Influence of the Steel Slag Particle Size on the Mechanical Properties and Microstructure of Concrete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Sample Preparation
2.3. Test Methods
3. Results and Discussion
3.1. Effect of Grinding Time on Steel Slag Particle Size
3.2. Influence of the Particle Size on the Mechanical Properties
3.3. Impact of Mechanical Grinding on Phase Composition
3.4. Influence of the Particle Size on the Microstructure
4. Conclusions
- (1)
- Mechanical grinding significantly affects the particle size and specific surface area of steel slag. As the grinding time increases, the specific surface area initially increases and then decreases, while the particle size shows a decreasing trend.
- (2)
- The distribution of steel slag particles becomes narrower and more concentrated, with the cumulative particle size curve gradually shifting to the left. The optimal grinding time is 20 min.
- (3)
- The incorporation of steel slag into concrete reduces the mechanical properties of the concrete. However, as the grinding time increases and the content of fine steel slag particles rises, the cementitious activity increases and the trend of reduced mechanical properties is mitigated.
- (4)
- When the grinding time is 20 min, the steel slag has the smallest average particle size and the largest specific surface area, with D50 and D90 being 16.57 μm and 0.65 m2/g, respectively; the 28-day compressive strength and flexural strength of the concrete reach 25.95 MPa and 7.40 MPa, respectively.
- (5)
- Changes in the particle size of steel slag do not alter the types of hydration products in the concrete, but smaller particle sizes result in more hydration products, which are coarser in size and form a denser network structure. This leads to improved properties such as compressive strength and flexural strength.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhuo, K.X.; Liu, G.T.; Lan, X.W.; Zheng, D.P.; Wu, S.Q.; Wu, P.Z.; Guo, Y.C.; Lin, J.X. Fracture Behavior of Steel Slag Powder-Cement-Based Concrete with Different Steel-Slag-Powder Replacement Ratios. Materials 2022, 15, 2243. [Google Scholar] [CrossRef]
- Zhuang, S.Y.; Wang, Q.; Luo, T. Modification of ultrafine blast furnace slag with steel slag as a novel high-quality mineral admixture to prepare high-strength concrete. J. Build. Eng. 2023, 71, 106501. [Google Scholar] [CrossRef]
- Ning, S.K.; Jiang, X.D.; Li, B.; Shan, L.; Li, H.B. Research on Mechanical and Shrinkage Characteristics of a Resource-Based Cement Solid-Waste Concrete. Materials 2024, 17, 177. [Google Scholar] [CrossRef]
- Aziz, I.H.; Abdullah, M.M.A.B.; Salleh, M.A.A.M.; Ming, L.Y.; Li, L.Y.; Sandu, A.V.; Nemes, O.; Mahdi, S.N. Recent Developments in Steelmaking Industry and Potential Alkali Activated Based Steel Waste: A Comprehensive Review. Materials 2022, 15, 1948. [Google Scholar] [CrossRef]
- Rosales, J.; Agrela, F.; Díaz-López, J.L.; Cabrera, M. Alkali-Activated Stainless Steel Slag as a Cementitious Material in the Manufacture of Self-Compacting Concrete. Materials 2021, 14, 3945. [Google Scholar] [CrossRef]
- Pradeep, K.; Shalinee, S. Utilization of steel slag waste as construction material: A review. Mater. Today Proc. 2023, 78 Pt 1, 145–152. [Google Scholar]
- Wang, C.G.; Liu, Y.W.; Wang, S.; Ma, B.H.; Bi, G.H. Mechanical Properties and Durability of Double-Doped Steel Slag Concrete. Bull. Chin. Ceram. Soc. 2023, 42, 2846–2855. (In Chinese) [Google Scholar]
- Zhou, M.; Cheng, X.; Chen, X. Studies on the Volumetric Stability and Mechanical Properties of Cement Fly-Ash-Stabilized Steel Slag. Materials 2021, 14, 495. [Google Scholar] [CrossRef]
- Zhang, S.F.; Niu, D.T.; Wang, Y.; Tian, W.Q.; Luo, D.M.; Zhang, L. Insight into mechanical properties and microstructure of concrete containing steel slag and ground-granulated blast-furnace slag. J. Sustain. Cem.-Based Mater. 2023, 12, 1169–1180. [Google Scholar] [CrossRef]
- Li, M.H.; Lu, Y.J.; Yang, S.L.; Chu, J.J.; Liu, Y.J. Study on the Early Effect of Excitation Method on the Alkaline Steel Slag. Sustainability 2023, 15, 4714. [Google Scholar] [CrossRef]
- Nan, X.L.; Yang, X.; Zhang, Y.; Tang, W.B.; Zhang, F.Q. Study on Synergistic Hydration Mechanism of Steel Slag and Granulated Blast Furnace Slag. J. Build. Mater. 2024, 2, 1–13. (In Chinese) [Google Scholar]
- Liu, J.P.; Hu, Z.Y.; Liu, P.; Wang, C.Y.; Wang, Y.S.; Zhang, W.X.; Li, X.H.; Pang, S.Y. Properties of alkali-activated furnace slag/steel slag cementitious materials mixed with silica fume and soda residue. J. Shenyang Univ. Technol. 2023, 45, 594–600. (In Chinese) [Google Scholar]
- Masilamani, A.; Ramalingam, M.; Kathirvel, P.; Murali, G.; Vatin, N.I. Mechanical, Physico-Chemical and Morphological Characterization of Energy Optimised Furnace (EOF) Steel Slag as Coarse Aggregate in Concrete. Materials 2022, 15, 3079. [Google Scholar] [CrossRef]
- Lai, M.H.; Zou, J.J.; Yao, B.Y.; Ho, J.C.M.; Zhuang, X.; Wang, Q. Improving mechanical behavior and microstructure of concrete by using BOF steel slag aggregate. Constr. Build. Mater. 2021, 277, 122269. [Google Scholar] [CrossRef]
- Lai, M.H.; Chen, Z.H.; Wang, Y.H.; Ho, J.C.M. Effect of fillers on the mechanical properties and durability of steel slag concrete. Constr. Build. Mater. 2022, 335, 127495. [Google Scholar] [CrossRef]
- Gencel, O.; Karadag, O.; Oren, O.H.; Bilir, T. Steel slag and its applications in cement and concrete technology: A review. Constr. Build. Mater. 2021, 283, 122783. [Google Scholar] [CrossRef]
- Hao, S.; Luo, G.; Lu, Y.; An, S.L.; Song, W. Effect of High Temperature Reconstruction and Modification on Phase Composition and Structure of Steel Slag. Minerals 2023, 13, 67. [Google Scholar] [CrossRef]
- Vitor, A.N.; Prannoy, S.; Bezerra, A.C.S.; Carlos, T.; Paulo, H.R.B. Influence of Activation Parameters on the Mechanical and Microstructure Properties of an Alkali-Activated BOF Steel Slag. Appl. Sci. 2022, 12, 12437. [Google Scholar]
- Gao, T.M.; Dai, T.; Lei, S.; Li, J. Benefits of using steel slag in cement clinker production for environmental conservation and economic revenue generation. J. Clean. Prod. 2021, 282, 124538. [Google Scholar] [CrossRef]
- Liao, Y.S.; Jiang, G.X.; Wang, K.J.; Qunaynah, S.A.; Yuan, W.J. Effect of steel slag on the hydration and strength development of calcium sulfoaluminate cement. Constr. Build. Mater. 2020, 265, 120301. [Google Scholar] [CrossRef]
- Costa, L.C.B.; Nogueira, M.A.; Andrade, H.D.; Carvalho, J.M.F.D.; Elói, F.P.D.F.; Brigolini, G.J.; Peixoto, R.A.F. Mechanical and durability performance of concretes produced with steel slag aggregate and mineral admixtures. Constr. Build. Mater. 2022, 318, 126152. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, M.; Chen, D.; Liu, S.T.; Wu, S.P. Laboratory Preparation and Performance Characterization of Steel Slag Ultrafine Powder Used in Cement-Based Materials. Sustainability 2022, 14, 14951. [Google Scholar] [CrossRef]
- Cui, X.W.; Leng, X.Y.; Nan, N.; Liu, X.; Zhang, M.T. Mechanical Activation Effect on the Performance of Steel Slag Particle Size Distribution and Cementitious Properties. Bull. Chin. Ceram. Soc. 2018, 37, 3821–3826. (In Chinese) [Google Scholar]
- Huo, J.T.; Jiang, B.; Su, Y.; Fu, J.J.; Ma, M.Y.; He, X.Y. Influence of mechanical activation on cementitious characteristics of basic oxygen steelmaking slag. Concrete 2022, 3, 101–104+108. (In Chinese) [Google Scholar]
- Jiang, L.; Wu, T.; Ma, L.F.; Han, X.; Chen, Y.H.; Han, F.L.; Bao, Y.W. Research on Grindability of Modified BOF Slag. Bull. Chin. Ceram. Soc. 2018, 37, 4034–4039. (In Chinese) [Google Scholar]
- Roslan, H.H.; Ismail, M.; Abdul, M.Z.; Ghoreishiamiri, S.; Muhammad, B. Performance of steel slag and steel sludge in concrete. Constr. Build. Mater. 2016, 104, 16–24. [Google Scholar] [CrossRef]
- Zhu, H.J.; Ma, M.Y.; He, X.Y.; Zheng, Z.Q.; Su, Y.; Yang, J.; Zhao, H. Effect of wet-grinding steel slag on the properties of Portland cement: An activated method and rheology analysis. Constr. Build. Mater. 2021, 286, 122823. [Google Scholar] [CrossRef]
- Song, Y.; Lin, N.; Ma, Y.W.; Yang, L.; Shen, X.M.; Zheng, C.H.; Shan, J. Influence of Composite Activator on the Properties of Steel Slag and Slag Based Cementing Materials. J. Anhui Univ. Technol. (Nat. Sci.) 2019, 36, 24–28. (In Chinese) [Google Scholar]
- Sun, X.G.; Liu, J.; Zhao, Y.Q.; Zhao, J.H.; Li, Z.H.; Sun, Y.; Qiu, J.P.; Zheng, P.K. Mechanical activation of steel slag to prepare supplementary cementitious materials: A comparative research based on the particle size distribution, hydration, toxicity assessment and carbon dioxide emission. J. Build. Eng. 2022, 60, 105200. [Google Scholar] [CrossRef]
- Wang, J.F.; Chang, L.; Wang, Y.; Liu, H.; Yue, D.Y.; Cui, S.P.; Lan, M.Z. Research Status of Improving Cementitious Activity and Volume Stability of Steel Slag. Mater. Rep. 2023, 37, 119–127. (In Chinese) [Google Scholar]
- Liu, M.Y.; Fang, Z.; Wu, J.; Zhan, J.H.; Peng, X.B. Analysis on Mechanical Properties and Microstructure of Multi-solid Waste Synergistic Reinforced Concrete. J. Wuhan Univ. Technol. 2023, 45, 55–62. (In Chinese) [Google Scholar]
- Huang, X.; Yan, F.; Guo, R.; He, H. Study on the Performance of Steel Slag and Its Asphalt Mixture with Oxalic Acid and Water Erosion. Materials 2022, 15, 6642. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.Y.; Ni, W.; Li, Y.; Ba, H.J.; Li, N.; Ju, Y.J.; Zhao, B.; Jia, G.L.; Hu, W.T. The mechanism of hydration reaction of granulated blast furnace slag-steel slag-refining slag-desulfurization gypsum-based clinker-free cementitious materials. J. Build. Eng. 2021, 44, 103289. [Google Scholar] [CrossRef]
- Ji, Y.; Zhu, Y.C.; Zhu, G.; Liu, C.; Pu, F.F.; Liu, B.X. Preparation and Performance of Highly Active Steel Slag Powder. J. Mater. Sci. Eng. 2023, 41, 126–131+153. (In Chinese) [Google Scholar]
Oxides | CaO | Fe2O3 | MnO | SiO2 | MgO | Al2O3 | P2O5 | Others |
---|---|---|---|---|---|---|---|---|
Wt % | 36.79 | 16.38 | 6.36 | 18.97 | 9.20 | 4.19 | 0.07 | 6.03 |
Steel Slag | Alkalinity Coefficient |
---|---|
High basicity slag | R < 1.8 |
Medium basicity slag | 1.8 < R < 2.5 |
Low basicity slag | R > 2.5 |
No. | Grinding Time/min | Cement/g | Steel Slag/g | Standard Sand/g | Water/Cement Ratio |
---|---|---|---|---|---|
S0 | -- | 450 | 0 | 1350 | 0.4 |
S1 | 10 | 360 | 90 | 1350 | 0.4 |
S2 | 20 | 360 | 90 | 1350 | 0.4 |
S3 | 30 | 360 | 90 | 1350 | 0.4 |
S4 | 40 | 360 | 90 | 1350 | 0.4 |
S5 | 50 | 360 | 90 | 1350 | 0.4 |
No. | Specific Surface Area/(m2/g) | Particle Size/μm | ||
---|---|---|---|---|
D10 | D50 | D90 | ||
S1 | 0.64 | 2.05 | 21.31 | 126.40 |
S2 | 0.65 | 0.91 | 16.57 | 46.40 |
S3 | 0.56 | 1.03 | 21.85 | 127.60 |
S4 | 0.51 | 1.06 | 24.57 | 152.60 |
S5 | 0.45 | 1.42 | 31.55 | 172.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Lu, Y.; Liu, Y.; Chu, J.; Zhang, T.; Wang, W. Influence of the Steel Slag Particle Size on the Mechanical Properties and Microstructure of Concrete. Sustainability 2024, 16, 2083. https://doi.org/10.3390/su16052083
Li M, Lu Y, Liu Y, Chu J, Zhang T, Wang W. Influence of the Steel Slag Particle Size on the Mechanical Properties and Microstructure of Concrete. Sustainability. 2024; 16(5):2083. https://doi.org/10.3390/su16052083
Chicago/Turabian StyleLi, Maohui, Youjun Lu, Yajuan Liu, Jingjun Chu, Tongsheng Zhang, and Wei Wang. 2024. "Influence of the Steel Slag Particle Size on the Mechanical Properties and Microstructure of Concrete" Sustainability 16, no. 5: 2083. https://doi.org/10.3390/su16052083
APA StyleLi, M., Lu, Y., Liu, Y., Chu, J., Zhang, T., & Wang, W. (2024). Influence of the Steel Slag Particle Size on the Mechanical Properties and Microstructure of Concrete. Sustainability, 16(5), 2083. https://doi.org/10.3390/su16052083