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Abstract: With the deepening development and utilization of urban underground space, the risk of
urban road collapse is becoming increasingly prominent, which is a serious threat to the safety of
life and property. Therefore, the risk assessment of urban road collapse has vital significance for the
safety management of cities. The main idea is to predict ongoing accidents by analyzing historical
accident cases in depth. This paper explores the combination of Interpretative Structural Modeling
(ISM) and Bayesian Networks (BNs) to construct a risk assessment model of road collapse. First, the
main risk factors of road collapse and their coupling relationships are identified, which is used to
increase the low reliability of complex systems. Then, the risk factors of road collapse are logically
divided by ISM to obtain the BN hierarchy. Finally, the BN node probabilities are evaluated by the
Expectation–Maximization (EM) algorithm using the collected 92 real road collapse accident cases.
The model can be used to quantify the coupling strength and influence degree of each risk factor on
the occurrence of road collapse accidents, which in turn can predict the probability of road collapse
accidents in a given scenario. This study can provide a theoretical basis for urban safety management
and reduce the risk of road collapse and potential loss of life and property, which is important for the
sustainable development of societies.

Keywords: EM algorithm; Bayesian Network; interpretative structural modeling; risk assessment;
urban road collapse

1. Introduction

As the urbanization process continues to accelerate, the number of road infrastructure
construction projects has been increasing year by year in China. A large amount of under-
ground space is being utilized for the development and construction of public facilities
such as rail transit, various urban lifelines, and urban comprehensive utility tunnels [1].
However, with the increasing level of utilization of urban underground space, the impact
of human activities on the subsurface geological environment has been increasingly in-
tensified, and the ensuing urban safety problems represented by road collapse have been
more prominent. Ground collapse refers to a phenomenon or process in which the surface
rock and soil bodies are affected by natural factors or human engineering activities to fall
downward and form subsidence pits (holes) on the ground and cause disasters [2]. Due
to the sudden, hidden, and destructive characteristics of road collapse [3], it will not only
lead to property loss and affect normal production and life but also cause panic among the
masses. Thus, road collapse risk assessment is important for accident early warning and
early emergency response, which is important for promoting the sustainability of societies.

The occurrence of urban road collapse is the result of a combination of human and
natural factors [1–3]. The first step in implementing the risk assessment of road collapse
is to identify risk factors. Existing studies related to collapse risk assessment mainly
focus on geological and environmental indicators, such as lithology and soil type [4,5],
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changes in river and groundwater levels [6], quantity of rainfall [7], fault zones [8], etc.
Related studies on the influence of human factors on road collapse have mainly focused
on vehicle loads [9,10], underground construction [11], etc., and have insufficient attention
to management factors. Moreover, research on risk assessment of urban road collapse has
a high degree of concentration on risk factor selection, focusing mainly on a few specific
risk factors [12] and paying insufficient attention to the coupling effect among multiple risk
factors, such as evaluating the probability of occurrence about urban road collapse based on
pipeline ruptures [13–15], soil type [16] and rainfall [17], underground structures [18], etc.
This type of approach analyzes in depth the influence mechanism of specific risk factors
on road collapse accidents, but the coupling mechanism of multiple risk factors is not
sufficiently explored. As a result, there is an urgent need to further improve the accuracy of
the risk assessment model for road collapse based on the collection and analysis of accident
case data and intensively study the comprehensive impact of multiple risk factors on urban
road collapse accidents.

This paper aims to construct a risk assessment model for urban road collapse. Tradi-
tional risk assessment models have been widely used in collapse risk assessment. Existing
research mainly incorporates risk factors represented by soil type and pipeline ruptures into
road collapse risk assessment models and classifies and grades road collapse losses. Then,
road collapse losses are categorized and rated, and semi-quantitative ground collapse risk
assessment is realized through consequence prediction grading. The existing road collapse
risk assessment model based on fuzzy comprehensive evaluation assumes that each risk
factor is relatively independent, and insufficient consideration is given to the coupling
relationship between each factor [7,19–25]. The accuracy of road collapse risk assessment
models based on the analytic hierarchy process [1,26–31] and weighted arithmetic mean
method [12,32–36] heavily depends on the level of expert knowledge with high subjectivity.
Consequently, the validation of the assessment results based on accident cases is difficult
to realize, and it is still necessary to build a quantitative risk assessment model for urban
road collapse accidents based on the coupling relationship between road collapse risk
factors. Machine learning models have been widely used in disaster risk assessment [37,38],
and models such as Convolutional Neural Networks (CNNs) [39,40], Artificial Neural
Networks (ANNs) [41,42], and Support Vector Machines (SVMs) [43,44] are beginning to
be used in risk assessment for natural disasters with large amounts of monitoring data,
such as earthquakes and floods. However, the process of modeling quantitative risk as-
sessment for urban road collapse accidents is not yet directly applicable to the process of
modeling natural hazard risk due to its characteristics of multiple risk factors and difficulty
in capturing accident data.

This paper proposes a risk assessment model combining ISM and BN models to predict
the probability of urban road collapse accidents. Risk factors are defined by limited case
analysis and literature research. The selected risk factors of road collapse are not necessarily
causally related to each other, and there is a more complex coupling relationship. There-
fore, traditional causal inference methods are not applicable to constructing hierarchical
structures among risk factors. The risk assessment model proposed in this paper integrates
the coupling effect of each risk factor on road collapse accidents and can also predict the
change in accident probability by changing the state of a single risk factor. In this paper,
ISM is selected to sort out the hierarchical structure among risk factors of road collapse,
learn parameters by BN, and determine the accident case data structure. The influence
intensity of each factor on road collapse is quantitatively evaluated by how the probability
of road collapse changes with the state of the risk factor by selecting the risk factors with
the greatest influence on road collapse accidents for different scenarios, providing decision-
making support for risk prevention and control departments. The ability of the constructed
model to predict the probability of urban road collapse is verified with the real accident
case. This study provides new ideas for identifying the risk factors of urban road collapse,
predicting the probability of collapse, and improving urban safety management.
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2. Methodology

In this paper, the risk assessment model of road collapse was constructed using the
ISM and BN models. Urban road collapse accidents are the result of the combined effect
of multiple risk factors. Therefore, the risk factors were identified, and their coupling
relationship was sorted out to reveal the combined effects of each risk factor on road
collapse, which can be used to assess and predict the collapse risk. In this paper, we
established a risk assessment model for road collapse accidents by deducing the influence
mechanism of each risk factor on road collapse accidents and verifying the feasibility of the
model through real cases. The framework of methodology used in this paper is shown in
Figure 1, which includes three phases.
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Figure 1. Framework of methodology in this paper.

Phase 1: determination of risk factors. The risk factors that cause road collapse are
preliminarily identified through research and combing of literature. Selected 10 experts are
invited to evaluate the relationships between the identified risk factors, and the consistency
of the summarized experts’ opinions is tabulated.

Phase 2: construction of risk assessment models. Determining the relationship between
the various risk factors on road collapse through ISM, the hierarchical division between
the risk factors is determined. The BN structural framework is constructed based on the
hierarchy of risk factors. Based on the EM algorithm, Bayesian parameters are learned from
collected case data of road collapse accidents to establish the risk assessment model.

Phase 3: model application in risk assessment and decision support. The mechanism
of each risk factor’s role in road collapse accidents and its degree of influence are sorted
out by analyzing the influence change of single factor state on collapse probability. A real
road collapse accident scenario is selected to verify the application of the proposed risk
assessment model in risk assessment and decision support.

2.1. Interpretative Structural Modeling

Interpretive Structural Modeling (ISM) is a model method used to analyze the hier-
archical structure of complex systems [45]. This method makes it possible to construct
a hierarchical structural model of the elements in the system and visualize the overall
structural relationships. It is often used to stratify the factors affecting the target variable.
The exact process of the method is as follows.

1. The adjacency matrix
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The coupled logic diagram of the risk factors reflects the interactions between the
factors. According to the logical relationship diagram of each risk factor of road collapse
accidents, an adjacency matrix M with n rows and n columns can be constructed. n is the
number of risk factors for road collapse accidents, and the values of the elements within
the matrix are shown in Equation (1). If the factor Fi has an effect on Fj, the value of mij is 1.
Conversely, if the factor Fi has no effect on Fj, the value of mij takes 0.

mij =

{
1 :

(
when Fi has an direct e f f ect on Fj

)
0 :

(
when Fi has no e f f ect on Fj

) (1)

2. The reachability matrix

R is the reachability matrix of the adjacency matrix M. ( M + I) is the sum of the
adjacency matrix A and the unit matrix I. Then, the exponentiation of the matrix ( M + I)
for the integer n is calculated using Equation (2).

R = (M + I)n+1 = (M + I)n ̸= . . . (M + I)2 ̸= (M + I) (2)

The above exponentiation is obtained based on the Boolean algebra algorithm [45],
and the matrix R is a reachable matrix. If the element rij is 1, it denotes the risk factor Fi
can reach the factor Fj. If the element rij is 0, it denotes the risk factor Fj is not reachable by
the factor Fi.

3. The reachable set and the antecedent set

The reachable and current sets are obtained based on decomposing the reachable
matrix. The reachable set S(Fi) is the set sum of other factors that can be triggered by a risk
factor through a certain path. The antecedent set A(Fi) is the set sum of factors that this risk
factor can reach. Intersection of reachable sets and antecedent sets L(Fi) = R(Fi)

⋂
A(Fi).

4. The hierarchical decomposition of the reachable matrix

Elements in a coupled system are usually disordered. Therefore, it is possible to sort
out the logical relationship between risk factors by decomposing the reachability matrix.
Moreover, it contributes to enhance the understanding of the coupled influence mechanism
between risk factors, and further distinguish between direct and indirect influences between
factors. The influencing factors can be extracted layer-by-layer by solving the reachable
set S(Fi), the antecedent set A(Fi), and the intersection set L(Fi) for each risk factor. The
hierarchy of the urban road collapse system can be divided according to the extraction order.

5. The hierarchical diagram of the risk factors

After the hierarchical decomposition, the hierarchical structure diagram is constructed
based on the hierarchical results and the relationship between the risk factors.

2.2. Bayesian Network

Bayesian networks are based on Bayesian decision theory [46]. Combined with graph
theory methods, the risk factors are expressed through nodes and the logical relationships
between risk factors are expressed through directed connections between nodes and condi-
tional probabilities between nodes. It is suitable for analyzing risk warning problems with
complex development and evolution processes.

The Bayes’ theorem is the basis of Bayesian decision theory [47]. Bayes’ theorem
is simplified as follows based on the decision problem, E = {E1, E2, Ei . . . , En}, which
is the set of possible events. P(Ei) is the probability of occurrence of event Ei, which is
often referred to as the a priori probability, Ei

⋂
Ej = ∅, i ̸= j, i, j = 1, 2, . . . , n. P(I)

is the probability of occurrence of event I, which occurs only if partial event Ei occurs.
When event I occurs only in the presence of a partial event Ei, P(I/Ei) is the occurrence
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probability of event I with given occurrence probability of event Ei. Thus, given that event
I has occurred, the conditional probability of event Er is

P(Er/I) =
P(Er)P(I/ Er)

P(I)
=

P(Er)P(I/ Er)

∑n
j=1 (E j

)
P
(

I/ Ej
) (3)

Bayes’ theorem is the theoretical basis of BN, which combines a priori cognition with
actual observations, and uses new observations to continuously update our knowledge of
the unknown parameters to obtain a new posteriori cognition. In this paper, the nodes in
BN represent the variables (road collapse risk factors), the arcs represent the influence rela-
tionships between the nodes, and CPT (Conditional Probability Table) is used to quantify
the strength of complex dependencies between random variables.

2.3. Expectation–Maximization Algorithm

The EM algorithm was first proposed in 1977 by Dempster et al. [48]. The idea is to
group the data used for parameter estimation, estimate the parameters separately within
each group, and regroup the data according to the new estimated parameters. The alternate
iterations for data decomposition and parameter estimation are used to improve the quality
of parameter estimation. The grouping results will eventually converge with the parameter
likelihood increases. The algorithm is used to solve the estimation problem when the
system parameters are missing. Now, it can be used to solve the problem of parameter
estimation under a small amount of data through continuous improvement. The specific
steps are as follows:

Inputs: observed variable data Y, latent variable data Z, joint distribution P(Y, Z|θ),
and conditional distribution P

(
Z
∣∣∣Y, θ(i)

)
;

Output: model parameters θ.

(1) Parameters are initialized and iteration starts.
(2) Solve the expectation: θi is the estimated value of θ at iteration step i. The expectation

Q
(
θ, θi) is calculated as follows:

Q(θ, θi) = EZ[log P(Y, Z|θ)|Y, |θ(i)] = ∑
Z

log P(Y, Z|θ)P(Z|Y,θ(i)) (4)

(3) Expectation maximization: θ is obtained by maximizing Q
(
θ, θi). The value θi+1 of

the next iteration at step (i + 1) is calculated from Equation (5).

θ(i+1) = arg max
θ

Q
(

θ, θi
)

(5)

(4) Repeat the expectation-solving step and the expectation-maximization step until
convergence.

2.4. Construction of Risk Assessment Model
2.4.1. Identification of Risk Factors

Based on the safety system engineering theory, the risk factors of road collapse acci-
dents are sorted out from four aspects: human, physical, environmental, and management
factors. Through the comparative analysis of related literature, it can be summarized that
there are certain similarities in the causes of urban road collapse accidents through the com-
parative analysis of the related literature [1–3]. The reports of major urban road collapse
accidents in recent years are selected for a depth analysis, which is shown in Table 1; the
risk factors are shown in Table 2.

Based on the analysis of 92 cases of urban road collapse accidents, this study focuses on
analyzing the mechanism of human and management factors in ground collapse accidents.
Although the environmental factors and physical factors are important risk factors, their
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influence mechanism on the road collapse accident is only used as a reference in this
model. Because they have been taken into account in the initial stage of the design of
the road and underground space, the natural environment risk factor is difficult to avoid.
The 92 cases of road collapse accident data analyzed in this paper are mainly from the
accident investigation report, which has a more adequate analysis and elaboration of
human factors and management factors as the more common risk factors for road collapse
accidents, human and management risks are easier to avoid than objective factors such as
the environment. Moreover, human and management factor-related interventions can play
an important role in preventing road collapse accidents [3].

Table 1. Summary of several typical road collapse accidents.

Accident Cases The Immediate Causes The Indirect Causes

“1·13” major road collapse accident in
Xining, Qinghai

Soil displacement of loess
foundation

Instability of underground structures (shelter)
Pipeline leakage
Inadequate safety checks
Vehicle load

“10·7” road collapse accident in
Dazhou, Sichuan

Instability of underground
structures (Collapse of stone
culverts below the road)

Heavy rainfall
Inadequate safety checks
Defects in safety technical measures

“2·7” major road collapse accident in
Foshan, Guangzhou

Instability of underground
structures (tunnels)

River damage
Inadequate safety checks
Defects in safety technical measures
Soil displacement
Human error

Table 2. Risk factors of urban road collapse in this paper.

Category Risk Factors Detailed Description

Human factors

F1: Human error Incomplete backfilling after open excavation of pipelines

F2: Defects in safety technical measures Improper construction of underground excavation of
pipelines and subway tunnels

Physical factors

F3: Soil displacement Weakening of soft soil leads to soil displacement

F4: Instability of underground structures
Instability of underground structures in extremely
shallow buried layers, such as civil air defense
construction

Environmental factors
F5: Heavy rainfall Rainwater erosion of soil

F6: River damage Damage to river course and closed conduit

Management factors

F7: Vehicle load Excessive road vehicle load

F8: Pipeline leakage Damage of rainwater, sewage, water supply, and other
pipelines in extremely shallow buried layers

F9: Inadequate safety checks Failure to implement regular inspections, improper
inspection cycles

2.4.2. Hierarchical Structure of Road Collapse

The construction of a Bayesian Network for urban road collapse accidents requires
determining the structure of the network among risk factors and its parameters. This section
analyzes the coupling relationship between risk factors for road collapse accidents and
identifies their hierarchical structure. The interactions between risk factors of road collapse
were evaluated by selected experts, whose opinions were obtained through questionnaires.
First, 5 relevant experts were invited to complete the first round of the questionnaire, which
consisted of 9 similar structured questions. The question format is: Please select the risk
factor(s) that have an impact on XX factor(s). The options included the 8 factors in Table 2
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in addition to the factor in question, and the response format was multiple choice. If all
5 experts agreed that there was an influential relationship between the two factors, the
influence between two risk factors was defined. If at least 1 expert considered that there
was no influence between the two factors, the question was left for the second round of the
questionnaire. Three additional experts were invited to the second round of questionnaires,
but the questionnaires only addressed impact relationships that were not specified in the
previous round. Influence relationships that were all confirmed by the interviewed experts
in the second-round questionnaires were added to the coupling relationships, and other
influence relationships were not established. The establishment of the coupling relationship
between the factors helps to further optimize the initial risk factor structure, which can be
used as the basis for eliminating the independent factors, merging the overlapping factors,
and finally obtaining the coupling relationship between the risk factors of the urban road
collapse accident.

The resulting coupling relationships between risk factors need to be hierarchically
structured before they can be mapped into a Bayesian Network structure. The ISM was
used to classify the risk factors into multiple levels. The adjacency matrix was extracted
from the coupling relations, as shown in Table 3, which is the initial input matrix of the ISM.
The reachable matrix is shown in Table 4. It can be obtained through the matrix calculation,
which indicates there is a certain influence path between two factors.

Table 3. The elements in adjacency matrix.

F1 F2 F3 F4 F5 F6 F7 F8 F9

F1 0 0 1 1 0 0 0 0 0
F2 0 0 1 1 0 0 0 1 0
F3 0 0 0 0 0 0 0 0 0
F4 0 0 0 0 0 0 0 0 0
F5 0 0 1 1 0 1 0 1 0
F6 0 0 1 1 0 0 0 1 0
F7 0 0 1 1 0 0 0 0 0
F8 0 0 1 1 0 0 0 0 0
F9 0 0 1 1 0 0 1 1 0

Table 4. The elements in reachable matrix.

F1 F2 F3 F4 F5 F6 F7 F8 F9

F1 1 0 1 1 0 0 0 0 0
F2 0 1 1 1 0 0 0 1 0
F3 0 0 1 0 0 0 0 0 0
F4 0 0 0 1 0 0 0 0 0
F5 0 0 1 1 1 1 0 1 0
F6 0 0 1 1 0 1 0 1 0
F7 0 0 1 1 0 0 1 0 0
F8 0 0 1 1 0 0 0 1 0
F9 0 1 0 1 0 0 1 1 1

The reachable set S and the antecedent set A are separated from the reachable matrix
and set L is their intersection. Their specifics are shown in Table 5. The risk factor decom-
position can be realized by using the intersection L, as shown in Table 6. The 9 risk factors
were organized into 4 levels. F3 (Soil displacement) and F4 (Instability of underground
structures) were on the first level. F1 (Human error), F7 (Vehicle load), and F8 (Pipeline
leakage) were on the second level. F2 (Defects in safety technical measures) and F6 (River
damage) were on the third level. F5 (Heavy rainfall) and F9 (Inadequate safety checks) were
on the fourth level.

At this point, the initial hierarchical relationship graph between road collapse risk
factors was further optimized to obtain a hierarchical network. Two other experts were
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invited to verify the initial hierarchical relationships of the road collapse risk factors, which
mainly consisted of eliminating redundant relationships between the risk factors and
checking their compatibility with the BN structure. The invited experts considered the
initial hierarchical relationships to be compatible with the BN structure and identified some
of the redundant influence relationships that could be eliminated. Figure 2 illustrates the
optimized influence relationships between risk factors, with the dashed line showing the
deleted redundant relationships. For example, the effect of F9 (Inadequate safety checks)
on F4 (Instability of underground structure), F9 mainly affects F4 by influencing F8 (Vehicle
load) and F7 (Pipeline leakage), so the direct influence between F9 and F4 can be deleted
as a redundant relationship. Similarly, the influence relationship between F2 (Defects in
safety technical measures) and F3 (Soil displacement) was also deleted. Then, the optimized
hierarchical network was mapped onto the BN structure, as shown in Figure 3.

Table 5. Reachable and antecedent sets and their intersection.

Reachable Sets Antecedent Sets The Intersection

F1 1, 3, 4 1 1
F2 2, 3, 4, 8 2 2
F3 3 1, 2, 3, 5, 6, 7, 8, 9 3
F4 4 1, 2, 4, 5, 6, 7, 8, 9 4
F5 3, 4, 5, 6, 8 5 5
F6 3, 4, 6, 8 6,7 6
F7 3, 4, 7 7,9 7
F8 3, 4, 8 2, 5, 6, 8, 9 8
F9 2, 4, 7, 8, 9 9 9

Table 6. Hierarchical division of risk factors.

Hierarchical Risk Factors

Level 1 (top level) F3, F4
Level 2 F1, F7, F8
Level 3 F2, F6

Level 4 (bottom level) F5, F9
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2.4.3. Construction of BN Model

The coupling strength between risk factors was quantified through the BN model to
determine the main path of road collapse accidents. Then, the top node “Collapse” was
added to the optimized hierarchical network. The risk factor hierarchical network was
mapped to the BN structure through GeNIe 4.1, as shown in Figure 3. The status of each
node was defined before parameter learning and the value of each factor was divided. The
status of the risk factors in this paper was set to “yes/no”, depending on the actual status.
For example, for the node F1 (Human error), human error was set as “yes” or “no” based
on whether it occurred or not.

a. BN structure

The implementation of the inference function about the BN structure needed to be
combined with corresponding probability parameters. The prior probability needed to
be determined for the edge node in the BN structure, and CPT needed to be determined
for the non-edge node. The parameter values of all nodes were determined by the EM
algorithm, except the “Collapse” node. The parameter values of the “Collapse” node were
determined by expert assignment. The determination process of the CPT of the “Collapse”
node is shown in Table 7.

Table 7. The CPT (Conditional Probability Table) of the top node “collapse”.

Instability of underground structures Yes No

Pipeline leakage Yes No Yes No

Inadequate safety checks Yes No Yes No Yes No Yes No

Yes 0.9677 0.6104 0.7865 0.4674 0.4553 0.1208 0.3487 0.0749

No 0.0323 0.3896 0.2135 0.5326 0.5447 0.8792 0.6513 0.9251
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b. Parameter learning

Data learning was used to calculate the parameters of other nodes with the EM
algorithm. There are three steps in this process, including case data collection, data stan-
dardization, and EM algorithm learning.

Step 1 case data collection
This paper collects data related to urban road collapse accidents through official

websites of emergency management departments, WeChat official accounts, and official
news. A complete accident investigation report is required for the collected road collapse
cases. The case study presented in this paper is primarily based on the investigation
report of road collapse accidents. A total of 93 typical road collapse accidents and their
corresponding accident investigation reports are collected as required. Then, 92 of these
accidents were used as input datasets in the parameter learning of the EM algorithm; 1
additional accident was used as a test case for the collapse risk assessment model.

Step 2 data standardization
Case data from road collapse accident investigation reports need to be standardized

before they can be used as a collection of learning data inputs to the EM algorithm. Until
then, a data standardization criterion needs to be established for road collapse investigation
reports. This criterion is mainly reflected in setting the nodes in the BN structure to the
corresponding status values. The standardization of node F1 (Human error) is taken as
an example, as shown in Table 8. When an expression similar to “illegal construction”,
“unprofessional operation”, “dangerous operation”, etc. appears in the report, the status of
F1 is defined as “yes” at this point; otherwise, it is “no”. Then, the standardized dataset can
be built to input into GeNIe 4.1 by the space part of the standardized dataset, as shown in
Table 9.

Table 8. Standardization example of accident data (F1 Human error).

Node Node Status The Statement Corresponding to the Accident
Investigation Reports

Human error Yes

illegal construction
unprofessional operation
dangerous operation
adventure homework
illegal command
illegal operation
violation of labor discipline

No none—description of “Yes”

Table 9. The normalized dataset in the GeNIe 4.1 (partial dataset as example).

No. F1 F2 F3 F4 F5 F6 F7 F8 F9 Collapse

20230825 Yes No Yes No No No Yes No Yes Yes
20230822 No No Yes No No No Yes Yes Yes Yes
20230806 No No Yes No No No Yes Yes Yes Yes
20230730 No No Yes Yes Yes No No No No Yes
20230728 No No Yes No Yes Yes Yes No No Yes
20230321 Yes No Yes No No No No No No Yes
20210902 Yes No No No No No Yes No No Yes
20210829 Yes No No No No No Yes Yes Yes Yes
20210825 No No Yes No No No Yes Yes Yes Yes
20230825 Yes No Yes No No No Yes No Yes Yes

Step 3 Parameter learning based on EM algorithm
Finally, the standardized dataset was imported into the BN model for road collapse

accidents using GeNIe 4.1. The probability of each node in the BN structure was calculated
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using the EM algorithm. The probability of urban road collapse can be predicted after
parameterizing the BN, which is presented in the next section.

3. Results and Discussion
3.1. Action Mechanism of Risk Factors

In the hierarchical network, F5 (Heavy rainfall) and F9 (Inadequate safety checks)
comprised the underlying risk factors. They only had a one-way impact on other risk
factors but were not affected by other risk factors. These risk factors are defined as basic
risk factors or potential risk factors. The impact of these risk factors on road collapse
accidents is indirect and important, although it may not seem obvious. In contrast to this,
F3 (Soil displacement) and F4 (Instability of underground structures) were the top factors in
the hierarchical network. They were only influenced by other risk factors in one direction
but did not affect other risk factors. These risk factors are defined as direct factors, which
are the more direct causes of road collapse accidents. Moreover, the other risk factors
are defined as independent risk factors, such as F1 (Human error), F2 (Defects in safety
technical measures), F6 (River damage), F7 (Vehicle load), and F8 (Pipeline leakage). These
risk factors serve as a connecting link between the preceding and the following in the
hierarchical network. They may not only be influenced by other factors but also have an
impact on them. The accident investigation report focuses more on identifying indirect risk
factors that cause road collapse. In this risk assessment model, the basic risk factors play a
role in the development of accidents by influencing other factors. The indirect risk factors
play a role by influencing the direct factors, which often directly lead to road collapse.

3.2. Influence Intensity of Individual Risk Factor

It is possible to gain a deeper understanding of the role of each factor in road collapse
accidents by analyzing the mechanism of different risk factors. For the safety management
of the relevant sectors, the impact of risk factors should be eliminated as far as possible
by taking into account the overall relevant safety. Managers should not only focus on the
prevention and resolution of direct risk factors but also take effective measures to avoid the
impact of indirect and potential factors.

Risk assessment models for road collapse accidents focus on decision support for
safety managers. The status of each node (risk factors) within the model is changed by the
effective application of some security management measures. For example, the node status
of F9 (Inadequate safety checks) can be changed from a “yes” status to a “no” status through
rational planning of inspection cycles and effective implementation of daily inspections.
The effectiveness of the measures taken to prevent the occurrence of accidents is reflected
in how the state of the nodes can be changed to avoid the occurrence of road collapse
accidents. It can be assessed by the extent to which a single factor influences a road collapse
accident. Therefore, it is significant for decision support by analyzing the influence intensity
of a single risk factor on road collapse accidents. During the calculation process, when
the status or probability distribution of a node changes, it can be simply evaluated by
the change in probability of the top nodes, each of which is ranked by the strength of its
influence. For example, when the status of node F4 (Instability of underground structures)
changed from “Yes” to “No”, the probability of road collapse decreased from 67% to 23%, a
decrease of 44%, which indicates that maintaining the stability of underground structures
plays a key role in reducing the risk of road collapse. This paper does not consider the
normalization of different risk factors and focuses mainly on reducing the risk of urban
road collapse accidents by changing the status of risk factor combinations. The influence
intensity of each risk factor on road collapse accidents is shown in Table 10.

The influence intensity of each risk factor can be obtained by comparing the differences
in probability changes. The order of influence intensity from highest to lowest was: F4
(Instability of underground structures) > F3 (Soil displacement) > F1 (Human error) > F9
(Inadequate safety checks) > F6 (River damage) > F5 (Heavy rainfall) > F8 (Pipeline leakage)
> F2 (Defects in safety technical measures) > F7 (Vehicle load). It can be seen that “Instability
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of underground structures” and “Soil displacement” had a greater impact on urban road
collapse, accounting for about 40% of the total. “Defects in safety technical measures” and
“Vehicle load” had a relatively small impact among the many risk factors. It is possible to
plan a combination of decisions to reduce the overall risk by evaluating the effectiveness of
each risk factor in reducing the risk of road collapse, especially if the sector concerned has
limited risk control investment.

Table 10. The influence of risk factors on collapse probability.

Risk Factors Node Status Probability of Road
Collapse (%) Change Value (%)

F1: Human error Yes 57
16No 41

F2: Defects in safety technical
measures

Yes 56
7No 49

F3: Soil displacement Yes 66
39No 27

F4: Instability of underground
structures

Yes 67
44No 23

F5: Heavy rainfall Yes 53
9No 44

F6: River damage Yes 58
11No 47

F7: Vehicle load
Yes 52

6No 46

F8: Pipeline leakage Yes 59
8No 51

F9: Inadequate safety checks Yes 61
13No 48

3.3. Case Study
3.3.1. Case Introduction

Risk prediction mainly refers to the estimation of the probability and impact of acci-
dents through various scientific and technical means based on available data and known
information. This paper is concerned with the probability prediction of urban road collapse
accidents. The core idea is to set the relevant node status based on the known risk factor
information and estimate the status situation of other nodes through BN inference. The risk
prediction process in this section is based on a real case of an urban road collapse accident,
which was not added as a learning case to the input dataset.

The real collapse accident case for validation of the risk assessment model was the
“20220818” urban road collapse accident in Longhua Street, Shenzhen City, Guangdong
Province. The case scenario was set up as follows. City A has a sewer pipeline leakage that
needs rehabilitation operations. The contractor for the rehabilitation operations is B, the
contracting company is C, and the supervisory company for the project is D. After winning
the bid, Company C subcontracted the labor for the pipeline rehabilitation to Company E.
The following conditions are known: (1) the specific construction personnel in Company E
did not provide the foundation pit support during excavation; (2) the relevant technicians
in Company C were not present to perform their duties during construction, and had
neglectful management and oversight in the operation process; (3) Company D did not
fulfill its supervisory duties; (4) the construction purpose was pipeline rehabilitation to the
sewage pipe; and (5) displacement of unsupported soil in the pit.
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3.3.2. Risk Prediction of Road Collapse

Based on the scenario setup above, the status of the five nodes with known information
can be determined, as shown in Figure 4. For example, the status of node F9 (Inadequate
safety checks) was set to “Yes”, and the status of node F5 (Heavy rainfall) was set to “No”.
Therefore, the probability of a road collapse accident in this case was 98% through BN
deduction. In this paper, the risk of road collapse accidents was categorized into three
levels based on the probability: below 33% as low risk, 33–67% as medium risk, and more
than 67% as high risk. It can be seen that the probability of road collapse accidents in the
simulation scenario was very high, and timely measures must be taken to avoid them. In
the real accident case, the road collapse was precisely due to the construction workers not
providing support in the excavation pit, and the collapse accident caused the death of the
excavation operation workers. The prediction results are in good agreement with the actual
results of the accident.
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The prevention and control of road collapse accidents are mainly aimed at human
factors and management factors. The states of risk factors F1 (Human error), F2 (Defects in
safety technical measures), F8 (Pipeline leakage), and F9 (Inadequate safety checks) in this
case were changed to predict the road collapse result. When the state of F1 changed from
“yes” to “no” and the states of other risk factors remained unchanged, the model predicted
a 57% probability of road collapse accidents. When the state of F2 changed from “yes” to
“no”, the model predicted a 29% probability of road collapse accidents. When the state of F8
changes from “yes” to “no”, the model predicts a 61% probability of road collapse accidents.
When the state of F9 changed from “yes” to “no”, the model predicted a 35% probability of
road collapse accidents. It can be seen that F2 (Defects in safety technical measures) and
F9 (Inadequate safety checks) were the two controllable risk factors that had the greatest
impact on road collapse accidents in this case. This is consistent with the statement in the
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official accident investigation report that it “did not provide the foundation pit support
during excavation” and “did not fulfill its supervisory duties”. The feasibility of the risk
assessment model is verified by the collapse risk prediction of the real case.

4. Conclusions

In this paper, a risk assessment model for urban road collapse is constructed by
combining ISM and BN. These include several key steps, risk factor identification of road
collapse, coupling relationship analysis among risk factors, risk assessment of road collapse,
and BN inference for supporting safety decisions. The main conclusions are as follows.

1. Based on risk factor identification and coupling relationship analysis, this research
deepens our understanding of risk management for urban road collapse accidents. In
response to some of the problems that exist in the qualitative study of road collapse
accidents, this paper detects, through a limited number of case studies, that manage-
ment factors and human factors are important causes of road collapse accidents in
China. Thus, safety systems engineering theory (people, machines, environment, and
management) is selected as the framework for risk factor composition. The process of
determining the risk factors for road collapse accidents paid more attention to human
and management factors from a safety management perspective (two human factors
and three management factors are included in the nine risk factors).

2. The risk assessment model for urban road collapse is constructed based on BN, and
the road collapse probability is quantitatively analyzed through real accident cases.
The hierarchical network structure of road collapse incidents is mapped to BN using
GeNIe 4.1. Ninety-two cases of Chinese urban road collapse accidents are collected
from various online sources, and their accident reports are compiled into an accident
dataset. After normalizing and organizing the accident data, the EM algorithm is
used to determine the parameters of each node of the accident. The model can be
used to quantify the influence intensity of each risk factor on road collapse accidents
and to predict the probability of urban road collapse. Risk prediction results based on
datasets constructed from real accidents can provide valuable references for safety
decision-making in relevant departments.

3. The proposed risk assessment model for road collapse can be used to support safety
management decisions in relevant departments. Scenario deduction based on real
accident scenarios verifies the reasonableness of the established risk assessment
models for road collapse. Substituting the accident scenarios into the established
risk assessment model, the deduced occurrence probability of road collapse is high
and consistent with real accident cases. Furthermore, the deduction process of the
risk assessment model can intuitively obtain the probability change of each node,
which helps the relevant departments to make corresponding safety decisions more
efficiently and accurately.

This study can provide a theoretical basis for the prevention and emergency response
of urban road collapse accidents. The effectiveness of each risk factor in reducing the risk of
road collapse has been assessed by analyzing the action mechanism and influence intensity
of each risk factor on collapse accidents. It can support the relevant departments in making
targeted safety decisions, especially when their capacity is limited. In addition, the model
has certain reference significance for risk prediction of urban road collapse accidents, which
contributes to the further improvement of the predictability and accuracy of risk assessment
for road collapse accidents.

In the face of the severe situation of frequent urban road collapse accidents, this study
can help the relevant departments to optimize resource allocation in the case of limited
capacity and avoid the greater risk of road collapse accidents at a lower cost. Risk prediction
models can be used to assess the probability of urban road collapse under specific scenarios,
provide early warning of collapse accidents, and suggest targeted safety decisions. It is also
hoped that the results of this research will contribute to urban safety management in China.
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In addition, due to the limitations of this study, the risk assessment model of urban
road collapse in this paper is only a preliminary model that needs to be improved in the
future. First, the data source of urban road collapse accident cases is relatively single, and
the learning results of model parameters will be limited by the number of accident cases.
In the future, further case data about urban road collapse accidents can be accumulated
over time, and the case dataset can be continuously enriched. In addition, analyzed cases
validated with relevant scenarios can be added to the value dataset to further improve the
proposed risk assessment model. The continuous enhancement of the case dataset will
lead to better learning, which can further improve the accuracy of the model. Meanwhile,
with the increasing and standardized data on real road collapse accidents, an attempt
can be made to construct a database of urban road collapse accidents in China. The
continuous enrichment and improvement of the database will lay the research foundation
for risk management of urban road collapse accidents. In addition, with the continuous
accumulation of case data, the individual states of road collapse risk factors can be further
refined, which will have a positive effect on improving the accuracy of risk prediction with
the proposed model.
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