
Citation: Azzi, A.; Tabaa, M.; Chegari,

B.; Hachimi, H. Balancing

Sustainability and Comfort: A

Holistic Study of Building Control

Strategies That Meet the Global

Standards for Efficiency and Thermal

Comfort. Sustainability 2024, 16, 2154.

https://doi.org/10.3390/su16052154

Academic Editor: Antonio Caggiano

Received: 4 December 2023

Revised: 30 January 2024

Accepted: 7 February 2024

Published: 5 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Review

Balancing Sustainability and Comfort: A Holistic Study of
Building Control Strategies That Meet the Global Standards for
Efficiency and Thermal Comfort
Amal Azzi 1,2, Mohamed Tabaa 2,*, Badr Chegari 3 and Hanaa Hachimi 2

1 Multidisciplinary Laboratory of Research and Innovation, Moroccan School of Engineering Sciences,
Casablanca 20250, Morocco; a.azzi@emsi.ma

2 Laboratory of Advanced Systems Engineering, National School of Applied Sciences,
Ibn Tofail Univesity Campus, Kenitra 14000, Morocco; hanaa.hachimi@uit.ac.ma

3 I2M Laboratory, University of Bordeaux, Centre National de la Recherche Scientifique (CNRS),
Arts et Métiers Paris Tech, 33400 Talence, France; badrchegari@gmail.com

* Correspondence: m.tabaa@emsi.ma

Abstract: The objective of energy transition is to convert the worldwide energy sector from using
fossil fuels to using sources that do not emit carbon by the end of the current century. In order
to achieve sustainability in the construction of energy-positive buildings, it is crucial to employ
novel approaches to reduce reliance on fossil fuels. Hence, it is essential to develop buildings with
very efficient structures to promote sustainable energy practices and minimize the environmental
impact. Our aims were to shed some light on the standards, building modeling strategies, and
recent advances regarding the methods of control utilized in the building sector and to pinpoint
the areas for improvement in the methods of control in buildings in hopes of giving future scholars
a clearer understanding of the issues that need to be addressed. Accordingly, we focused on recent
works that handle methods of control in buildings, which we filtered based on their approaches
and relevance to the subject at hand. Furthermore, we ran a critical analysis of the reviewed works.
Our work proves that model predictive control (MPC) is the most commonly used among other
methods in combination with AI. However, it still faces some challenges, especially regarding
its complexity.

Keywords: MPC; building energy efficiency; control techniques; modeling; thermal comfort

1. Introduction

For centuries, nations survived on fossil fuel exploitation as a main source of energy
to power vehicles and enhance residential comfort, among other things. For instance, fossil
fuels such as oil, coal, and gas have been at the core of industries since the 1700s [1,2]. Ever
since, fossil fuels have been integrated in almost every aspect of human lives, including
heating, transportation, and in residential activities, among others.

A significant turning point occurred during the second industrial revolution, known
as Industry 2.0, with the discovery of electricity [2,3]. Industrial and residential activities
became more ferocious, as electricity helped make industrial processes easier. For example,
electricity was used to power air conditioners for indoor heating instead of burning wood
and/or charcoal [4]. The consumption of electricity in the industrial and transportation
sectors has seen substantial growth since the industrial revolution [4], which introduced
new technologies such as the telegraph and combustion engines. These innovations laid
the groundwork for electricity to become the primary source of power. While the primary
goal of these technological advancements has been to enhance the comfort and efficiency of
our living environments, it is essential to recognize the flip side of this evolution: the rising
costs associated with increased electricity consumption. Furthermore, despite introducing
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electricity to the mainstream, fossil fuels were the main source of energy, and were also
used to produce electricity itself [5].

The intense dependence on fossil fuels increased the concentrations of greenhouse
gases in the atmosphere as result of industrial emissions. Coupled with the excessive
exploitation of natural resources, planet earth started battling a new challenge known as
climate change [6]. This phenomenon manifested itself through hurricanes, floods, heat
waves, and forest fires caused by the rising temperature of the planet. As a result, 3.6 billion
people currently live in challenging situations because of climate change [7] and its effects.
Moreover, the insatiable use of natural resources in different industries over the years has
driven these resources to the point of depletion [8,9]. For instance, in 2021, fossil fuels
accounted for around 81% of total greenhouse gas emissions in the United States [10].
Similarly, as of 2022, the production, transport, and processing of oil and gas produced
5.1 billion tons of CO2 equivalent, accounting for a little less than 15% of the worldwide
energy sector’s greenhouse gas emissions [11].

With that in mind, a new battle against climate change presented itself for environmen-
tal reasons and, most importantly, because humans’ survival depends on it. Consequently,
reducing greenhouse gas emissions became crucial to mitigate these effects and preserve
global health. This means making more environmentally friendly decisions about energy
use and transportation since they are the two main causes of emissions [12].

Buildings are one of the main contributors to excessive energy consumption and
carbon emission [13]. This sector plays a critical role in the energy context and contributes
significantly to both overall greenhouse gas emissions and global energy consumption,
according to the EIA [14]. Additionally, the residential sector was responsible for 37%
of the world’s CO2 emissions and 36% of the global energy consumption in 2020 [14].
A considerable portion of buildings’ energy consumption is attributed to their heating
and cooling (HVAC) systems, which represent around 40% of the total energy used in
buildings [15], making them a key factor in carbon emissions.

As a result, strategies for improving energy efficiency and economic evaluations for
various types of existing buildings, including residential and non-residential structures,
have been the subject of extensive studies [16,17]. One technique used for reducing building
energy consumption and HVAC system optimization is through energy transition [17].
The concept of energy transition involves replacing traditional energy resources with
sustainable alternatives, such as solar or wind energy [18,19], with the goal of increasing
energy efficiency and reducing the carbon footprint. Among the famous examples of energy
transition technologies is the rising concept of smart buildings [20]. This concept consists
of using renewable energy sources, specifically solar photovoltaic (PV) systems, to provide
cleaner energy to buildings, thus reducing their energy consumption and carbon emissions.

When photovoltaic solar panels are integrated into renovations or new construction,
they can capture solar energy and convert it into electricity [21]. This clean and sustainable
energy source presents the potential of creating net-zero or even net-positive energy struc-
tures [22]. Buildings can significantly reduce their reliance on the conventional electricity
grid by utilizing solar energy to power their HVAC systems and other electrical needs,
resulting in lower energy costs and reduced greenhouse gas emissions.

Recent works addressed this issue using different methods [23,24]. For instance, in [25],
the authors studied the case of a hotel building in the Croatian Adriatic aiming for an nZEB
system using an HVAC module. Their work demonstrates that, in association with the
HVAC system, a solar photovoltaic (PV) system is crucial to reach nZEB. However, accord-
ing to [26], the best type of HVAC system to adopt varies depending on the building and
its location. For instance, in the case of a building located in a tropical, warm, and humid
environment, an air-cooled system with ventilation provides the best results at optimal
costs. Likewise, in [27], the authors compared an air-conditioning system coupled with a
PV system to a solar cooling system. Their work draws conclusions based on a case study in
Jordan, which confirms that when electricity tariffs are based on the total demand, instead
of the peak demand, absorption chillers barely offer any financial benefits [27]. Moreover,
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it proves that a PV system combined with air-conditioning requires less maintenance than
a solar cooling system, thus making it more feasible and practical.

In the same perspective, additional measures can be taken to facilitate energy tran-
sition using smart buildings [28], and that can be achieved by incorporating a range of
interconnected technologies, sensors, and systems that enable the automated control and
management of building functions. This not only ensures the efficient use of resources,
such as electricity and water, but also enhances the quality of life and workplace experience
for occupants by providing a responsive and adaptive environment [29].

Smart buildings make significant contributions to global sustainability and urban
development goals by addressing issues such as energy consumption, environmental con-
servation, and well-being [29]. They can continuously learn and adapt to the requirements
of their residents and the surrounding environment thanks to the combination of the In-
ternet of Things (IoT), artificial intelligence (AI), and data analytics. This technological
integration not only optimizes resource utilization but also aligns with the principles of
sustainability, thus contributing to the achievement of Sustainable Development Goals
(SDGs) [30], particularly in fostering sustainable cities and communities [31] (Goal 11) and
ensuring access to affordable, reliable, sustainable, and modern energy for all (Goal 7) [32].

Correspondingly, the Internet of Things (IoT) is an essential component of smart
buildings, allowing for the integration and coordination of numerous technologies and
systems to reduce energy usage, increase occupant comfort, and enhance overall building
performance [33–35].

Consequently, it is imperative to minimize energy consumption and carbon emissions
in buildings while addressing energy and environmental challenges. To this end, this
review article aims to serve as a comprehensive reference guide for the approaches to
building control to help shed light on the challenges facing control methods in the building
sector, the strategies deployed, and the areas of improvement.

This paper reviews the recent developments in control strategies for researchers,
users, and interested parties within the building sector, including those concerned with
HVAC systems, whose aim is to ensure thermal comfort and reduce power consumption
in buildings. This document also looks at different building modeling approaches and
software, highlighting their importance in the development of energy-efficient strategies.
In addition, it focuses on classifying control strategies in the building sector, covering
traditional control methods, advanced control techniques, and intelligent controls such
as artificial neural networks (ANNs) and long-term memory controls (LSTMs). Finally,
this article explores the hardware implementation of smart building solutions and their
integration with the Internet of Things (IoT), offering a holistic perspective on modern
advances in building technology.

This paper is structured as follows Figure 1: Section 2 is a description of our method-
ology for constructing this review. Section 3 provides a detailed analysis of our review
regarding the building modeling approaches as well as the categorization of control strate-
gies in buildings. Section 4 is a discussion of our findings. Section 5 provides a detailed
description of the implementation of smart building technologies. Finally, we summarize
our afterthoughts in the conclusion.
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Figure 1. Structure of the paper.

2. Methodology

This section presents the sources, requirements, and methods that were utilized to
choose and collect the papers in the literature. This study’s objective is to analyze several
sustainable alternatives in the context of standards, modeling, control strategies, and
methods that will reduce building energy consumption and maintain thermal comfort.

To ensure the completeness of our research, we have formulated key questions to
structure the literature review, provide relevant findings from the selected literature, and
support the discussion. The questions include the following:

• What are the national and international regulations and standards governing the
energetic envelop and thermal comfort in buildings?

• What building modeling methods are available in the literature?
• What control methods are currently deployed in buildings to minimize energy con-

sumption and ensure thermal comfort?
• What is a smart building?
• How are these control methods evaluated in the literature, and how does the term

smart building contribute to this evaluation process?

A total of 205 publications were collected from several databases, such as Google
Scholar, Scopus, and Web of Science, to conducts a comprehensive analysis and expand our
understanding of the topic.

In order to obtain a more comprehensive understanding of the matter, we initiated
our research by employing the keywords “Building”, “standards”, “Building Modeling
techniques”, and “Building control strategies” to discover innovative approaches for
this study.

Using the identical keyword combination, a search was conducted in both Google
Scholar and Scopus, resulting in 300 findings. The combination of the keywords yielded
205 articles, with 23 duplicates being removed. By conducting an initial analysis, rele-
vant terms or words were identified in the titles or abstracts, leading to the discovery of
182 articles. The second filter examined the entire contents of the publications to identify a
pertinent analysis related to any of the research inquiries, resulting in a total of 167 articles,
as depicted in Figure 2.
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Figure 2. Research process.

The research questions were systematically investigated, followed by a thorough
examination of the identified references.

Articles were organized in two categories. The first category regroups review articles
which were used as a source of inspiration for the previous state of the art regarding
the aforementioned questions. The second category covers the articles that tackle a use
case related to our subject. To establish relevance to the study issues, the selected articles
were extensively analyzed, including the findings and conclusions. The iterative process
involved formulating research inquiries and undertaking a comprehensive evaluation of
the existing literature to ensure the pertinence and accuracy of the study.
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3. Analysis
3.1. Notions and Standards

Significant energy consumption is associated with the building sector, which is at the
center of environmental and energy concerns both internationally and in Morocco.

Since the industrial revolution, the availability of affordable energy has become the
backbone of modern societies, leading to a global dependence on fossil fuels. The data show
that 66% of the world’s primary energy is derived from fossil fuels, with oil predominating
at 40% [36]. By 2022, global coal consumption had increased to 6.3% of the global primary
energy consumption level [37]. Despite the current environmental impacts and energy
crises, renewable energy sources account for only 24% of electricity production worldwide,
with the building sector consuming the most electricity at 48% [37]. In Morocco, the building
sector is a major energy consumer and embodies the country’s energy and environmental
challenges, comprising 52% of the final electrical energy consumption [38]. The country,
which is heavily dependent on fossil fuels, saw a significant 32% increase in its energy
consumption between 2007 and 2017, intensifying the challenges linked to energy security
and CO2 emissions. Faced with this reality, bold energy and environmental strategies have
been implemented to increase the proportion of renewable energy in electricity production
to 52% by 2030 [38]. These initiatives also aim to counter the accelerated growth in emissions
in various sectors and to reduce the ecological footprint of the building sector, which is
set to play a major role in achieving sustainable development objectives, both nationally
and internationally.

However, the building sector is characterized by the presence of several standards and
regulations at both the international and national levels:

• ISO50001

International standards, such as ISO50001, which was initially published on 15 June
2011 by the International Organization for Standardization (ISO), have the main objective of
providing clear guidelines for the development of an energy management system focused
on energy performance, enabling energy savings and cost minimization. According to the
International Energy Agency (IEA), the application of this standard could influence up to
60% of the global energy demand [39].

• ISO7730

ISO7730 [40], developed by ISO/TC159, concerns the ergonomics of the physical
environment, specializing in thermal comfort in a variety of environments. It introduces
methods for predicting thermal sensation and discomfort using the predicted mean vote
(PMV) and the predicted percentage of dissatisfied (PPD), which assess the level of comfort
or discomfort experienced by a group of people in each thermal environment using a 7-level
scale, shown in Figure 3. The PMV is based on the thermal balance of the human body,
taking into account various environmental and personal factors [41]. The standard mainly
applies to environmental and architectural design with the aim of maximizing thermal
comfort and minimizing discomfort and dissatisfaction.

• ASHRAE90.1

ASHRAE90.1, with the exception of low-rise housing, is a standard established by
ANSI and published by ASHRAE in collaboration with the IES that sets minimum require-
ments for the design of energy-efficient buildings. The first version was published in 1975
and has been regularly amended since 1999. In 2001, it was renamed ASHRAE 90.1 in
response to changes in technology and fluctuating energy costs. There are two compliance
options: prescriptive compliance, which imposes minimum standards for each element, and
performance-based compliance, which requires the building design to exceed the ASHRAE
90.1 reference model in terms of energy consumption, calculated in US dollars [42].

• NF EN 15232

The European NF EN 15232 standard sets out methods for assessing the impact of
building automation and management (BAM) systems on the energy performance of
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buildings in seven areas, including heating and lighting. It provides calculation methods
for assessing the effectiveness of control management and guidelines for integrating BMS
functions into existing standards. As a result, this standard facilitates the harmonization of
standards and operational activities relating to building control systems [43].

• NF EN 16247

The standard and reference methods for energy audits in key energy-consuming
sectors, such as the building, industry, and transport sectors, are defined in the European
standards package, NF EN 16247 [44]. It supports the regulations in force in France,
which require large companies to carry out mandatory energy audits. The NF EN 16247-1
standard, published in 2012, defines an energy audit as a methodical analysis of energy
use and consumption and sets out the general requirements for carrying it out [44]. All
of the stages of the energy audit are covered by the NF EN 16247-2 standard, which was
published in 2014.

• Japan

In Japan, since 1979, energy regulations for buildings have varied depending on
the building type, with standards being set to ensure compliance and increase energy
consumption in residential and domestic systems [45].

• India

As the world’s third-largest energy consumer, India has three different building codes:
the National Building Code of India (NBC), the Energy Construction Building Code (ECBC),
and the Environmental Impact Assessment and Approval (EIA). From 1974 to 2020, several
thermal regulations (TRs) have been put in place in France with the aim of reducing
the energy consumption of buildings by encouraging the construction of positive energy
buildings and passive houses while increasing energy production and reducing energy
waste [46].

• Canada

In Canada, the National Energy Code for Buildings (NECB) was adopted to promote
consistency between provincial and territorial building codes, since the latter have the
authority to legislate on the construction of buildings within their territory [47].
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• Spain

The construction and maintenance of buildings in Spain are governed by the standards
of the Energy Performance of Buildings Directive (EPBD) [49].

• Algeria

In 2000, thermal regulations were introduced in Algeria with the aim of reducing the
heating consumption of buildings [50]. These regulations use two calculation techniques to
assess heating and cooling costs. The authors of [51] developed these calculation techniques.

• Italy

Since the 1970s, laws on energy conservation in buildings in Italy have been in force,
dealing with various issues such as minimum energy consumption, renewable energy
installations, and the classification of energy consumption [52].

• Tunisia

In 2008, thermal regulations were introduced in Tunisia [53] for buildings that use
water sources. In 2009, the objective for buildings intended for residential use was to
improve thermal performance using prescribed and formative methods [54]. Each country
modifies its regulations to meet its own needs and climatic conditions.

• Morocco

In Morocco, the introduction of thermal regulations was promulgated by decree
No. 2-13-874, which was implemented on 15 October 2014 [55]. The decree endorses
global requirements for construction, with a particular focus on improving the energy
efficiency of buildings. The Moroccan Agency for Energy Efficiency produced “Thermal
Regulations for Construction in Morocco (RTCM)” to optimize the energy performance of
new buildings [55].

With the aim of promoting a sustainable future and preserving the environment, the
construction industry has effectively integrated green building practices. With a focus on
optimizing energy efficiency and designing environmentally friendly buildings, numerous
labels, certifications, and standards have been introduced around the world to support this
commitment, each adopting its own approach, methodology, and set of standards. Figure 4
presents the chronology of the creation of some international labels.

When it comes to assessing the environmental quality and energy performance of
eco-homes [56] and buildings for energy efficiency and the life cycle of a building, we use
the LEED certification. Minergie focuses on building comfort and energy efficiency by
emphasizing eco-friendly materials and energy conservation [57]. Several other labels and
certifications are presented in [58].

• BREEAM

The Building Research Establishment Environmental Assessment Method label aims to
define standards of good practice for the sustainable design, operation, and construction of
buildings; its main aim is to reduce the environmental impact of buildings throughout their
lifecycles by promoting environmentally friendly methods and optimizing energy efficiency.
In addition, it aims to guide and inspire builders and designers to adopt sustainable
strategies and apply environmentally safe strategies and sustainable solutions in their
construction plans, while providing a certification that highlights initiatives in favor of
sustainability and energy excellence [59].

• HQE

The HQE label is a French environmental protection concept that focuses on the
overall management of the environment across the entire life cycle of a building. It requires
14 objectives to be respected and encourages low-impact technological applications and
alternative energy sources. Unlike other French labels, the HQE label is a registered brand.
To qualify, buildings must satisfy 14 objectives, which guarantee energy efficiency and a
balance between interior comfort and environmental impact [60].
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3.2. Building Modeling Approaches

Various modeling techniques can be distinguished for analyzing the thermal dynamics
of a building, such as the white-box, black-box, and gray-box approaches [62].

White-box modeling is the detailed modeling of multizone structures using physical
concepts of energy, momentum transfer, and mass. This includes heat transfer modeling
for all building components, such as the roofs, floors, windows, walls, doors, and furniture.
Figure 5 presents three subcategories of white-box modeling: computational fluid dynamics
(CFD), the zonal method, and the W-multizone approach [62]. The W-multizone modeling
approach assumes uniform thermal characteristics for each layer and combines the temper-
atures of each layer into a single state [63]. However, it may not provide accurate results
for large-volume zones. On the other hand, both the zonal and W-multizone approaches
are commonly employed in popular commercial software, such as TRNSYS, EnergyPlus,
or Modelica-based open-source libraries, to simulate the thermal dynamics or energy use
of multizone buildings. The modeling techniques, benefit limitations, and applications
of frequently used software, such as EnergyPlus, TRNSYS, Dymola, and other tools, are
discussed in [64].
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Figure 6 illustrates the many software programs used for creating physical energy
modeling. The programs utilizes heat and mass balance equations, considering heat
transfer through conduction, convection, and radiation between the building envelope and
its surroundings. The principal goal of this program is to estimate and analyze building
energy consumption and thermal behavior [64].
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An overview of building performance simulation tools (BPS) is presented in [65], with
the researchers particularly focusing on HVAC (heating, ventilation, and air-conditioning)
systems. One study [66] concentrates on the multiobjective optimization of building design
using TNRSYS simulation, genetic algorithms, and artificial neural networks. The main
purpose of this research is to develop optimal building designs that achieve a balance
between different conflicting objectives, such as thermal comfort, energy efficiency, and
cost-effectiveness. The researchers aim to systematically explore the vast design space and
identify solutions that effectively meet these diverse requirements. To accomplish this, they
employ a combination of TNRSYS simulation, genetic algorithms, and ANNs.

The white-box building modeling software is a methodology that employs software to
accurately replicate the energy systems and control mechanisms of a physical building.

EnergyPlus is a popular open-source energy modeling program for buildings that
has been in development since 1997 and was launched in 2001 [67]. It estimates a build-
ing’s thermal performance over broad time scales using a nodal method with conduction
transfer functions and finite-difference techniques. EnergyPlus is well known for its quick
simulation speed and accurate assessment of energy consumption, making it useful for
monitoring energy usage in diverse buildings and systems.

Despite its capabilities, HVAC system modeling in EnergyPlus may be difficult and
time-consuming [68]. EMS programs have been built by researchers to improve HVAC sys-
tem simulations, but historical operational data from real buildings are critical to improve
forecast stability. Overall, EnergyPlus is a great tool for energy analysis in buildings, while
modeling HVAC systems requires extra care to obtain correct findings [69].
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On the other hand, transient system simulation (TRNSYS), developed by the Solar
Energy Laboratory at the University of Wisconsin-Madison, is a flexible and modular tool
used for various applications such as solar systems, buildings, HVAC systems, renewable
energy systems, fuel cells, and cogeneration [70]. It features a graphical user interface
and allows users to develop personalized components or types. TRNSYS is commonly
utilized to model building energy systems, particularly for solar energy systems and
heat pumps. Researchers have employed TRNSYS to investigate geothermal heat pump
systems and grid-connected photovoltaic (PV) systems, achieving accurate long-term
energy performance predictions [70]. A study that compared EnergyPlus with a multi-zone
dynamic simulation application (IDA ICE) found that TRNSYS was the most accurate
at predicting what would happen during a warm period when a phase change material
(PCM) was not present, while IDA ICE was the most accurate during the cooling period.
TRNSYS not only forecasts energy consumption, but also facilitates energy system design
for optimization [71].

The black box model, also known as a purely data-driven model, is used to capture
the correlation between a building’s energy consumption and operational data. It requires
on-site measurements over a specific time period to train the model to predict how the
building will operate under various conditions. These models are commonly applied
in research to determine building control strategies aimed at reducing energy consump-
tion and costs. Reference [71] explores the utilization of data-driven models employing
machine learning algorithms known as black-box models. These models have a vital func-
tion in the development of energy systems, as they are used for both energy prediction
and optimization.

The use of data-driven approaches in the image-based BIM construction process is
covered in [72], which primarily relies on the information or data collected about a building
to detect objects. The article also discusses the opportunities and problems that come with
using image-based BIM construction processes, such as the need for low-cost data collection
procedures, efficient data management, and so on. In [73], whole-building energy modeling
and prediction is presented. These models may be utilized for structures without precise
physical characteristics. By using mathematical techniques, these models employ historical
data to identify links between input and output factors.

Gray-box models are hybrid models that replicate the behaviors of building energy
systems using reduced physical descriptions. The use of simpler physical models decreases
the need to train data sets and reduces the computation time. Model coefficients are
discovered using statistics or parameter identification methods based on operating data.
In prior work, a novel three-step approach for building and training gray models was
created [74]. The researchers in [75] evaluated the robustness of black-box and gray-
box models for predicting thermal building behavior in response to changing weather
conditions. It concentrated on model predictive control (MPC) for space heating, as well as
its dependency on accurate predictive models. Gray-box models outperformed black-box
models in terms of prediction ability and robustness to weather data variations.

3.3. Classification of Control Strategies in Buildings

The control of HVAC (heating, ventilation, and air-conditioning) systems is fundamen-
tal for ensuring thermal comfort in buildings without increasing energy consumption. For
this reason, several methods and strategies for technical control are available and can be
classified into different classes [76,77].

Starting with standard or classical control strategies, the two subcategories of this
technique are PID control (process control) and on/off control (sequencing control).

These types of techniques are frequently employed to regulate HVAC components
that utilize the signal from simple sensors, which include humidistats, thermostats, or
pressure switches [78]. In fact, in the context of control systems, there is a growing un-
derstanding that standard or traditional control approaches may not always be effective
to manage the complexity and uncertainties found in many real-world applications. This
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has led to the development of soft control or intelligent control approaches, which use
sophisticated algorithms and computer intelligence to provide more flexible and adaptable
control strategies.

Additionally, hybrid control [79] has become a powerful tool in the field of control
systems, combining the advantages of flexible control techniques, such as fuzzy logic and
artificial neural networks, with conventional or sophisticated control approaches.

3.3.1. Conventional Control Strategy

PID and on/off control are two subgroups of the classical control approach, as shown
in Figure 7. They are the most frequently employed controllers in HVAC systems in both
commercial and residential buildings due to their simple structures and economical initial
costs [80]. However, one of the main weaknesses of conventional control systems is their
lack of connection with the external environment (grid/meteo/city), which prevents the
adoption of high-efficiency control [80].
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Proportional–integral–derivative (PID) control is commonly used in many HVAC
systems; it is a closed-loop control system that continuously measures the process variable
and adjusts the control signal to maintain it at a desired setpoint [81].

The proportional action provides an immediate response to the present error and helps
reduce the steady-state error. The integral term considers the accumulated errors over time
and helps eliminate the steady-state error. The derivative term predicts the future error
based on the rate of change of the process variable and helps improve the system response
to sudden changes in the process [81].
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The combination of these three actions (P, I, and D) helps to improve the stability and
response of the control system [82]. This is expressed in Equation (2):

u(t)= Kpe(t) + Ki

∫ t

0
e(t)dτ + kd

de(t)
dt

(2)

In Equation (2), u(t) denotes the control variable, e(t) represents the value of the error
between the deserted setpoint and measured feedback, and Kp, Ki, and Kd indicate the
coefficients for the P, I, and D terms.

For some applications, it might be preferable to apply one or two of the three actions
and put the other two at zero. Figure 8 presents the action of a PID controller. The two
most commonly used control algorithms are P control and PI control. A building’s thermal
process dynamics is a slow response procedure. As a result, P control can potentially be
used to regulate a building’s temperature with a reasonably small offset and good stability.
It also works well for controlling a building’s humidity [83,84].
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The main advantages of PID control are that it does not require a mathematical model
of the system, it is simple to implement, and it allows for the powerful and flexible control
of a linear system [84].

However, PID controllers have some drawbacks, such as their inability to handle
cross-coupling (multi-zone) nature and constraints in HVAC systems, which are difficult to
tune and may be sensitive to system changes [85]. The main advantages and disadvantages
are presented in Table 1.

An on/off control system is a feedback control technique that has been used for many
years in various applications, including in buildings, for energy conservation and occupant
thermal comfort. It is a binary control system that operates on a simple and fast principle,
where the output device is switched on or off based on the measured input signal. This
technique is widely used in domestic and commercial buildings through devices such as
thermostats, humidistats, and pressure switches. Overall, an on/off control system is a
straightforward and inexpensive method for controlling various systems and processes.
Figure 9 presents the action of an on/off controller.
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Oluwasegun and Kayode discuss the challenges associated with turning the propor-
tional–integral–derivative (PID) control law into a closed-loop control in many dynamical
systems. They conclude that PID tuning is a non-convex optimization problem, which
makes it difficult to achieve accurate and stable control. The authors of [85] review different
methods for PID turning and propose a solution to minimize the complexity and cost
associated with turning the three main parameters of the PID control law. The article
argues that solving this problem can save money and significantly improve PID control
design [85].

Fazelpour and Asnaashri highlight the creation of an Earth–Air Heat Exchanger
(EAHE) to increase the efficiency and economic competitiveness of household HVAC
systems. The system employs a natural pre-heat/cool coil that is controlled by a PID
controller built into the HVAC system, obviating the requirement for additional control
equipment. Finally, the authors of the article find that, based on the time of year and
temperature of the downstream zone, the PID setting of the DDC may be adjusted for
control process optimization. And to reduce energy usage during the changeover season,
the system may exclusively use outside air [86].

Shein and Tan focus on the use of a PID controller and a hybrid controller to regulate
two actuators (air conditioner and a window) in a cyber-physical home system for tem-
perature management. The authors’ goal is to maintain the ideal room temperature while
using as few resources as possible. They conclude that traditional building controllers
are inefficient and inflexible enough to adjust to changes. The article aims to investigate
the effectiveness of the controllers in maintaining a desired room temperature with only
two actuators. The suggested cyber-physical-system-based HTC system is studied and
validated using MATLAB/SIMULINK simulation [87].

Another article addresses the implementation of a proportional control system for the
HVAC system of a residential building. It concludes that the typical two-position (on/off)
management method utilized in residential buildings lacks energy efficiency and thermal
comfort. However, energy consumption does not show much difference between the two
control schemes. Finally, the authors affirm that proportional control has advantages over
on/off control relative to equipment life due to a smoother control signal [88].

Finally, classical controllers perform some functions that are acceptable, but they are
very expensive due to their poor performance and high maintenance requirements. As
a result, advanced and intelligent control techniques, such as model predictive control
(MPC) and fuzzy control, are becoming more popular in preference compared to less
energy-intensive systems that provide thermal comfort.
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Table 1. Advantages and disadvantages of classical control strategies.

Control System Advantages Disadvantages Ref.

On/off control

Simple and easy to implement, low cost Poor temperature control, can cause wear
and tear on HVAC equipment [76]

Energy-efficient, reduces carbon emissions
Poor temperature control, limited
application in areas without favorable
climatic conditions

[89]

Simple and adaptable control methods
Limited accuracy and performance
compared to more advanced control
techniques

[83]

Cost-effective, energy-efficient, adaptable
to various HVAC systems

Limited accuracy and performance
compared to more advanced control
techniques

[76]

Improved energy efficiency, better
temperature control

Can be complex and expensive to
implement [90]

PID control

Improved energy efficiency, better
temperature control Complex system modeling required data [88]

Improved temperature control, adaptable
to various HVAC systems

Require expert knowledge and
time-consuming turning [76,85]

Improved temperature control, adaptable
to various HVAC systems - [81]

Fast response improved performance,
adaptable to nonlinear objects

May require complex implementation and
parameter turning [91]

Simple and inexpensive Poor control, accuracy, and stability [77]

3.3.2. Advanced Control Strategies

This section focuses on sophisticated control systems with a particular emphasis on
tree-based methods. We will thoroughly examine model predictive control, including
its many forms and important aspects for comparison. We will also cover optimum and
adaptive methods of control in a clear way.

Model Predictive Control (MPC)

Model predictive control (MPC) minimizes a defined action over a fixed time horizon
to determine control actions. It entails predicting and optimizing future system behavior
using a mathematical model of the system, current state measurements, and disturbance
predictions. Moreover, it is a sophisticated type of process control that is effective at
satisfying constraints and has been widely implemented in a variety of fields, including
the building and construction industries. It has a number of technical specialties and
features that make it a popular choice for control strategies in building systems, such as
control precision, stability, and interference immunity, which result in energy savings and
improved control performance [92,93]. MPC is a restricted optimum control approach that
determines the best control inputs by minimizing a specified objective function over a
finite prediction horizon. The mathematical model of the system, along with the present
state data and weather forecast, are utilized to anticipate and optimize a building’s future
behavior [93]. The general MPC formulation for a building is presented in [92], as the
following optimal control problem in discrete time:

min
U0,.....,UN−1

Ln(xN) +
N−1

∑
K=0

LK(xk, yk, rk, uk, sk) (3)

The MPC scheme comprises several key components, as presented in Figure 10:
a system prediction model, an objective function, constraints, a disturbance model, a
control horizon, and an optimization method. They might all have an impact on MPC’s
performance. Additionally, each component can be modified or adjusted to suit various
possibilities, resulting in a variety of algorithms with distinct properties [93,94].
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• Types of MPC

Model predictive control (MPC) is a strategy for controlling a system by minimizing a
given objective function over a finite prediction horizon. It involves using a mathematical
model of the system, along with current state measurements and disturbance predictions,
to predict and optimize future system behavior.

The three key steps involved in MPC are developing and identifying moles, predicting
disturbances, and solving optimization problems by incorporating predictive information
into the model. MPC has demonstrated its potential to save energy and improve con-
trol performance in numerous applications [94]. Figure 11 illustrates the many forms of
MPC, while Table 2 presents a concise overview of the benefits, drawbacks, and intended
applications of each type.
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Table 2. Types of MPC control systems [93].

Method Advantages Objectives Applications Limitations Ref.

RMPC
(Robust MPC)

Robustness to
uncertainties and
disturbances

In the presence of
uncertainty, it maintains
desirable setpoints and
reacts to disturbances

Any HVAC system

Computation
complexity, turning
complexity, sensitivity
to modeling errors

[95,96]

SMPC
(Stochastic MPC)

Consideration of
probabilistic nature
of uncertainties

Maintains desired
setpoints and responds
to disturbances while
considering the most
likely disturbances that
may be encountered in
practice

HVAC systems
with uncertain and
varying
disturbances

Computational
complexity, potential
for instability or
oscillations, limited
applicability to certain
types of systems

[97,98]
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Table 2. Cont.

Method Advantages Objectives Applications Limitations Ref.

DMPC
(Distributed MPC)

Splits large-scale
applications into
smaller subproblems

Reduces computational
burden and increases
efficiency

Suitable for
multizone
buildings and
water distribution
systems

May lead to increased
communication and
implementation
complexity

[99,100]

AMPC
(Adaptive MPC)

Adaptability to
changing system
dynamics
Handles model
uncertainties and
updates models
based on data
measurements

Responds to changes in
system dynamics or
parameters over time
Ensures stability of the
system

Suitable for
non-linear and
transient systems

May not work well
with systems with
large model
uncertainties

[38,39]

HMPC
(Hybrid MPC)

Energy savings and
improved
performance

Combines the benefits of
different types of MPC
systems to achieve better
performance and energy
efficiency

Additional
complexity and
computational
requirements,
potential for
communication
delays or failures

HVAC systems with
multiple operation
modes or components

[101]

1. Robust model predictive control (RMPC)

Due to divergent models or change factors, accurate modeling in buildings and HVAC
systems is not achievable. Exogenous disruption elements include the zone temperature,
occupancy rate, external temperature, cooling loads, sun irradiation, and more. As a
result, uncertainties provide a challenge in the design of heating and cooling systems [93].
Uncertainties are challenging for an MPC control system because they affect its accuracy
and ability to be implemented correctly in real systems. Building a robust model predictive
control (RMPC) system may be a solution to these issues.

An RMPC system is an improved version of a nominal MPC system that ensures
all possible uncertainty sequences satisfy the state control constraints; in the constraint
problem for RMPC formulation, uncertainties are assumed to be bounded [93].

This paper presents a robust model predictive control strategy for improving the
supply air temperature control of air-handling units. It uses a first-order plus time-delay
model with uncertain time-delay and system gain, and an offline LMI-based robust model
predictive control algorithm to design a robust controller. The proposed strategy is evalu-
ated in a dynamic simulation environment of a variable air volume in an air-conditioning
system in various operation conditions, and the robustness analysis of both strategies is
also presented [95]. Reference [96] presents a two-level control scheme based on robust
model predictive control (RMPC) to offer frequency reserves with a district heating and
cooling system. It takes advantage of the thermal inertia of buffer storage tanks and a
subset of connected buildings with electric heating and cooling systems. In this paper,
the author presents a numerical case study and real-world experiment to validate the
control approach, showing that reserves can be offered without compromising comfort in
connected buildings.

2. Stochastic model predictive control (SMPC)

Stochastic model predictive control (SMPC) is an alternative to robust control ap-
proaches that considers the probabilistic nature of uncertainties and provides additional
information about the uncertainties. It is formulated with chance constraints to eliminate
the worst-case scenario and take into account the most suitable control algorithm for HVAC
systems [102].
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3. Distributed model predictive control (DMPC)

The distributed model predictive control strategy (DMPC) is used to divide complex
applications into smaller, simpler stets of subproblems that are controlled locally by their
inputs and outputs. It is motivated by the need to reduce the computing burden through
the right construction of controllers that are capable of performing computations and
communicating effectively. DMPC is the most often used control algorithm for creating
complicated multi-level zones, rooms, and floors, and it is well suited for decoupling
separation [103].

4. Adaptive model predictive control (AMPC)

The adaptive model predictive control (AMPC) method may be a good contender for
dealing with such issues. The AMPC is best recognized for addressing model uncertainty
and updating models based on data measurements gathered online. This strategy has
two key goals: to assure system stability and update time-variant models at each time
interval [103].

5. Hybrid model predictive control (HMPC)

The complexity of model dynamics, goals, and constraints in the problem formula-
tion of MPC has increased rapidly. Hybrid model predictive control (HMPC) is a novel
intervention paradigm of the MPC scheme controlled through continuous-valued and
discrete-valued state components. This class of MPC helps to expand its capabilities for dy-
namic switching, control variables (i.e., mixed integer or binary integers), and logical states.
These control variables lead to the non-linear optimization problem that is solved using
optimization algorithms, such as MILP and MIQP. Hybrid MPC systems are categorized
into two special classes, i.e., pure discrete systems and a combination of continuous and
discrete systems [103].

The necessity of building energy management for the efficiency of the power system
is highlighted in this study [104]. The author discusses the current advances in data-driven
model predictive control (MPC) and reinforcement learning (RL) algorithms for building
energy management systems (BEMSs). Moreover, the study offers recommendations for
selecting control strategies depending on known dynamics or modeling challenges. At
last, the study suggests using simpler data-driven models with robust control strategies for
efficient and reliable building energy management.

Reference [105] explains how model predictive control (MPC) can optimize energy
usage and thermal comfort in university buildings, but weather forecast uncertainty poses
a challenge to its implementation. To address this issue, the study proposes an error model
that utilizes easily measurable data to enhance weather forecast accuracy. Testing the
method on a university building in Norway showed that the MPC system with the error
model almost achieved the MPC system’s full theoretical potential in reducing energy
costs and improving thermal comfort. In contrast, the MPC system without the error
model performed poorly, resulting in minimal energy cost savings and increased indoor
temperature violations. The study concludes that the error model can significantly enhance
MPC performance in buildings, even under conditions of low weather forecast error.

The authors of [106] present a research study that explores the use of a hybrid predic-
tive model in a model predictive control (MPC) framework for building energy systems
(BESs) that combine batteries and solar photovoltaic (PV) panels. The aim of this study
is to maximize the use of renewable energy sources while minimizing the use of non-
renewable sources.

The methodology involves developing a model that can predict the behavior of the
system over a short period of time (hours) while taking into account long-term trends (days).
The model is trained using historical data from the building energy system and weather
forecast data. The MPC algorithm is then used to optimize the system’s performance by
adjusting the setpoints of various components, such as solar panels, battery storage, and
heating/cooling systems. The optimization is based on a cost function that takes into
account the cost of energy from different sources, as well as the cost of any penalties for
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exceeding energy consumption limits. The authors of [106] found that the MPC algorithm
was able to effectively optimize the system’s performance, resulting in a reduction in
energy consumption from non-renewable sources and an increase in the use of renewable
sources. The results demonstrate the potential of using MPC for renewable energy systems
in buildings.

Model predictive control (MPC) is a strategy for controlling a system by minimizing a
given objective function over a finite prediction horizon. This process involves the use of a
mathematical model of the system, in conjunction with measurements of the current state
and effective disturbance management, to meet constraints. This approach has been widely
used in many sectors. Table 3 gives an example of the software used to implement it.

Table 3. Model predictive control software.

Article Advantages Limitations Sector Software

[107] Increases system efficiency
and performance

Difficulty in modeling and
accounting for uncertainty

Building energy
system Matlab

[108] Improves energy efficiency
and cost savings

Difficulty in modeling and
accounting for weather
uncertainty

Building -

[108]
Improves system
performance and energy
efficiency

Limited scope of study and
generalizability of results Building TRNSYS/MATLAB/

Co-simulation testbed

[106] Improves energy efficiency
and cost savings

The long short-term hybrid
model is difficult to model and
tune

Real office building -

[109] Increases cost savings and
energy efficiency

Difficulty in modeling and
training deep reinforcement
learning models

Real office building
in Pennsylvania Intelligent work space

[110] Increases energy efficiency
and cost savings

Difficulty in modeling and
training deep learning models Building Open Studio

EnergyPlus

[111] Improves control strategies
for mixed-mode buildings

Limited to mixed-mode
buildings

Building with
mixed-mode
cooling

Matlab
EnergyPlus

Optimal Control

In order to minimize a certain cost function and maintain the indoor environment
with high energy efficiency, the optimal control algorithm is used to solve an optimization
issue. In this method, control signals are derived to meet certain physical restrictions
while optimizing a selected performance criterion [112]. In [113], the authors focused
on reducing energy consumption in an office building by presenting an optimal control
method for HVAC systems. The system employs two control algorithms that consider
the interior thermal conditions, specifically the temperature and humidity, as well as the
predicted mean vote (PMV). The control algorithms were evaluated using office equipment,
and a survey was used to evaluate the connection between changes in the temperature
environment and occupant comfort levels. Based on the results, the suggested control
mechanism effectively maintains occupant comfort while consuming less energy than
traditional HVAC systems. Reference [114] proposes an optimal control strategy for HVAC
systems in building energy management. Swarm intelligence was used in the control
approach to decide how much energy should be sent to each piece of HVAC equipment.
Both the building model and HVAC equipment model were created in order to analyze how
the functioning of HVAC systems affects the interior environment. To simulate real-time
control in a single building, a case study was carried out. In this study, the author conducted
simulations in both cold and hot weather to evaluate the control abilities of the heating
and cooling units in the HVAC system. Moreover, the simulations were carried out over
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a 24 h period, and variations in the indoor temperature, CO2 concentration, and energy
consumption were recorded. The simulation revealed the effectiveness of the suggested
control technique in attaining energy economy while preserving interior comfort.

Adaptive Control

In non-linear control systems, adaptive control is a powerful method used to manage
processes with changing dynamics and stochastic disturbances.

Adaptive control systems provide optimal control performance, even in the presence of
uncertainty, by continually modifying the controller settings based on real-time information
about the system’s characteristics. It can always attain or maintain the intended level of
control system performance, even if the parameters of the installed dynamic model are
unknown or time-varying [115].

In the context of building HVAC systems, adaptive control refers to a control method
that can adapt to changing conditions and uncertainties in the system with the goal of
improving its performance.

Reference [116] presents an adaptive control technique for residential heating, venti-
lation, and air-conditioning (HVAC) systems to support grid services. This study uses a
method that includes both the time-varying characteristics of a thermal building’s behaviors
and the prevailing weather conditions.

3.3.3. Intelligent Control Strategies
Fuzzy Logic (FL)

Fuzzy logic is a methodology that utilizes human reasoning and a linguistic model
to address complex and integrated systems without relying on complicated mathematics.
The methodology involves creating membership functions and rules to model human
knowledge and reasoning about the system without requiring a mathematical model. In
contrast to traditional controllers and advanced controllers, such as MPC, fuzzy logic is
based on human knowledge and the behavior of the system, making it a more intuitive
and flexible approach [117].

The basic idea underlying fuzzy logic control is to represent input variables, including
the pressure, humidity, or temperature, as fuzzy sets with membership functions that
define their degree of membership to various language words, like “high”, “low”, “hot”,
or “cold”. The fuzzy logic controller then generates an output that regulates the system
using a set of fuzzy IF-THEN rules based on expert knowledge about the system. Finally,
the fuzzy output is transformed into a crisp output using a defuzzification approach, such
as centroid, maximum, or weighted average, in the defuzzification stage.

Fuzzification, fuzzy inference, and defuzzification are the three basic processes in
the fuzzy logic control process [118]. The fuzzification process converts the crisp input
values to fuzzy ones [118]. To transfer the input values to a degree of membership in the
range of [0, 1], membership functions such as gaussian distribution triangle, bell functions,
trapezoidal and sigmoidal functions are used. The next stage is to use a fuzzy inference
system to map fuzzy values to distinct fuzzy values by using fuzzy IF-THEN rules and
logical operations. There are two types of fuzzy inference systems: Mamdani and Sugeno.
The first type is utilized for all kinds of systems, and the second one is mostly employed
for dynamic non-linear systems. The collection of the linguistic output values from the
previous phase is employed in the defuzzification procedure, giving a single crisp value as
an output.

Several studies have utilized fuzzy logic to optimize energy utilization and cost
savings in HVAC systems. In this section, we will provide a literature review that covers
the implementation of fuzzy logic control in this area.

The usage of a fuzzy logic control technique in household appliances is suggested in
reference [119] to minimize energy consumption and costs; the authors model and analyze
the energy consumption of household appliances, including HVAC systems, electric water
heaters (EWHs), and lighting, using a fuzzy logic controller model (FLC) that can optimize
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energy use depending on the current conditions and user preferences. The model is
validated using simulations in MATLAB Simulink, and the results reveal that the fuzzy
logic control approach may save significant amounts of energy and money when compared
to traditional control methods.

In [120], the authors propose a fuzzy logic as a soft control technique to regulate
the speed of an HVAC evaporator fan in order to maintain the ambient temperature at
necessary set points. They integrate the occupants’ preferences as dynamic elements of
the control technique without considering any features of the building envelope, which
would enable the designed system to function and be applied in various structures. The
results demonstrate that it is possible to maintain an ambient temperature with significantly
reduced energy usage by controlling the evaporator fan speed with a fuzzy logic controller.

The writers of reference [121] worked to develop a smart home energy management
system (HEMS) for managing residential appliances with the intention of reducing elec-
tricity bills and power usage while ensuring customer comfort. The study employed
Simulink/MATLAB to model and analyze many commonly utilized home appliances,
including lighting; heating, ventilation, and air-conditioning (HVAC); and electric water
heaters (EWHs). They used a fuzzy logic controller (FLC) within the HEMS to predict
energy consumption and conduct a cost analysis during peak, off-peak, and combination
hours. Then, they proposed a particle swarm optimization (PSO) algorithm to optimize
the FLC’s performance and ensure optimal cost and power consumption. The results
demonstrated that, for HVAC, EWH, and dimmable lighting, the newly designed FLC
controller considerably lowered the expenses and energy usage during peak hours. The
modified fuzzy PSO controller increased energy savings and decreased power usage. The
authors of reference [122] explored how to improve thermal comfort while maintaining
or reducing energy usage in HVAC systems. They created and developed a single zone
building model and HVAC model using EnergyPlus software and the Transient system
simulation tool, respectively. Also, Simulink was used to construct both traditional on/off
controllers and fuzzy logic. Then, the building control virtual Test Bed was used to link
the simulation models. In terms of thermal comfort, the fuzzy HVAC controller performed
better than the on/off controller, resulting in a 33% decrease in occupant dissatisfaction and
a 50% decrease in non-comfort hours. On the other hand, the energy consumption results
were comparable for both controllers. The authors concluded that fuzzy logic control has
the potential to be effective in HVAC systems. Table 4 presents some building control work
using fuzzy logic.

Table 4. Fuzzy logic control.

Control
Method Ref. Results Software Advantages Disadvantages

Fuzzy
Logic

[119]

Reductions of 21.75%,
30.77%, and 41.96% in
energy consumption by
using FLC for the HVAC,
EWH, and dimmable
lamp, respectively.

MATLAB
SIMULINK, Fuzzy
logic Toolbox

Energy Savings, cost
reduction, improved
efficiency, increased
comfort.

Requires turning of
fuzzy controller, has
limited applicability to
specific appliances and
conditions.

[120]

Significant reduction in
energy consumption by
controlling the evaporator
fan speed

MATLAB, Fuzzy
Toolbox

Maintains ambient
temperature at required
set points.
Reduces energy
consumption.
Improves thermal
comfort.

Complexity in
designing fuzzy
control rules.
Requires expertise in
fuzzy logic control.
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Table 4. Cont.

Control
Method Ref. Results Software Advantages Disadvantages

Fuzzy
Logic

[121]

Reduce the cost and
energy consumption for
peak period by 19.72%
and 20.34%, by 26.71%
and 26.67%, and by 37.5%
and 33.33% for HVAC,
EWH, and dimmable
lamps, respectively, using
FLC controller

Simulink/MATLAB

Provides energy
utilization estimation and
cost analysis.
Achieves significant cost
and energy savings during
peak periods.
Optimizes the schedule
operation of home
devices.

Requires modeling
and analysis of
household loads.
Complexity in
designing fuzzy-PSO
controllers.
Need for expertise in
fuzzy logic and
particle swarm
optimization.

[122]

Reduce the annual mean
percentage of dissatisfied
occupants by 33%; reduce
the non-comfort hours by
more than 50%

Energy Plus,
Simulink,
Building Control
Virtual Test Tool,
Control Virtual
Test Bed, BCVTB

Enhances thermal comfort
provision for building
occupants.
Promising method for
dealing with multivariable
control problems.

Real-life
implementation
needed to verify the
potential of fuzzy
control in HVAC
applications.

Deep Learning Based on Artificial Neural Network (ANN)

An artificial neural network (ANN) is an information processing algorithm inspired by
the human brain and its learning process. It consists of interconnected neurons organized
in layers (input, hidden, and output) that process information, as presented in Figure 12.
ANNs use network weights and transfer functions to compute data based on inputs. They
possess adaptability through self-turning and are increasingly applied for the advanced
thermal control of buildings. ANNs have advantages, such as the ability to handle a large
number of input variables and a large amount of data, allowing for the modeling of complex
non-linear systems. Through training, ANNs can simulate and solve complex non-linear
functions [123].

Reference [124] focuses on utilizing artificial neural networks (ANNs) to predict the
ideal start time for a building’s heating system; to achieve this, the researchers developed
algorithms to estimate a room’s air temperature and used backpropagation learning to
design an ANN model. They collected learning data by simulating various building
conditions and predicting the room’s air temperature. The results of the study demonstrate
the effectiveness of the optimized ANN model. In a variety of techniques, artificial neural
networks (ANNs) have been employed in building energy control [125].
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Reference [127] presents a comprehensive overview of the use of artificial neural
networks (ANNs) in building energy analysis (BEA). The study includes three decades of
research, concentrating on various domains such as water heating and cooling systems,
HVAC system modeling, heating and cooling load prediction, indoor air temperature
prediction, and building energy consumption prediction. The majority of existing studies
have focused on predicting the interior air temperature and building energy use for a
detailed understanding of the concept.

Reinforcement Learning (RL)

Reinforcement learning (RL) is a type of machine learning, as shown in Figure 13, that
focuses on solving control or sequential decision-making problems [128]. Contrary to unsu-
pervised learning, which uses unlabeled data without feedback, and supervised learning,
where the agent immediately receives an input on how accurate its predictions were, RL
falls in the middle since it receives delayed feedback. The concept of reinforcement learning
is based on the learner or agent, which learns to map situations to actions to maximize a
delayed reward signal. It does not require a teacher to provide explicit instructions, but
instead makes decisions though trial and error, recognizing the rewards obtained from the
environment it interacts with [129].
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Reference [131] proposes a reinforcement learning model for the energy-efficient con-
trol of thermal comfort in a multi-zone residential HVAC, improving comfort prediction
and reducing energy consumption. Also, [132] investigates the application of deep rein-
forcement learning (DRL) to optimize building HVAC systems and reduce energy costs
while maintaining room temperature. The simulations demonstrate the effectiveness of the
DRL compared to traditional strategies.

Transfer Learning (TL)

Transfer learning is a subset of machine learning. The fundamental concept behind
transfer learning is to apply previously learned knowledge from one task to improve the
performance in another task that shares similarities.

TL is used in the building sector for two mean reasons: prediction and occupancy
detection and activity recognition [133]. Using transfer learning for HVAC control in
buildings has several advantages, including better performance [134,135], the ability to
transfer knowledge from one building to another with minimal effort [136,137], and a
reduced training time [138]. The use of transfer learning in HVAC control for buildings
has been studied in a few papers; in [139], transfer learning was applied to environmental
sensor data to predict the occupancy status in an educational building. The methodology
employed in this study included the use of two deep learning models: a staked long
short-term memory (LSTM) model and a sequential deep model. Then, the authors applied
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transfer learning on top of them. In terms of accuracy and outcomes, the stacked LSTM
model combined with the transfer learning framework predicted the occupancy status
with the best accuracy. The findings demonstrated the usefulness of transfer learning
for occupancy prediction modeling, especially when limited historical training data are
available. In [140], the authors examined the challenge of HVAC load forecasting with
limited available data. In order to solve this problem, they presented a combination of
simulation software and the transfer learning approach. Their research shows that this
novel methodology surpasses traditional load forecasting approaches by a remarkable 10%
in accuracy.

4. Discussion

In the dynamic field of building management systems, the deployment of sophisticated
control techniques plays a pivotal role in optimizing operational efficiency and enhancing
occupant comfort. Among these techniques are conventional controls, like proportional–
integral–derivative (PID) controllers; advanced controls, like model predictive control
(MPC); intelligent controls, like fuzzy logic; and machine learning (ML), and each one is
distinguished by its unique capabilities and applications.

PID controllers have been widely utilized in building management due to their effi-
ciency in linear systems. They are known for their simplicity and consistency. Because of
their uncomplicated approach to control, they are a popular choice for simpler settings.
However, they have limitations in complicated, non-linear systems and require manual
tuning, which can be time-consuming and requires technical competence [141].

Differently, model predictive control (MPC) is a sophisticated solution, excelling
in scenarios characterized by non-linear dynamics and strict regulatory constraints. In
contrast to the traditional proportional–integral–derivative (PID) system, which operates
on a simpler feedback loop paradigm and is esteemed for its ease of implementation and
robustness in stable environments, MPC adopts a forward-looking approach. It employs
predictive models to anticipate future system states, demonstrating remarkable skill in
managing non-linearities and constraints, which are achievements that PID control does not
achieve as effectively [142]. MPC marks a significant advancement in building management
systems with its ability to forecast the future states of a system using a comprehensive
system model. It excels at managing complex, dynamic systems by minimizing a specified
cost function and considering multiple constraints and disturbances. MPC is particularly
effective in scenarios requiring predictive adjustments and precise control, outperforming
traditional methods like PID in energy efficiency and adaptability. Nevertheless, its high
processing demand and implementation complexity present challenges, particularly in
real-time applications [143].

Since each control method has its advantages and disadvantages, it is crucial to
evaluate the performance of control algorithms rigorously. This evaluation must specify
the parameters and comparative measurements used. Typically, researchers compare the
performance of their purposed controllers with existing ones, using one or two performance
measures, as mentioned above. These measures help to determine the superiority or
effectiveness of one method over another based on concrete performance criteria that
are relevant to the specific field of application [144]. The performance criteria include
the following:

• Load management;
• Efficiency;
• Error reduction;
• Transient responsiveness;
• Decision variable management;
• Operational efficiency;
• Set-point regulation;
• Operational stability;
• Environmental quality;
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• Computational efficiency.

These measures help to determine the superiority or effectiveness of one method over
another based on concrete performance criteria relevant to the specific field of applica-
tion [145].

Reference [146] explores the effectiveness of model predictive control (MPC) strategies
in managing building temperature control in multi-zone environments. It compares the
performance of decentralized, distributed, and centralized MPCs with conventional on/off
and P/PI controllers. The study finds that conventional controllers, such as PI, operate
independently for each zone and do not consider the thermal interaction between adjacent
zones, leading to lower comfort levels. Decentralized MPC offers slight improvements by
optimizing transition phases between occupied and non-occupied periods but does not
fully integrate thermal coupling into its model. Centralized and distributed MPC methods
significantly improve thermal comfort and reduce energy consumption by 36.7% and 13.4%,
respectively. Distributed MPC is particularly advantageous for large systems due to its
lower computational demand and efficient one-step communication algorithm.

In low-energy residential structures, reference [147] investigates how model-based
predictive control (MPC) may be used to optimize supply fluid temperature for water-based
underfloor heating. The goal is to use numerical optimization to keep interior temperatures
within a given comfort range by projecting future heat demand. A simple two-node model
and a comprehensive numerical control volume model are the two models used in the
study. Similar to the more sophisticated model, the simpler model delivers good accuracy.
In a single room with precise heat demand prediction, the control method’s efficacy is
evaluated. The findings demonstrate that, especially when periods are set at two hours, the
optimal supply fluid temperature Is reasonably stable.

In buildings with variable air volume (VAV) systems, reference [148] focuses on en-
hancing the indoor air quality (IAQ) and temperature management—achievements that
are not possible with conventional ventilation control techniques. In order to regulate
the temperature and ventilation in various zones of a building, this study proposes a
Multiple Input Multiple Output (MIMO) controller that is used in conjunction with the
Model predictive control (MPC) method. This controller is made with respect to ventilation
standards and adheres to the ventilation rate process, as outlined in ASHRAE 62.1. Simul-
taneous temperature and ventilation management depends on the MPC system’s capacity
to regulate input and output constraints.

The authors of [149] focus on harnessing solar energy in residential buildings using
predictive control to manage a radiant floor heating system and a solar heat pump for
thermal storage. Simplified models are essential for optimizing these systems. The results
show that model-based predictive control can effectively regulate heating in solar-rich
environments and that supervisory control significantly improves solar system perfor-
mance. The research highlights the potential for integrating solar energy into home energy
management and suggests avenues for further exploration.

A new control system for HVAC units isIIed in [150] using support vector regression
(SVR) to build a dynamic model, which is then used in a model predictive controller (MPC).
This approach has been experimentally shown to outperform a traditional neural fuzzy
controller, particularly in terms of reference tracking and steady-state error reduction. When
using a neural fuzzy controller, the steady-state errors for room temperature and humidity
were 0.2 ◦C and 1.5%, respectively. In contrast, the SVR-based MPC controller reduced
these errors to 0.09 ◦C and 0.4%, representing improvements in accuracy of around 100%
and 400%. The research also highlights the advantages of SVR for the accurate modeling of
non-linear systems and the effectiveness of MPC in operational control. This comparison
highlights the superior accuracy and efficiency of an SVR-based MPC system compared to
the fuzzy neural method, representing a significant advance in HVAC control techniques
for home energy management and suggesting avenues for further exploration.

In the context of HVAC systems, reference [151] compares data-driven model predic-
tive control (MPC) with conventional (two-position) on/off control. Specifically, it looks
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at how to manage the energy usage of a single-stage heat pump air conditioner. The
study uses the BRITE (Berkeley Retrofitted and Inexpensive HVAC Testbed for Energy
Efficiency) platform to operate an air conditioner in a computer lab and record the tem-
perature and energy consumption. The learning-based MPC system implemented in this
study performed significantly better than two-position control, with a 30–70% reduction in
energy consumption. This performance is attributed to the MPC system’s ability to adapt to
different occupancy levels and effectively manage the air conditioner’s transient and stable
power consumption. The study highlights the MPC’s effectiveness in conserving energy
and maintaining comfortable ambient temperatures by dynamically adjusting cooling
based on the estimated occupancy and by taking into account the heat pump’s electrical
behavior. This approach enables more nuanced and energy-efficient operation than the
simpler on/off control method.

With a focus on model predictive control (MPC), reinforcement learning (RL), and a hy-
brid technique called reinforced model predictive control (RL-MPC), an article titled “Com-
parison of Optimal Control Techniques for Building Energy Management” investigates
the efficacy of various control systems in building energy management. Reference [152]
shows that MPC typically performs better than other approaches when using the Building
Optimization Testing (BOPTEST) framework, especially when the prediction horizon is
closely aligned with the building’s time constant. In realistic architectural contexts, rein-
forcement learning (RL), especially in its model-free version, performs poorly, making it
difficult to sustain comfort levels and falling short of MPC. The study found that, while RL
has difficulties in controlling the temperatures of buildings directly, hybrid strategies like
RL-MPC, which combine MPC with machine learning methods, have promise for efficient
energy management.

The application of fuzzy logic controllers in HVAC systems is covered in refer-
ence [153], along with a comparison between them and conventional PID controllers.
It was discovered that FLCs had fewer supply air temperature variations and superior
integral control quality indicators (IAE, ISE, ITAE, and ITSE) by at least 27.4%. An average
of 36% less daily mean square error (MSE) was observed, which improved passenger
comfort and likely resulted in lower energy use. Energy usage was 12.7% less than that
with an untuned PID.

To this end, this section concludes that advanced control methods, such as model pre-
dictive control, are the most widely used of the alternative approaches in combination with
AI, although they present certain challenges, particularly with regard to their complexity.

However, connecting Internet of Things (IoT) technologies to building management
systems, alongside improved control approaches, enables the development of intelligent,
more efficient, and responsive buildings. The integration of IoT technology with advanced
control strategies will revolutionize the field of building automation, presenting promising
prospects for innovation and improvements in energy efficiency, system reliability, and
occupant satisfaction.

5. Hardware Implementation

Smart homes, as presented in Figure 14, automate and improve various aspects of
our living environment, such as energy management, thermal comfort, and security [154].
They achieve this by integrating a sophisticated network of devices connected via the
Internet of Things (IoT) [155]. The equipment in these homes can communicate with
each other, creating a synchronized network, and can also be remotely controlled by
occupants via digital interfaces, such as mobile apps, thanks to a number of connection
techniques, including WIFI and Bluetooth, for example [154]. The aim of smart homes is
to increase energy efficiency, comfort, and safety for occupants. However, Domotics, and
IoT technology are transforming the way we live, creating smarter homes and improving
comfort; thus, integrating embedded systems with IoT has promising commercial potential,
but the challenge is to balance energy consumption and system efficiency while ensuring
user comfort during operation [156].
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The concept of the Internet of Things (IOT) enhances home automation management
by combining automation, computing, and communication technologies, enabling the
interconnection and real-time control of physical devices, thus improving the quality of
comfort, safety, and well-being within the residential environment.

In [157], the authors focus on a comprehensive implementation strategy for an Internet
of Things (IoT) smart home system that exploits ZigBee/GPS technology. The paper
focuses on why ZigBee wireless communication is suitable for smart home systems and on
architectural plants for software and hardware components.

In [158], the authors present “ZiWi”, a reasonably priced Home Automation System
(HAS) that makes use of the IOT fog computing paradigm to improve communication
between ZigBee and WiFi devices in smart homes. With an emphasis on effective, seamless
communication between WiFi and ZigBee technologies in the crowded 2.4 GHz band,
ZiWi makes use of the current developments in wireless protocols and cloud services. The
system’s design makes use of local gateways that are installed on embedded devices to
handle user interface, communications, and data storage; WiFi is used for actuators, while
the preliminary results show ZiWi’s effectiveness in reducing latency compared with the
other cloud services evaluated, and they highlight the need to mitigate the ZigBee–WiFi
cross-interference and consider the impact of encryption mechanisms on node energy
consumption. In addition, ZiWi technology facilitates system scalability, provides a user-
friendly GUI via OpenHAB, and uses MQTT to solve compatibility issues associated with
different protocols and standards in the home automation field, while also highlighting the
importance of using the cloud computation approach to provide real-time or near-real-time
responses and enhance security. Reference [159] takes an in-depth look at the complex IoT
landscape, focusing on the dilemma of networking technologies such as ZigBee and Z-
Wave in smart home deployments. It highlights the need to create a fair, cost-effective, and
user-friendly protocol while resolving the difficulties of interoperability between various
devices and platforms. As a part of the study into the development of future self-sufficient,
energy-intensive homes, a comprehensive cloud-centric IoT framework is suggested to
bridge the gap between existing smart home applications and the IoT environment [159].
Furthermore, the LoRa Building and Energy Management System (LoBEMS), an innovative
energy management platform optimized for energy consumption, is presented in [160].
Rooted in an IOT component, including system and platform integration trends, it aims to
merge several factors. The LoBEMS can be easily integrated into any building structure,
including those with existing solutions. It controls large energy consumers, mainly cooling
and heating systems. The implementation of the LoBEMS in a pre-school resulted in
substantial energy savings of 20%. There are several other protocols for communication
that are available, including Bluetooth [161], UWB [162], wireless USB [163], and Wi-
Fi [164,165].
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Moreover, heating, ventilation, and air-conditioning (HVAC) systems in smart build-
ings will be controlled by a predictive control model (MPC) using an Internet of Things
(IOT)-based architecture. In [166], the proposed system includes smart sensors and ac-
tuators, an interconnected gateway, a control unit, a database server, and user-friendly
dashboards, all of which are presented in Figure 15 with the aim of maximizing both indoor
thermal comfort and energy consumption. This allows the system to be configured remotely
and monitors environmental indicators in real time. A notable aspect is its holistic approach
to HVAC management, which integrates IOT components for practical deployment while
also including the issue of MPC optimization for system control.
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The results were higher than those of conventional thermostats, delivering significant
energy savings while maintaining indoor comfort in the presence of various disturbances.
However, its limitations include the absence of a deep cost analysis and data uncertainty.
In a similar view, reference [167] aims to examine the difficulties and constraints involved
in using model predictive control to control energy consumption in buildings, especially
when taking into account the diverse characteristics of buildings and the considerable time
and costs involved in developing control-oriented physical models.

This study presents a new method that combines data-driven predictive control (DPC)
with the Internet of Things (IOT), thus avoiding the need for detailed physical modeling.
By creating a cloud-based Supervisory Control and Data Acquisition (SCADA) building
system framework, the research investigation aims to control a building’s energy under a
four-tier building energy IOT architecture.

6. Conclusions

While renewable energies are sure to have a great impact by reducing greenhouse gas
emissions, it is far from easy to fully switch from conventional sources of energy due to
the various challenges still facing renewable energy utilization, especially in the residential
sector. This is due, on the one hand, to the fact that it accounts for a significant proportion
of energy consumption and, on the other hand, to the possibility of integrating several
renewable sources, namely photovoltaics, micro wind turbines, and geothermal energy,
among others. As a result, this sector must undergo a major transformation, as it is the
second largest consumer of energy in Morocco. However, the implementation of several
smart technology techniques using renewable energy requires complex computations.
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Moreover, accurate models of HVAC systems, for example, are not completely accurate,
and might be unpredictable when facing dynamic real-life settings.

This study consisted of a comprehensive analysis of 167 research publications on
control strategies and techniques in the building sector. The focus was on techniques for
reducing energy consumption while maintaining thermal comfort. We examined the regu-
lations and standards governing this industry, as well as the incorporation of the Internet
of Things into the hardware implementation as a solution. A comprehensive analysis of
different control strategies was carried out. Specifically, it was discovered that sophisticated
control systems, such as MPC, were the most powerful because they could effectively
include an accurate mathematical model of the controlled region. This integration enables
the creation of a robust and flexible control system facilitated by an objective function that
precisely specifies the parameters that need to be reduced or maximized, particularly when
combined with artificial intelligence. This combination not only facilitates the accurate
forecasting of energy requirements, but also enables more intelligent energy management,
both in terms of production and consumption. In addition, this approach contributes to
the design of intelligent buildings that meet all current and future requirements, marking
a significant step towards improving the energy performance of buildings. Our future
objective is to use the MPC predictive control technique, coupled with an artificial intelli-
gence model, to regulate HVAC systems. This would effectively reduce energy usage and
maintain optimal thermal comfort.
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MIQP Mixed Integer Quadratic Programming
AI Artificial Intelligence
ANN Artificial Neural Network
FL Fuzzy Logic
HVAC Heating, Ventilation, and Air-Conditioning
IOT Internet of Things
ISO International Organization for Standardization
LSTM Long Short-Term Memory
MILP Mixed-Integer Linear Programming
MIMO Multiple-Input Multiple-Output
MPC Model Predictive Control
PID Proportional Integral Derivative
PMV Predicted Mean Vote
PPD Predicted Percentage of Dissatisfied
RL Reinforcement Learning
TL Transfer Learning
TR Thermal Regulations
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