int. J. Life Cycle Assess. 2021, 26, 1937–1942.
[CrossRef]

53. Saadé, M.; Erradhouani, B.; Pawlak, S.; Appendino, F.; Peuportier, B.; Roux, C. Combining Circular and LCA Indicators for the
Early Design of Urban Projects. Int. J. Life Cycle Assess. 2022, 27, 1–19. [CrossRef]

54. Stillitano, T.; Spada, E.; Iofrida, N.; Falcone, G.; De Luca, A.I. Sustainable Agri-Food Processes and Circular Economy Pathways in
a Life Cycle Perspective: State of the Art of Applicative Research. Sustainability 2021, 13, 2472. [CrossRef]

55. Wrålsen, B.; O’Born, R. Use of Life Cycle Assessment to Evaluate Circular Economy Business Models in the Case of Li-Ion Battery
Remanufacturing. Int. J. Life Cycle Assess. 2023, 28, 554–565. [CrossRef]

56. The GHG Protocol. Product Standard. 2011. Available online: https://ghgprotocol.org/product-standard (accessed on 15
October 2023).

57. ISO 14040; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006.
58. UNEP. Global Guidance Principles for Life Cycle Assessment Databases: A Basis for Greener Processes and Products: ‘Shonan Guidance

Principles’; UNEP/SETAC Life Cycle Initiative; UNEP: Nairobi, Kenya, 2011.
59. PAS 2050:2011; BSI. Specification for Assessing the Life Cycle Greenhouse Gas Emissions of Goods and Services. British Standards

Institute: London, UK. Available online: https://www.en-standard.eu/pas-2050-2011-specification-for-the-assessment-of-the-
life-cycle-greenhouse-gas-emissions-of-goods-and-services/ (accessed on 15 October 2023).

60. The GHG Protocol. Corporate Standard. 2004. Available online: https://ghgprotocol.org/corporate-standard (accessed on
15 October 2023).

61. Gorgels, S.; Priem, M.; Blagoeva, T.; Martinelle, A.; Milanesi, G. Annual Report on European SMEs 2021/2022: SMEs and Environmen-
tal Sustainability: Background Document; Publications Office of the European Union: Luxembourg, 2022.

62. Katsinis, A.; Di Bella, L.; Laguera Gonzalez, J.; De Pedraza Garcia, P. SME Performance Review; Publications Office of the European
Union: Luxembourg, 2023. [CrossRef]

63. Dangelico, R.M.; Pontrandolfo, P. Being ‘Green and Competitive’: The Impact of Environmental Actions and Collaborations on
Firm Performance. Bus. Strategy Environ. 2015, 24, 413–430. [CrossRef]

64. Revell, A.; Stokes, D.; Chen, H. Small Businesses and the Environment: Turning over a New Leaf? Bus. Strategy Environ. 2010, 19,
273–288. [CrossRef]

65. Lucas, M.T. Understanding Environmental Management Practices: Integrating Views from Strategic Management and Ecological
Economics. Bus. Strategy Environ. 2010, 19, 543–556. [CrossRef]

66. Brammer, S.; Hoejmose, S.; Marchant, K. Environmental Management in SMEs in the UK: Practices, Pressures and Perceived
Benefits. Bus. Strategy Environ. 2012, 21, 423–434. [CrossRef]

67. Leonidou, L.C.; Christodoulides, P.; Kyrgidou, L.P.; Palihawadana, D. Internal Drivers and Performance Consequences of Small
Firm Green Business Strategy: The Moderating Role of External Forces. J. Bus. Ethics 2017, 140, 585–606. [CrossRef]

68. Madueno, J.H.; Jorge, M.L.; Conesa, I.M.; Martínez-Martínez, D. Relationship between Corporate Social Responsibility and
Competitive Performance in Spanish SMEs: Empirical Evidence from a Stakeholders’ Perspective. BRQ Bus. Res. Q. 2016, 19,
55–72. [CrossRef]

69. Zamfir, A.-M.; Mocanu, C.; Grigorescu, A. Circular Economy and Decision Models among European SMEs. Sustainability 2017, 9,
1507. [CrossRef]
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