Vegetation Type Mapping in Southern Patagonia and Its Relationship with Ecosystem Services, Soil Carbon Stock, and Biodiversity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of the Study Area and Land Use Cover Classes
2.2. Environmental Predictors for the Land Cover Map
2.3. Supervised Land Cover Classification and Validation
2.4. Vegetation Classes and their Relationships with Biodiversity, Soil Carbon, and Ecosystem Services
3. Results
3.1. Land Use Map
3.2. Vegetation Type Classes and their Relationships with Biodiversity, Soil Carbon, and Ecosystem Services
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feddema, J.J. The Importance of Land-Cover Change in Simulating Future Climates. Science 2005, 310, 1674–1678. [Google Scholar] [CrossRef]
- Fathy, D.; Zakaly, H.M.H.; Lasheen, E.S.R.; Elsaman, R.; Alarifi, S.S.; Sami, M.; Awad, H.A.; Ene, A. Assessing geochemical and natural radioactivity impacts of Hamadat phosphatic mine through radiological indices. PLoS ONE 2023, 18, e0287422. [Google Scholar] [CrossRef]
- Xie, Y.; Sha, Z.; Yu, M. Remote sensing imagery in vegetation mapping: A review. J. Plant Ecol. 2008, 1, 9–23. [Google Scholar] [CrossRef]
- Costanza, R.; De Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Hurskainen, P.; Adhikari, H.; Siljander, M.; Pellikka, P.K.E.; Hemp, A. Auxiliary datasets improve accuracy of object-based land use/land cover classification in heterogeneous savanna landscapes. Remote Sens. Environ. 2019, 233, e111354. [Google Scholar] [CrossRef]
- Oñatibia, G.R.; Aguiar, M.R. Continuous moderate grazing management promotes biomass production in Patagonian arid rangelands. J. Arid. Environ. 2016, 125, 73–79. [Google Scholar] [CrossRef]
- Paruelo, J.M.; Golluscio, R.A.; Guerschman, J.P.; Cesa, A.; Jouve, V.V.; Garbulsky, M.F. Regional scale relationships between ecosystem structure and functioning. The case of the Patagonian steppes. Glob. Ecol. Biogeogr. 2004, 13, 385–395. [Google Scholar] [CrossRef]
- Cibils, A.; Borrelli, P. Grasslands of Patagonia. In Grasslands of the World: Plant Production and Protection; Suttie, J., Reynolds, S., Batello, C., Eds.; FAO: Rome, Italy, 2005. [Google Scholar]
- Reque, J.A.; Sarasola, M.; Gyenge, J.; Fernández, M.E. Caracterización silvícola de ñirantales del norte de la Patagonia para la gestión forestal sostenible. Bosque 2007, 28, 33–45. [Google Scholar] [CrossRef]
- Peri, P.L.; Rosas, Y.M.; Rivera, E.; Martínez Pastur, G. Lamb and wool provisioning ecosystem services in Southern Patagonia. Sustainability 2021, 13, 8544. [Google Scholar] [CrossRef]
- Blanco, P.D.; del Valle, H.F.; Bouza, P.J.; Metternicht, G.I.; Hardtke, L.A. Ecological site classification of semiarid rangelands: Synergistic use of Landsat and Hyperion imagery. Int. J. Appl. Earth Obs. Geoinf. 2014, 29, 11–21. [Google Scholar] [CrossRef]
- Peri, P.L.; Rosas, Y.M.; Ladd, B.; Toledo, S.; Lasagno, R.G.; Martínez Pastur, G. Modelling soil carbon content in South Patagonia and evaluating changes according to climate, vegetation, desertification and grazing. Sustainability 2018, 10, 438. [Google Scholar] [CrossRef]
- Abril, A.; Villagra, P.; Noe, L. Spatiotemporal heterogeneity of soil fertility in the Central Monte desert (Argentina). J. Arid Environ. 2009, 73, 901–906. [Google Scholar] [CrossRef]
- Ares, J.; del Valle, H.; Bisigato, A. Detection of process related changes in plant patterns at extended spatial scales during early dryland desertification. Glob. Chang. Biol. 2003, 9, 1643–1659. [Google Scholar] [CrossRef]
- Bisigato, A.J.; Hardtke, L.A.; del Valle, H.F.; Bouza, P.J.; Palacio, R.G. Regional-scale vegetation heterogeneity in northeastern Patagonia: Environmental and spatial components. Community Ecol. 2016, 17, 8–16. [Google Scholar] [CrossRef]
- Maynard, J.J.; Karl, J.W. A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites. PLoS ONE 2017, 12, e0175201. [Google Scholar] [CrossRef] [PubMed]
- Stumpf, F.; Schneider, M.K.; Keller, A.; Mayr, A.; Rentschler, T.; Meuli, R.G.; Schaepman, M.; Liebisch, F. Spatial monitoring of grassland management using multi-temporal satellite imagery. Ecol. Indic. 2020, 113, e106201. [Google Scholar] [CrossRef]
- Li, W.; Dong, R.; Fu, H.; Wang, J.; Yu, L.; Gong, P. Integrating Google Earth imagery with Landsat data to improve 30-m resolutionland cover mapping. Remote Sens. Environ. 2020, 237, e111563. [Google Scholar] [CrossRef]
- Koskinen, J.; Leinonen, U.; Vollrath, A.; Ortmann, A.; Lindquist, E.; d’Annunzio, R.; Pekkarinen, A.; Käyhkö, N. Participatory mapping of forest plantations with Open Foris and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2019, 148, 63–74. [Google Scholar] [CrossRef]
- Teluguntla, P.; Thenkabail, P.S.; Oliphant, A.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Yadav, K.; Huete, A. A 30-m landsatderived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2018, 144, 325–340. [Google Scholar] [CrossRef]
- Adagbasa, E.G.; Mukwada, G. Mapping vegetation species succession in a mountainous grassland ecosystem using Landsat, ASTER MI, and Sentinel-2 data. PLoS ONE 2022, 17, e0256672. [Google Scholar] [CrossRef]
- Costanza, R.; Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; Oneill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-Being: Synthesis; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Miller, R.W.; Donahue, R.L. Soils: An Introduction to Soils and Plant Growth, 6th ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1990. [Google Scholar]
- Daily, G.C. Nature’s Services; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Mazzoni, E.; Rabassa, J. Inventario y clasificación de manifestaciones basálticas en la Patagonia mediante imágenes satelitales y SIG, provincia de Santa Cruz. Rev. Asoc. Geol. Argent. 2010, 66, 608–618. [Google Scholar]
- Zalazar, L.; Ferri, L.; Castro, M.; Gargantini, H.; Gimenez, M.; Pitte, P.; Ruiz, L.; Masiokas, M.; Costa, G.; Villalba, R. Spatial distribution and characteristics of Andean ice masses in Argentina: Results from the first National Glacier Inventory. J. Glaciol. 2020, 66, 938–949. [Google Scholar] [CrossRef]
- IGN—Instituto Geográfico Nacional. Determinación de la superficie correspondiente al territorio continental, antártico e insular de la República Argentina. In Documento Técnico IGN; Dirección Nacional de Servicios Geográficos: Buenos Aires, Argentina, 2022; p. 83. [Google Scholar]
- León, R.J.C.; Brand, D.; Collantes, M.; Paruelo, J.M.; Soriano, A. Grandes unidades de vegetación de la Patagonia extra andina. Ecol. Austral 1998, 8, 125–144. [Google Scholar]
- Roig, F.A. Growth conditions of Empetrum rubrum Vahl. ex Will. in the south of Argentina. Dendrochronologia 1988, 6, 43–59. [Google Scholar]
- Mazzoni, E.; Rabassa, J. Types and internal hydro-geomorphologic variability of mallines (wet-meadows) of Patagonia: Emphasis on volcanic plateaus. J. S. Am. Earth Sci. 2013, 46, 170–182. [Google Scholar] [CrossRef]
- Loisel, J.; Yu, Z. Holocene peatland carbon dynamics in Patagonia. Quat. Sci. Rev. 2013, 69, 125–141. [Google Scholar] [CrossRef]
- Clymo, R.S.; Turunen, J.; Tolonen, K. Carbon accumulation in peatland. Oikos 1998, 81, 368–388. [Google Scholar] [CrossRef]
- Peri, P.L.; Ormaechea, S.G. Relevamiento de los Bosques Nativos de ñire (Nothofagus antarctica) en Santa Cruz: Base para su Conservación y Manejo; INTA: Río Gallegos, Santa Cruz, Argentina, 2013. [Google Scholar]
- Peri, P.L.; Monelos, L.; Díaz, B.; Mattenet, F.; Huertas, L.; Bahamonde, H.; Rosas, Y.M.; Lencinas, M.V.; Cellini, J.M.; Martínez Pastur, G. Estado y usos de los Bosques Nativos de Lenga, Siempreverdes y Mixtos en Santa Cruz: Base para su Conservación y Manejo; INTA: Río Gallegos, Santa Cruz, Argentina, 2019. [Google Scholar]
- Veblen, T.T.; Donoso, C.; Kitzberger, Z.T.; Rebertus, A.J. Ecology of southern Chilean and Argentinian Nothofagus forests. In The Ecology and Biogeography of Nothofagus Forests; Veblen, T.T., Hill, R.S., Read, J., Eds.; Yale University Press: New Haven, CT, USA, 1996; pp. 293–353. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, S.; Yan, X.; Chen, Z. A global classification of vegetation based on NDVI, rainfall and temperature. Int. J. Climatol. 2017, 37, 2318–2324. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Clim. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Florinsky, I.V.; Kuryakova, G.A. Influence of topography on some vegetation cover properties. Catena 1996, 27, 123–141. [Google Scholar] [CrossRef]
- Tadono, T.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H. Precise Global DEM Generation by ALOS PRISM, ISPRS. Photogr. Remote Sen. Spat. Inf. Sci. 2014, 2–4, 71–76. [Google Scholar]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309–317. [Google Scholar]
- Huete, A.R.; Didan, K.; Miura, T.; Rodreguez, E.; Gao, X.; Ferreira, L. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D. Atmosoherically resistant vegetation index (ARVI) for EOS-MODIS. Proc. IEEE Int. Geosci. Remote Sens. Symp. 1992, 92, 261–270. [Google Scholar] [CrossRef]
- Huete, A.R.; Jackson, R.D. Soil and atmosphere influences on the spectra of partial canopies. Remote Sens. Environ. 1988, 25, 89–105. [Google Scholar] [CrossRef]
- Shelestov, A.; Lavreniuk, M.; Kussul, N.; Novikov, A.; Skakun, S. Exploring Google Earth Engine Platform for Big Data Processing: Classification of Multi-Temporal Satellite Imagery for Crop Mapping. Front. Earth Sci. 2017, 5, e17. [Google Scholar] [CrossRef]
- Paruelo, J. Clasificación de Datos Espectrales. Percepción Remota y Sistemas de Información Geográfica: Sus Aplicaciones en Agronomía y Ciencias Ambientales; Hemisferio Sur: Buenos Aires, Argentina, 2014. [Google Scholar]
- Congalton, R.G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Udali, A.; Lingua, E.; Persson, H.J. Assessing Forest Type and Tree Species Classification Using Sentinel-1 C-Band SAR Data in Southern Sweden. Remote Sens. 2021, 13, 3237. [Google Scholar] [CrossRef]
- Rosas, Y.M.; Peri, P.L.; Lencinas, M.V.; Lasagno, R.; Martínez Pastur, G. Improving the knowledge of plant potential biodiversity-ecosystem services links using maps at the regional level in Southern Patagonia. Ecol. Proc. 2021, 10, 53. [Google Scholar] [CrossRef]
- Rosas, Y.M.; Peri, P.L.; Martínez Pastur, G. Assessment of provisioning ecosystem services in terrestrial ecosystems of Santa Cruz province, Argentina. In Ecosystem Services in Patagonia: A Multi-Criteria Approach for an Integrated Assessment; Peri, P.L., Nahuelhual, L., Martínez Pastur, G., Eds.; Springer: Cham, Switzerland, 2021; Chapter 2; pp. 19–46. [Google Scholar]
- Macintyre, P.D.; Van Niekerk, A.; Dobrowolski, M.P.; Tsakalos, J.L.; Mucina, L. Impact of ecological redundancy on the performance of machine learning classifiers in vegetation mapping. Ecol. Evol. 2018, 8, 6728–6737. [Google Scholar] [CrossRef] [PubMed]
- Nordberg, M.L.; Evertson, J. Vegetation index differencing and linear regression for change detection in a Swedish mountain range using Landsat TM and ETM+ imagery. Land Degrad. Dev. 2003, 16, 139–149. [Google Scholar] [CrossRef]
- Sluiter, R. Mediterranean land cover change: Modelling and monitoring natural vegetation using GIS and remote sensing. Ned. Geogr. Stud. 2005, 333, 17–144. [Google Scholar]
- Aghababaei, M.; Ebrahimi, A.; Naghipour, A.A.; Asadi, E.; Verrelst, J. Vegetation types mapping using Multi-Temporal Landsat Images in the Google Earth Engine Platform. Remote Sens. 2021, 13, 4683. [Google Scholar] [CrossRef]
- Pech-May, F.; Aquino-Santos, R.; Rios-Toledo, G.; Posadas-Durán, J.P.F. Mapping of land cover with optical images, supervised algorithms, and Google Earth Engine. Sensors 2022, 22, 4729. [Google Scholar] [CrossRef]
- Marín Del Valle, T.; Jiang, P. Comparison of common classification strategies for large-scale vegetation mapping over the Google Earth Engine platform. Int. J. Appl. Earth Obs. Geoinf. 2022, 115, e103092. [Google Scholar] [CrossRef]
- Monserud, R.A.; Leemans, R. Comparing global vegetation maps with the Kappa statistic. Ecol. Model. 1992, 62, 275–293. [Google Scholar] [CrossRef]
- Xiao, X.M.; Zhang, Q.; Braswell, B.; Urbanski, S.; Boles, S.; Wofsy, S.; Moore, B., III; Ojima, D. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sens. Environ. 2004, 91, 256–270. [Google Scholar] [CrossRef]
- Afuye, G.A.; Kalumba, A.M.; Orimoloye, I.R. Characterisation of vegetation response to climate change: A review. Sustainability 2021, 13, 7265. [Google Scholar] [CrossRef]
- Bisigato, A.J.; Bertiller, M.B. Temporal and micro-spatial patterning of seedling establishment. Consequences for patch dynamics in the southern Monte, Argentina. Plant Ecol. 2004, 174, 235–246. [Google Scholar]
- Friedl, M.A.; Brodley, C.E. Decision tree classification of land cover from remotely sensed data. Remote Sens. Environ. 1997, 61, 399–409. [Google Scholar] [CrossRef]
- Alencar, A.; Shimbo, J.Z.; Lenti, F.; Balzani Marques, C.; Zimbres, B.; Rosa, M.; Arruda, V.; Castro, I.; Fernandes Márcico Ribeiro, J.P.; Varela, V.; et al. Mapping three decades of changes in the Brazilian savanna native vegetation using Landsat data processed in the Google Earth Engine platform. Remote Sens. 2020, 12, 924. [Google Scholar] [CrossRef]
- Satti, P.; Mazzarino, M.J.; Gobbi, M.; Funes, F.; Roselli, L.; Fernandez, H. Soil N dynamics in relation to leaf litter quality and soil fertility in north-western Patagonian forests. J. Ecol. 2003, 91, 173–181. [Google Scholar] [CrossRef]
- Mori, A.S.; Lertzman, K.P.; Gustafsson, L. Biodiversity and ecosystem services in forest ecosystems: A research agenda for applied forest ecology. J. Appl. Ecol. 2017, 54, 12–27. [Google Scholar] [CrossRef]
- Rosas, Y.M.; Peri, P.L.; Carrasco, J.; Lencinas, M.V.; Pidgeon, A.M.; Politi, N.; Martinuzzi, S.; Martínez Pastur, G. Improving potential biodiversity and human footprint in Nothofagus forests of southern Patagonia through the spatial prioritization of their conservation values. In Spatial Modeling in Forest Resources Management; Shit, P.K., Reza, H., Das, P., Sankar Bhunia, S., Eds.; Springer: Cham, Switzerland, 2021; pp. 441–471. [Google Scholar]
- Antos, J. Understory plants in temperate forests. In Forests and Forest Plants; Owens, J.N., Gyde Lund, H., Eds.; Eolss Publishers Co., Ltd.: Oxford, UK, 2009; pp. 262–279. [Google Scholar]
- Powers, R.F. Nitrogen mineralization along an altitudinal gradient: Interactions of soil temperature, moisture, and substrate quality. For. Ecol. Manag. 1990, 30, 19–29. [Google Scholar] [CrossRef]
- Mazzarino, M.J.; Bertiller, M.; Sain, C.L.; Satti, P.; Coronato, F. Soil nitrogen dynamics in northeastern Patagonia steppe under different precipitation regimes. Plant Soil 1998, 202, 125–131. [Google Scholar] [CrossRef]
- Martínez Pastur, G.; Peri, P.L.; Lencinas, M.V.; Garcia-Llorente, M.; Martin-Lopez, B. Spatial patterns of cultural ecosystem services provision in Southern Patagonia. Landsc. Ecol. 2016, 31, 383–399. [Google Scholar] [CrossRef]
- Albuquerque, F.; Beier, P. Using abiotic variables to predict importance of sites for species representation. Conserv. Biol. 2015, 29, 1390–1400. [Google Scholar] [CrossRef]
- Canedoli, C.; Ferrè, C.; El Khair, D.A.; Comolli, R.; Liga, C.; Mazzucchelli, F.; Proietto, A.; Rota, N.; Colombo, G.; Bassano, B.; et al. Evaluation of ecosystem services in a protected mountain area: Soil organic carbon stock and biodiversity in alpine forests and grasslands. Ecosyst. Serv. 2020, 44, e101135. [Google Scholar] [CrossRef]
- Mace, G.M.; Norris, K.; Fitter, A.H. Biodiversity and ecosystem services: A multilayered relationship. Trends Ecol. Evol. 2012, 27, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Lange, M.; Eisenhauer, N.; Sierra, C.A.; Bessler, H.; Engels, C.; Griffiths, R.; Mellado-Vázquez, P.; Malik, A.; Roy, J.; Scheu, S.; et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 2015, 6, e6707. [Google Scholar] [CrossRef] [PubMed]
- Jastrow, J.D.; Amonette, J.E.; Bailey, V.L. Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Clim. Chang. 2007, 80, 5–23. [Google Scholar] [CrossRef]
Cover Class | Area (km2) | Class Percentage (%) |
---|---|---|
Permanent water bodies | 5427.9 | 2.22 |
Semi-permanent water bodies | 1625.8 | 0.67 |
Ephemeral water bodies | 909.3 | 0.37 |
Lava field | 70.2 | 0.03 |
Glaciers | 3484.1 | 1.43 |
Infrastructure | 224.4 | 0.09 |
Nothofagus pumilio forest | 2538.4 | 1.04 |
N. antarctica forest | 1000.5 | 0.41 |
N. betuloides forest | 84.3 | 0.03 |
Mixed forest | 104.4 | 0.04 |
Mata Verde shrubland | 183.0 | 0.07 |
Mata Negra Matorral thicket | 38,355.4 | 15.69 |
Mixed shrubland | 9103.3 | 3.72 |
Murtillar dwarf-shrubland | 702.4 | 0.29 |
Wetland | 2120.0 | 0.87 |
Peatbog | 44.5 | 0.02 |
Steppe grassland | 142,085.2 | 58.12 |
Outcrop rock | 11,205.7 | 4.58 |
Bare soil | 25,189.3 | 10.31 |
Total | 244,458 | 100 |
Field | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Predicted | Classes | W | LF | Gl | NP | W | Sh | Mu | NA | G | OR | BS | Total | UA | CE |
W | 21,527 | 17 | 37 | 67 | 67 | 43 | 2 | 86 | 557 | 280 | 169 | 22,906 | 0.940 | 0.060 | |
LF | 0 | 527 | 0 | 0 | 0 | 13 | 0 | 0 | 163 | 13 | 1 | 717 | 0.735 | 0.265 | |
Gl | 200 | 0 | 20,071 | 3 | 5 | 0 | 0 | 0 | 3 | 1640 | 0 | 21,928 | 0.915 | 0.085 | |
NP | 0 | 0 | 0 | 11,281 | 20 | 1 | 0 | 181 | 9 | 29 | 0 | 11,552 | 0.977 | 0.023 | |
W | 216 | 0 | 0 | 35 | 12,012 | 44 | 50 | 132 | 1185 | 67 | 59 | 13,820 | 0.869 | 0.131 | |
Sh | 36 | 0 | 0 | 0 | 57 | 37,035 | 7 | 0 | 4599 | 138 | 133 | 42,006 | 0.882 | 0.118 | |
Mu | 2 | 0 | 0 | 0 | 77 | 25 | 7062 | 1 | 764 | 17 | 0 | 7949 | 0.888 | 0.112 | |
NA | 1 | 0 | 0 | 150 | 115 | 6 | 5 | 3490 | 43 | 2 | 0 | 3849 | 0.907 | 0.093 | |
G | 45 | 4 | 0 | 14 | 855 | 3027 | 272 | 72 | 105,114 | 697 | 593 | 110,817 | 0.949 | 0.051 | |
OR | 351 | 8 | 285 | 68 | 29 | 123 | 0 | 14 | 935 | 18,060 | 285 | 20,207 | 0.894 | 0.106 | |
BS | 3320 | 0 | 0 | 59 | 70 | 39,132 | 3 | 13 | 2336 | 435 | 8061 | 14,482 | 0.557 | 0.443 | |
Total | 25,698 | 556 | 20,393 | 11,677 | 13,307 | 40,449 | 7401 | 3989 | 115,708 | 21,378 | 9301 | ||||
PA | 0.838 | 0.948 | 0.984 | 0.966 | 0.903 | 0.560 | 0.954 | 0.875 | 0.908 | 0.845 | 0.867 | ||||
OE | 0.162 | 0.052 | 0.016 | 0.034 | 0.097 | 0.440 | 0.046 | 0.125 | 0.092 | 0.155 | 0.133 |
Vegetation Type | SOC | PB | ESs |
---|---|---|---|
Nothofagus pumilio forest | 10.45 (2.16) | 52.9 (12.3) | 47.1 (14.6) |
N. antarctica forest | 10.49 (1.85) | 60.4 (9.9) | 45.6 (9.9) |
N. betuloides forest | 11.81 (2.48) | 47.8 (14.6) | 56.7 (15.1) |
Mixed forest | 11.37 (2.19) | 54.8 (12.9) | 48.8 (14.8) |
Mata Verde shrubland | 7.32 (1.50) | 64.1 (16.8) | 43.6 (9.3) |
Mata Negra Matorral thicket | 4.30 (0.78) | 55.9 (13.3) | 29.7 (7.9) |
Mixed shrublands | 4.72 (1.44) | 63.7 (13.4) | 30.1 (10.2) |
Murtillar dwarf-shrubland | 9.95 (1.18) | 41.0 (8.8) | 45.3 (8.0) |
Wetlands | 9.28 (2.16) | 44.3 (14.3) | 47.7 (11.7) |
Peatbog | 10.60 (2.01) | 48.9 (12.6) | 45.1 (11.2) |
Grassland steppe | 4.67 (1.24) | 53.3 (14.9) | 30.9 (8.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peri, P.L.; Gaitán, J.; Díaz, B.; Almonacid, L.; Morales, C.; Ferrer, F.; Lasagno, R.; Rodríguez-Souilla, J.; Martínez Pastur, G. Vegetation Type Mapping in Southern Patagonia and Its Relationship with Ecosystem Services, Soil Carbon Stock, and Biodiversity. Sustainability 2024, 16, 2025. https://doi.org/10.3390/su16052025
Peri PL, Gaitán J, Díaz B, Almonacid L, Morales C, Ferrer F, Lasagno R, Rodríguez-Souilla J, Martínez Pastur G. Vegetation Type Mapping in Southern Patagonia and Its Relationship with Ecosystem Services, Soil Carbon Stock, and Biodiversity. Sustainability. 2024; 16(5):2025. https://doi.org/10.3390/su16052025
Chicago/Turabian StylePeri, Pablo L., Juan Gaitán, Boris Díaz, Leandro Almonacid, Cristian Morales, Francisco Ferrer, Romina Lasagno, Julián Rodríguez-Souilla, and Guillermo Martínez Pastur. 2024. "Vegetation Type Mapping in Southern Patagonia and Its Relationship with Ecosystem Services, Soil Carbon Stock, and Biodiversity" Sustainability 16, no. 5: 2025. https://doi.org/10.3390/su16052025
APA StylePeri, P. L., Gaitán, J., Díaz, B., Almonacid, L., Morales, C., Ferrer, F., Lasagno, R., Rodríguez-Souilla, J., & Martínez Pastur, G. (2024). Vegetation Type Mapping in Southern Patagonia and Its Relationship with Ecosystem Services, Soil Carbon Stock, and Biodiversity. Sustainability, 16(5), 2025. https://doi.org/10.3390/su16052025