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Abstract: The indiscriminate use of surface water has heightened the demand for groundwater
supplies. Therefore, it is critical to locate potential groundwater sources to develop alternative
water resources. Groundwater detection is tremendously valuable, as is sustainable groundwater
management. Mersin, in southern Türkiye, is expected to confront drought shortly due to increased
population, industry, and global climate change. The groundwater potential zones of Mersin were
determined in this study by GIS-based AHP, VIKOR, and TOPSIS methods. Fifteen parameters
were used for this goal. The study area was separated into five categories. The results show that
the study area can be divided into “Very High” zones (4.98%, 5.94%, 7.96%), followed by “High”
zones (10.89%, 10.32%, 16.50%), “Moderate” zones (60.68%, 52.41%, 51.56%), “Low” zones (21.28%,
28.53%, 20.90%), and “Very Low” zones (2.18%, 2.80%, 3.07%) in turn. Data from 60 wells were
used to validate potential groundwater resources. The ROC-AUC technique was utilized for this.
It was seen that the performance of the VIKOR model is better than that of the AHP and TOPSIS
(76.5%). The findings demonstrated that the methods and parameters used are reliable for sustainable
groundwater management. We believe that the study will also help decision makers for this purpose.

Keywords: AHP; GIS; groundwater potential zone; sustainable groundwater management;
TOPSIS; VIKOR

1. Introduction

Water is the most fundamental source of life for all living things. It is well known
that from the past to the present, the overuse of water, a scarce and restricted resource, has
caused a decline in surface water [1]. During excessive and uncontrolled use, organic and
heavy metal pollution have accumulated in surface waters and caused the quality of the
water to decrease [2,3]. At the same time, global issues such as climate change and drought
have severely impacted or even destroyed surface water [4]. For all of these reasons, the
demand for groundwater has increased [5]. Groundwater is the leading freshwater resource
for domestic and agricultural use [6,7]. Groundwater is the principal water resource for
agriculture, industry, and domestic uses, particularly in drylands where annual rainfall is
low [8]. Agricultural activities use 42% of the total groundwater worldwide [9]. Groundwater
accounts for approximately 50% of irrigation activities in India, one of the world’s largest
water consumers. In China, groundwater is used to irrigate around 9 million hectares (ha) of
land [10]. The Ogallala and High Plains Aquifers, two of the major groundwater aquifers in the
United States, are extensively exploited for irrigation. Groundwater constitutes approximately
23% of the total water resources in the United States, with 68.4% being used for irrigation [8].
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However, in Türkiye, agriculture uses 77% of the 58.95 billion cubic meters of water, while
drinking water and industries consume 23% [11].

Groundwater is a dynamic and renewable natural resource that provides consistent
economic growth and drinking water in urban and rural areas [12]. In this setting, in-
vestigations to determine existing groundwater assets and potential zones are of critical
importance [13]. However, detecting groundwater is more complicated than recognizing
surface water. There are standard and dependable methods for determining groundwater
and other ground information, such as test drilling and stratigraphic analysis [7]. However,
the methods described are costly, time-consuming, and rely on human resources [14]. The
methods utilized today include the analytical hierarchy process (AHP), Vlse Kriterijumska
Optimizacija Kompromisno Resenje (VIKOR), and the Technique for Order Preference
by Similarity to Ideal Solution (TOPSIS), which are based on the geographic information
system (GIS) technique [15–27].

Different parameters are preferred in the various methods used to determine potential
groundwater resources, and activities are conducted accordingly. Hence, the parameters
employed in determining groundwater potential resources are essential. Land use/land
cover (LuLc), soil, geology, slope, lineament, drainage density, TWI, SPI, and STI are
parameters frequently used for this purpose [28,29]. However, depending on the study
area, the parameters utilized to identify potential groundwater may differ (Table 1).

Table 1. Literature review of the parameters used to determine a groundwater potential zone (GWPZ).

Reference
Parameters

G GM LI S SL RF DD LD LuLc WTD RR TWI SW DEM VC

[30] • • • • • • • •
[31] • • • • • • • • • •
[32] • • • • • •
[33] • • • • • • •
[34] • • • • • • • • •
[35] • • • • •
[12] • • • • • • • •
[36] • • • • • • • •
[37] • • • • • • • •
[38] • • • • • • •
[39] • • • • •
[40] • • • • • • • •
[41] • • • • • • •

G = geology; GM = geomorphology; LI = lithology; S = soil texture; SL = slope; RF = rainfall; DD = drainage
density; LD = lineament density; LuLc = land use/land cover; WTD = water table depth; RR = recharge rate;
TWI = topographic wetness index; SW = surface water body; DEM = digital elevation model; VC = vegeta-
tion cover.

Groundwater is critically important, especially in arid or drought-prone areas, and
must be managed as effectively as possible once determined. Mersin is threatened by aridity
due to its geography, drought, and global climate change. Groundwater is extremely vital
for Mersin, which is located in the Mediterranean basin, which is a semi-arid climate zone.
Mersin is also a significant city in Türkiye, whose agricultural activity takes up around
20.91% of its surface area [42]. Surface water and groundwater are both known to be
employed in agricultural activities, and these activities strain the limited resources of water.
The increasing population also exacerbates the current unfavorable situation. These are the
reasons why it was selected as the study area and the application was generated here.

The potential groundwater detection zone of Mersin was determined using the GIS-
based AHP, VIKOR, and TOPSIS methods with fifteen parameters. Water resources, rainfall,
irrigated farming areas, plains, lineament density, geology, slope, soil, land use/land cover
(LuLc), drainage density, water erosion, topographic wetness index (TWI), topographic
roughness index (TRI), stream power index (SPI), and sediment transport index (STI) are
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the parameters (Table 2). This study was conducted due to the absence of a large-scale
investigation to define the GWPZ of Mersin. Furthermore, the location of Mersin and its
characteristics made it the subject of this investigation. All the same, the study is important
for sustainable groundwater management.

Table 2. The parameters used to determine groundwater potential zones (GWPZs).

Parameters Scale/Resolution → Final Resolution Data Type Source

Water resources 1:100,000 → 30 m Vector RTMAF [43]
Rainfall 30 arc second → 30 m Raster WorldClim [44]
Irrigated farming areas 1:100,000 → 30 m Vector RTMAF [43]
Plains 1:100,000 → 30 m Vector RTMEUCC [45]
Lineament density 30 m Raster Production
Geology 1/100,000 → 30 m Vector USGS [46]
Slope 30 m Raster Production from DEM
Soil 1/100,000 → 30 m Raster RTGDMRE [45]
LuLc 1/100,000 → 30 m Raster CLMS [47]
Drainage density 30 m Raster Production
Water erosion 1:100,000 → 30 m Vector RTMAF [43]
TWI 30 m Raster Production
TRI 30 m Raster Production
SPI 30 m Raster Production
STI 30 m Raster Production

CLMS: Copernicus Land Monitoring Service; USGS: United States Geological Survey; RTMAF: Republic of Türkiye
Ministry of Agriculture and Forestry; RTGDMRE: Republic of Türkiye General Directorate of Mineral Research
and Exploration; RTMEUCC: Republic of Türkiye Ministry of Environment, Urbanization, and Climate ttChange.

2. Study Area

The study area is Mersin, which is located in southern Türkiye between 36 and
37◦ North latitudes and 33 and 35◦ East longitudes, where the Mediterranean climate
prevails (Figure 1). It covers 15,853 km2 and has a population of roughly 2 million [48].
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Given that Mersin is a coastal city, the altitude in the city center and coastal district
ranges between 0 and 10 m. The altitude reached 3500 m in the Taurus Mountains, the
highest point in Mersin. Aside from coastal areas, mountainous regions are widespread in
the study area [49]. Although the area’s land surface varies, it is composed of limestone,
sandstone, alluvium, and dolomite. Animal husbandry is the principal source of income
in hilly places with steep slopes, and active agriculture takes place in the plains and low-
sloped areas. Mersin is a significant city in Türkiye, whose agricultural activity takes up
around 20.91% of its surface area [42]. The annual temperature is 27.1 ◦C in the summer
period (June, July, and August) and 11.1 ◦C in the winter months (December, January,
and February) (General Directorate of Meteorology, 2023). The annual average rainfall
is 28.8 mm in the summer period and 344.3 mm in the winter months with the highest
precipitation, and the annual average rainfall is 613.2 mm [50]. The world average is
900 mm [51].

Mersin has been more urbanized as a result of rapid population growth, particularly
in the fifteen years preceding this one. Water use increases as the population grows, putting
pressure on the resource. Mersin, like the rest of Türkiye, is suffering from water scarcity.
Mersin was chosen as the study area based on its aforementioned features.

3. Materials and Methods

The methodology for the study is to determine the GWPZ using fifteen criteria.
Three different GIS-based methodologies (AHP, VIKOR, TOPSIS) were chosen for this
purpose (Figure 2). The AHP, VIKOR, and TOPSIS methods were applied sequentially.
Firstly, the parameters were defined. GWPZ detection is extremely important due to the
location and characteristics of the study area. The resolution of the parameters employed
has a direct impact on the accuracy of the detection process. For all these reasons, high-
resolution parameters were opted for, and analyses were conducted. Secondly, models were
constructed using the methods in ArcGIS 10.5 software, and finally, an accuracy analysis of
the created models was evaluated with the ArcSDM tool in ArcGIS.

3.1. Definition of the Thematic Layers
3.1.1. Topographical Data
Soil

The soil layer is the most significant and primary layer for the percolation of water [52].
The water penetration rate beneath the soil is proportional to the soil’s permeability and
water-holding capacity [53]. Therefore, it affects GWPZ detection investigations [31]. The
soil map was organized into eight classes (Figure 3a). The study occurred, respectively,
on 6.28% alluvial soil, 0.48% beach sand, dunes, and marsh soil, 0.28% halomorphic soil,
0.52% hydromorphic saline soil, 75.64% red podzolic soil, 4.95% terra rose soil, 1.24% terra
rose soil moderately sloping, and 10.61% volcanic and igneous rooks soil. Because of their
high water-holding capacity and clay content, alluvial and hydromorphic saline soil types
received the highest score of five. One point was given because detecting groundwater in
podzolic soils is challenging [7].

Geology

Groundwater formation and movement are influenced by many geological formations.
Besides that, geological formations play a role in determining GWPZs [34]. The geology
map was taken from USGS, and it was digitized. Sixteen classes were determined in total
(Figure 3b). In the middle of the study area, Neogene formations are common. It covers
9130 km2 (56.7%). In the west of the study area, the Precambrian–Paleozoic formations
cover 468 km2 (2.91%). This is critical for a GWPZ owing to its clayey structure. A value of
four was given to it. Sea and large lake formations are the most important for indicating
water potential, and they cover 25 km2 (0.15%). Hence, a value of five was assigned to
it. Another essential type of formation are undivided quaternary formations. They are
predominantly in the south of the study area and cover 1219 km2 (7.6%).



Sustainability 2024, 16, 2202 5 of 27
Sustainability 2024, 16, x FOR PEER REVIEW 5 of 29 
 

 
Figure 2. Flow chart of the methodology. 

3.1. Definition of the Thematic Layers 
3.1.1. Topographical Data 
Soil 

The soil layer is the most significant and primary layer for the percolation of water 
[52]. The water penetration rate beneath the soil is proportional to the soil’s permeability 
and water-holding capacity [53]. Therefore, it affects GWPZ detection investigations [31]. 

Figure 2. Flow chart of the methodology.



Sustainability 2024, 16, 2202 6 of 27

Sustainability 2024, 16, x FOR PEER REVIEW 6 of 29 
 

The soil map was organized into eight classes (Figure 3a). The study occurred, respec-
tively, on 6.28% alluvial soil, 0.48% beach sand, dunes, and marsh soil, 0.28% halomorphic 
soil, 0.52% hydromorphic saline soil, 75.64% red podzolic soil, 4.95% terra rose soil, 1.24% 
terra rose soil moderately sloping, and 10.61% volcanic and igneous rooks soil. Because of 
their high water-holding capacity and clay content, alluvial and hydromorphic saline soil 
types received the highest score of five. One point was given because detecting ground-
water in podzolic soils is challenging [7]. 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 3. (a) Soil, (b) geology, (c) TWI, (d) TRI, and (e) plains. Figure 3. (a) Soil, (b) geology, (c) TWI, (d) TRI, and (e) plains.

Topographic Wetness Index (TWI)

The TWI is essential in hydrological processes and flows [54]. It contributes to un-
covering dependable knowledge about flow formation and inflow. Accordingly, it is a
significant parameter in determining GWPZs. A high TWI supports a strong possibility of
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groundwater [55]. The TWI is calculated using Equation (1). The TWI map was created
with ArcGIS software using hydrology tools (Figure 3d).

TWI = As/tanβ (1)

where As is the cumulative area or flow accumulation and β represents the slope gradient.

Topographic Roughness Index (TRI)

The TRI is another parameter used effectively in GWPZ analyses [56]. It is also a
geomorphological parameter that affects the spatial distribution and number of hills and
valleys in the study area. The TRI affects groundwater potential. It plays a significant role
in the analysis, like the TWI. The TRI was calculated using Equation (2) (Figure 3e).

TRI =
√∣∣∣(max2 − min2

)∣∣∣ (2)

where max and min reflect the largest and smallest values of the height of each pixel.

Plains

There are many plains in Türkiye. The study area is 8.1% plains. Plains tend to
have fertile soils and abundant water resources. Plains are particularly well known for
their proximity to groundwater resources. The plain layer was downloaded to the ATLAS
application and digitized (Figure 3c). A single class was generated for the layer.

3.1.2. Elevation Data
Drainage Density

The drainage density is inversely proportional to the permeability, which affects the
inflow [57]. A low drainage density is a decisive parameter for more leakage [58]. In other
words, it is inversely related to lineament density. The drainage density map was generated
using the DEM with several spatial analyses (Equation (3)). The data were classified into
five categories (Figure 4a).

DD =
n

∑
i−1

Di/A (3)

where Di is the length of streams and A is the water area.

Lineament Density

Lineaments are parameters that indicate potential water resources and provide a
pathway for water [59]. The lineament density points out a permeant region [60]. Hence, it
plays a substantial role in determining GWPZs. The lineaments were construed with the
DEM. The Hillshade layer, which has different angular values, was created utilizing the
DEM. The layer was digitized, and the lineament density was produced using Equation (4).
The lineament density was organized into five classes on ArcGIS software with a density
process (Figure 4b).

LD =
n

∑
i−1

Li/A (4)

where Li represents the length of the ith lineament and A is the area.

Slope

Aside from determining GWPZs, the slope provides information on the surface water-
holding capacity [61]. It affects the rainfall rate and runoff accumulation [62]. Low-slope
regions tend to have high groundwater potential. The slope map was created utilizing the
DEM (Figure 4c). The slope data were grouped into five classes: 0–5.12◦, very high potential;
5.12–11.53◦, high potential; 11.53–18.59◦, good potential; 18.59–26.60◦, moderate potential;
26.60–36.86◦, low potential; and 36.86–81.74◦, very low potential. These different slope
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potentials made up, respectively, 7.01% (1125 km2), 6.34% (1019 km2), 6% (963 km2), 0.34%
(55 km2), 9.19% (1474 km2), 2.80% (450 km2), and 68.32% (10,969 km2) of the study area.
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3.1.3. Hydrological Data
Water Resources

Streams, rivers, water bodies, canals, dams, lakes, and ponds are water resources in
the study area. Water resources play a significant part in groundwater recharge [31].They
also indicate the potential presence of groundwater. It is essential to determine the current
groundwater level and how it is controlled [63]. The water resources in the study area were
obtained from TadPortal, digitized, and organized into seven classes (Figure 5a).

Rainfall

The annual average rainfall is used to determine potential groundwater regions and
is a significant parameter for this goal. Regions with low annual average rainfall are
prone to low groundwater potential. Mersin province rainfall data were obtained from
WorldClim, and Mersin’s rainfall showed a change of 450–950 mm when the rainfall data
were examined. It was especially noted that Anamur and southern Tarsus had the highest
levels of rainfall. The rainfall map was created in Mersin, which has an annual average
amount of rainfall of 613 mm. The map was organized into four classes (Figure 5b).
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Water Erosion

The process by which rainwater that cannot be absorbed by the soil is carried to
another place by a slope is called water erosion. There is a close relationship between heavy
rainfall and water erosion [64]. In addition, water erosion shows an alteration in soil type,
permeability, and land characteristics [65]. It is crucial in groundwater analysis. The water
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erosion data in the study were digitized from TadPortal with great effort, and the data were
grouped into four classes (Figure 5c).

Stream Power Index (SPI)

The SPI is a parameter that is determined by the abrasive power of water and sediment
and the water-bearing capacity and is therefore related to water erosion [66]. The SPI is a
significant parameter for determining GWPZs [67]. The SPI in the study was calculated
using Equation (5). The SPI map was generated (Figure 5d).

SPI = Astanβ (5)

Sediment Transport Index (STI)

The STI is a parameter used to survey the water-bearing capacity as it varies with
slope [68]. The STI is directly proportional to the abrasive power of water, as is the SPI. The
STI was computed using Equation (6). The STI map was created the same way as for the
other parameters (Figure 5e).

STI = (A s/22.13)0.6(sinβ/0.0896)1.3 (6)

where As is the cumulative area, and β is the slope gradient in Equations (5) and (6).

3.1.4. Auxiliary Data
Irrigated Farming Areas

Surface water or groundwater is generally utilized in irrigated farming areas [69]. The
irrigation application uses approximately 45.05 billion cubic meters of water in Türkiye [11],
and it is thought that this will increase in the future. It is known that groundwater is com-
monly used in agricultural activities these days [70]. Agricultural activities are executed in
nearly a quarter of the study area, and irrigated farming activities particularly stress water.
Determining groundwater as an alternative water resource is vital to preventing the disrup-
tion of agricultural activities. The irrigated farming area layer was obtained from TadPortal
and digitized. A single class was constructed, like for the plains layer (Figure 6a). This
parameter was used for control purposes rather than determining groundwater potential
zones since there is water use in these areas.
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Land Use/Land Cover (LuLc)

LuLc is a parameter that affects the percolation of water into the ground, according
to human activity [71]. The LuLc includes water flow, the percolation of water, and
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permeability [72]. The LuLc layer was obtained from the CLMS (Figure 6b). The layer
contains 35 classes.

3.2. AHP

The AHP is a method that uses a multicriteria decision if experts’ opinions are neces-
sary, and the method utilizes a pairwise comparison matrix and determining weights [73].
The AHP approach is utilized in a variety of applications, including optimal location analy-
sis; flood, landslide, and sinkhole risk assessments; demography analysis; and resource
estimation (natural or artificial). It also enables numerous analyses to be conducted in
different professional disciplines [15–17,73,74]. It is the appropriate method for solving
multicriteria problems [74,75]. The weights are determined by the significance levels of the
parameters in the AHP [76,77]. The significance levels and the weights of the parameters
were determined in the study using experts and the literature. Interviews were conducted
with three experts: two from the Republic of Türkiye General Directorate of State Hydraulic
Works (RTGDSHW) and one from the Mersin Water and Sewerage Administration General
Directorate (MWSGD). Thus, Table 6 was produced using the data from these interviews
and studies from the literature.

Some basic steps must be followed to implement the AHP. The first step is to define
the problem and construct a hierarchical structure. The most significant component in
decision making is the hierarchical structure, and identifying incorrect or missing structures
is indeed the biggest obstacle to decision making.

A pairwise comparison matrix is created after determining the parameters. In a
problem with n parameters, n(n−1)/2 comparisons are made, and a pairwise comparison
matrix of size n x n is generated. The 1–9 significance scale suggested by Saaty (1987) is
used to compare the parameters [78]. It is shown in Table 3.

Table 3. Values on the Saaty scale.

Less Important Equal
Important Intermediate Values

More Important

EI VHI VI MI MI VI VHI EI

1/9 1/7 1/5 1/3 1 2 4 6 8 3 5 7 9

EI: extremely important; VHI: very highly important; VI: very important; and MI: moderately important.

The normalized weights are found after the pairwise comparison matrix has been
constructed. They are determined by taking the geometric mean of these parameters
(Equation (7)).

Wn =
Gm

∑n
i−1 Gm

(7)

where W is the weight vector, and Gm is the geometric mean.
A consistency analysis is carried out using the weighted pairwise comparison matrix

to ensure the accuracy of the AHP results. The analysis employs the consistency index
(CI) (Equation (8)) and the consistency ratio (CR) (Equation (9)). The comparison matrix is
allowed if the CR is 0.10 or less; otherwise, the comparison matrix will need to be updated.
In the study, the CR was calculated to be 0.06 (Table 4).

λmax = 1/n
n

∑
i−1

(A w)i/wi (8)

CI = (λmax − n)/(n − 1) (9)

CR = CI/RI (10)

In Equations (9) and (10), λmax is the maximum eigenvalue of the matrix, and n is the
size of the matrix. In Equation (4), RI is a random index; the RI values are presented in
Table 5.
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Table 4. Pairwise comparison decision matrix (λmax), consistency index (CI), random consistency
index (RI), and consistency ratio (CR).

GWPZ
λmax CI RI CR

16.252 0.089 1.59 0.056

Table 5. Random index values.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.51 1.52 1.54 1.56 1.58 1.59

The ultimate step after determining the parameters is to generate a GWPZ map with a
combination of parameters (Table 6). The WOT was utilized in this phase. The goal was to
create a GWPZ suitability index by taking the sum of the parameters (Table 7). The index
is calculated by multiplying the parameter weight values by the parameter sub-scores
(Equation (11)).

GWPZi =
n

∑
i−1

wiri (11)

where n represents the number of parameters, wi is the weight of the ith parameter, and
ri is the parameter rating.

Table 6. Pairwise comparison matrices and main weights for the identification of groundwater
potential zones.

Parameters A B C D E F G H I J K L M N O Wi

Water Resources (A) 1 0.177
Rainfall (B) 1 1 0.175
Irrigated Farming
Areas (C) 1/2 1/2 1 0.094

Plains (D) 1/4 1/4 1/3 1 0.065
Drainage Density (E) 1/5 1/5 1/4 1/2 1 0.054
Lineament Density (F) 1/5 1/5 1/4 1/2 1 1 0.052
Geology (G) 1/3 1/3 2 3 2 2 1 0.088
Slope (H) 1/4 1/4 1/2 1/2 1/2 1/2 1/2 1 0.043
Soil (I) 1/3 1/3 2 3 3 3 1 2 1 0.091
TWI (J) 1/5 1/5 1/4 1/3 1/3 1/3 1/3 1/2 1/3 1 0.023
SPI (K) 1/5 1/5 1/3 1/3 1/3 1/3 1/3 1/2 1/3 1 1 0.024
STI (L) 1/5 1/5 1/3 1/3 1/3 1/2 1/3 1/2 1/2 1 1 1 0.026
LuLc (M) 1/7 1/6 1/3 1/4 1/2 1/2 1/2 1/2 1/2 2 2 2 1 0.036
Water Erosion (N) 1/5 1/5 1/3 1/3 1/3 1/3 1/4 1/2 1/4 2 2 1 1/2 1 0.029
TRI (O) 1/5 1/5 1/3 1/3 1/3 1/3 1/3 1/2 1/3 1 1 1 1/2 1/2 1 0.024

Table 7. Weightings and values of the parameters.

Parameters Sub-Classes Value

Water Resources

Stream 5
River 5
Water bodies 5
Canal 4
Dam 4
Lake 5
Pond 3
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Table 7. Cont.

Parameters Sub-Classes Value

Rainfall

Very high 5
High 4
Moderate 3
Low 2
Very low 1

Irrigated Farming Areas Very high 5

Plains Very high 5

Drainage Density

Very high 1
High 2
Moderate 3
Low 4
Very low 5

Lineament Density

Very high 5
High 4
Moderate 3
Low 2
Very low 1

Geology

Cenozoic–Mesozoic intrusive rocks 1
Devonian 2
Jurassic 3
Cretaceous 2
Cretaceous–Jurassic 2
Mesozoic 1
Mesozoic–Paleozoic 1
Neogene 2
Permian 2
Paleogene 2
Precambrian–Paleozoic 4
Upper Paleozoic 3
Undivided Quaternary 4
Sea and large lakes 5
Triassic 2
Unmapped Area 1

Slope

0–1 5
1–2 4
2–3 3
3–4 2
4–5 2
>5 1

Soil

Alluvial soil 5
Beach sand, dunes, and marsh soil 4
Halomorphic soil 3
Hydromorphic saline soil 5
Red podzolic soil 1
Terra rose soil 2
Moderately sloping terra rose soil 2
Volcanic and igneous rook soil 1

TWI

Very high 5
High 4
Moderate 3
Low 2
Very low 1
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Table 7. Cont.

Parameters Sub-Classes Value

SPI

Very high 5
High 4
Moderate 3
Low 2
Very low 1

STI

Very high 5
High 4
Moderate 3
Low 2
Very low 1

Water Erosion

Very high 2
High 3
Moderate 4
Never or very low 5

TRI

Very high 5
High 4
Moderate 3
Low 2
Very low 1

LuLc

Airports 1
Bare rocks 1
Beaches, dunes, sands 4
Broad-leaved forest 3
Burnt areas 1
Coastal lagoons 5
Complex cultivation patterns 2
Coniferous forest 3
Continuous urban fabric 1
Fruit trees and berry plantations 3
Green urban areas 1
Inland marshes 5
Land principally occupied by agriculture, with significant
areas of natural vegetation 5

LuLc

Mineral extraction sites 1
Mixed forest 2
Natural grasslan8ds 3
Non-irrigated arable land 1
Pastures 4
Permanently irrigated land 5
Port areas 5
Rice fields 5
Road and rail networks and associated land 1
Salt marshes 2
Sclerophyllous vegetation 3
Sea and ocean 4
Sparsely vegetated areas 2
Transitional woodland-shrub 3
Vineyards 2
Water bodies 5
Water courses 5

The AHP technique was primarily used to calculate the GWPZs, which is the study’s
ultimate goal. Weights were assigned to these fifteen layers using the AHP method.
The weighted overlay technique (WOT) was used for the layers once the weights were
assigned [7,13,79,80]. Thus, the GWPZs were computed using Equation (11).
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3.3. VIKOR

The VIKOR method is a multi-criteria decision-making (MCDM) method developed
by Duckstein and Opricovic in 1980. The VIKOR approach is used to identify alternative
solutions. The relative distance between the ideal best and worst solutions is calculated,
and the parameters are weighted accordingly [81]. This method, which can be applied
in a variety of settings and allows for successful analyses and predictions, is also gaining
popularity due to its consistent findings in determining groundwater zones [23]. Due
to these characteristics, it was chosen as one of the approaches to GWPZ detection for
the study.

To calculate the VIKOR, the first step is to generate a decision matrix (Equation (12)).
In the following processing step, a normalized decision matrix is created (Table 8). The best
and worst ideal solutions are calculated (Equations (13) and (14)). Values are calculated to
rank all the solutions (Equations (15) and (16)). The final calculation is executed during the
last processing step. (Equation (17)). Thus, the solutions are sorted, and their values are
obtained (Tables 9 and 10).

fij = xij/

√√√√ m

∑
j=1

xij
2(i = 1, 2, . . . , m; j = 1, 2, . . . , n) (12)

where fij represents the normalized value of x.

fi
+ =


max fij

i
min fij

i

 (13)

fi
− =


min fij

i
max fij

i

 (14)

where fi
+ is the distance between the best ideal solutions, and fi

− is the distance between
the worst ideal solutions.

Sj =
n

∑
i=1

[
wi

(
fi
∗ − fij

)(
fi
∗ − fi

−)
]

(15)

Rj = maki =

[
wi

(
fi
∗ − fij

)(
fi
∗ − fi

−)
]

(16)

where wi represents the weight of the ith parameter, and Sj and Rj represent the ranks of
the parameters.

Qj = v
[
(Sj−S+)
(S−−S+)

]
+ (1 − v)

[
(Rj−R+)
(R−−R+)

]
S+ = min

[
(S j

)
I j = 1, 2, . . . , m

]
S− = mak

[
(S j

)
Ij = 1, 2, . . . , m

]
R+ = min

[
(R j

)
I j = 1, 2, . . . , m

]
R− = mak

[
(R j

)
I j = 1, 2, . . . , m

]
(17)

where v is the subjectively defined weight, which can range between 0 and 1. In the study,
0.5 was used for each parameter.
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Table 8. Normalized decision matrix.

A B C D E F G H I J K L M N O

A 0.795 0.795 0.795 0.619 0.619 0.530 0.442 0.354 0.265 0.265 0.265 0.177 0.177 0.088 0.088
B 0.398 0.398 0.354 0.309 0.309 0.265 0.221 0.177 0.133 0.133 0.133 0.088 0.088 0.044 0.044
C 0.265 0.265 0.236 0.206 0.206 0.177 0.147 0.118 0.088 0.088 0.088 0.059 0.059 0.029 0.029
D 0.199 0.199 0.177 0.155 0.155 0.133 0.110 0.088 0.066 0.066 0.066 0.044 0.044 0.022 0.022
E 0.159 0.159 0.141 0.124 0.124 0.106 0.088 0.071 0.053 0.053 0.053 0.035 0.035 0.018 0.018
F 0.133 0.133 0.118 0.103 0.103 0.088 0.074 0.059 0.044 0.044 0.044 0.029 0.029 0.015 0.015
G 0.114 0.114 0.101 0.088 0.088 0.076 0.063 0.051 0.038 0.038 0.038 0.025 0.025 0.013 0.013
H 0.099 0.099 0.088 0.077 0.077 0.066 0.055 0.044 0.033 0.033 0.033 0.022 0.022 0.011 0.011
I 0.088 0.088 0.079 0.069 0.069 0.059 0.049 0.039 0.029 0.029 0.029 0.020 0.020 0.010 0.010
J 0.080 0.080 0.071 0.062 0.062 0.053 0.044 0.035 0.027 0.027 0.027 0.018 0.018 0.009 0.009
K 0.072 0.072 0.064 0.056 0.056 0.048 0.040 0.032 0.024 0.024 0.024 0.016 0.016 0.008 0.008
L 0.066 0.066 0.059 0.052 0.052 0.044 0.037 0.029 0.022 0.022 0.022 0.015 0.015 0.007 0.007
M 0.061 0.061 0.054 0.048 0.048 0.041 0.034 0.027 0.020 0.020 0.020 0.014 0.014 0.007 0.007
N 0.057 0.057 0.051 0.044 0.044 0.038 0.032 0.025 0.019 0.019 0.019 0.013 0.013 0.006 0.006
O 0.053 0.053 0.047 0.041 0.041 0.035 0.029 0.024 0.018 0.018 0.018 0.012 0.012 0.006 0.006

Table 9. Alternative solutions.

A B C D E F G H I J K L M N O

Sj 3.755 1.877 1.269 1.001 0.751 0.626 0.501 0.501 0.375 0.375 0.375 0.375 0.250 0.250 0.250
Rj 0.300 0.150 0.100 0.080 0.060 0.050 0.040 0.040 0.030 0.030 0.030 0.030 0.020 0.020 0.020

Table 10. Qj values (v = 0.5).

A B C D E F G H I J K L M N O

1 0.464 0.288 0.214 0.143 0.107 0.071 0.071 0.036 0.036 0.036 0.036 0 0 0

3.4. TOPSIS

Hwang and Yoon developed the TOPSIS, an MCDM approach, in 1981 [82]. This
technique provides several solution alternatives by ordering criteria based on Euclidean
distances. The order of the criteria created according to distance is the minimum dis-
tance to the positive ideal solution and the maximum distance to the negative ideal
solution [83,84]. Thus, comparing positive and negative ideal solutions yields optimal
results [85]. The TOPSIS approach produces successful results in a wide range of fields,
including agricultural practices, economic studies, capacity estimation of energy resources,
and groundwater research [21,86,87]. In this study, it was selected as one of the options for
GWPZ detection.

The decision matrix for the TOPSIS calculation is initially generated using
Equation (18), as in the VIKOR approach (Table 8). Weights are assigned to the decision ma-
trix (Equation (19)), positive and negative ideal solutions are determined
(Equations (20) and (21)), the distances between the positive and negative ideal solutions
are calculated (Equations (22) and (23)), and finally, the method’s performance score is
computed (Equation (24)). Thus, the highest value of the performance score indicates a
high GWPZ, while the lowest number suggests a low GWPZ.

Vij = Pij/

√
m

∑
i=1

Pij
2(i = 1, 2, . . . , m; j = 1, 2, . . . , n) (18)

where Vij represents the normalized value of Pij.

Vmxn = NmxnWnxn (19)
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where Vmxn refers to the weighted normalized matrix (Table 11), and Wnxn refers to the
weight matrix.

V+ =
{

v+1 , v+2 , . . . , v+n
}
=

{
(makv ij I j ∈ I

)
, (minv ij I j ∈ I1

)}
(20)

V− =
{

v−1 , v−2 , . . . , v−n
}
=

{
(minv ij I j ∈ I

)
, (makv ij I j ∈ I1

)}
(21)

where V+ is the positive ideal solution, V− is the negative ideal solution, I is the utility
feature, and I1 is the cost feature.

di
+ =

√√√√ n

∑
j=1

(
vij − v+j

)2
(i = 1, . . . , m; j = 1, . . . , n) (22)

di
− =

√√√√ n

∑
j=1

(
vij − v−j

)2
(i = 1, . . . , m; j = 1, . . . , n) (23)

where di
+ represents the distance between positive ideal solutions, and di

− represents the
distance between negative ideal solutions.

pi =
di

−(
di

+ + d i
−) (i = 1, . . . , m) (24)

where the performance score is shown as pi (Table 12).

Table 11. Weighted normalized decision matrix.

A B C D E F G H I J K L M N O

A 0.239 0.119 0.080 0.049 0.037 0.027 0.018 0.014 0.008 0.008 0.008 0.005 0.004 0.002 0.002
B 0.119 0.060 0.035 0.025 0.019 0.013 0.009 0.007 0.004 0.004 0.004 0.003 0.002 0.001 0.001
C 0.080 0.040 0.024 0.016 0.012 0.009 0.006 0.005 0.003 0.003 0.003 0.002 0.001 0.001 0.001
D 0.060 0.030 0.018 0.012 0.009 0.007 0.004 0.004 0.002 0.002 0.002 0.001 0.001 0.000 0.000
E 0.048 0.024 0.014 0.010 0.007 0.005 0.004 0.003 0.002 0.002 0.002 0.001 0.001 0.000 0.000
F 0.040 0.020 0.012 0.008 0.006 0.004 0.003 0.002 0.001 0.001 0.001 0.001 0.001 0.000 0.000
G 0.034 0.017 0.010 0.007 0.005 0.004 0.003 0.002 0.001 0.001 0.001 0.001 0.001 0.000 0.000
H 0.030 0.015 0.009 0.006 0.005 0.003 0.002 0.002 0.001 0.001 0.001 0.001 0.000 0.000 0.000
I 0.027 0.013 0.008 0.005 0.004 0.003 0.002 0.002 0.001 0.001 0.001 0.001 0.000 0.000 0.000
J 0.024 0.012 0.007 0.005 0.004 0.003 0.002 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000
K 0.022 0.011 0.006 0.004 0.003 0.002 0.002 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000
L 0.020 0.010 0.006 0.004 0.003 0.002 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000
M 0.018 0.009 0.005 0.004 0.003 0.002 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000
N 0.017 0.009 0.005 0.004 0.003 0.002 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000
O 0.016 0.008 0.005 0.003 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000

Table 12. Solutions (V+, V−), distances between solutions (di
+, di

−), and performance score
(pi) values.

A B C D E F G H I J K L M N O

V+ 0.239 0.119 0.080 0.049 0.037 0.027 0.018 0.014 0.008 0.008 0.008 0.005 0.004 0.002 0.002
V− 0.016 0.008 0.005 0.003 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000
di

+ 1.064 0.532 0.362 0.221 0.166 0.118 0.079 0.063 0.035 0.035 0.035 0.024 0.016 0.008 0.008
di

− 0.262 0.131 0.085 0.054 0.041 0.029 0.019 0.016 0.009 0.009 0.009 0.006 0.004 0.002 0.002
pi 0.197 0.197 0.200 0.185 0.190 0.200 0.200 0.250 0.200 0.200 0.200 0.333 0.000 0.000 0.197
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3.5. Validation

Validation is a critical component for modeling the reliability and consistency of
scientific research [88,89]. Given the process that serves as the study’s major axis and
the methods utilized to carry it out, the receiver operating characteristic (ROC) curve is
mostly selected for validation [23,90–92]. The area under the curve (AUC) value measures
prediction accuracy [93,94]. The ROC curve’s y-axis indicates the true positive rate, while
the x-axis represents the true negative rate. The AUC value varies from 0 to 1. Values near
one suggest that the model performs better and is more reliable. In this study, the ROC
curve was utilized to validate the GWPZ models produced using the various approaches.

4. Results

The GWPZ maps were created utilizing fifteen thematic layers (Figure 7). Each GWPZ
map was organized into five classes (“Very High”, “High”, “Moderate”, “Low”, and
“Very Low”).
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A “Very High” GWPZ is categorized as having a gentle slope, a low drainage density,
high levels of water erosion, a high lineament density, high levels of rainfall, and a high
TWI, TRI, SPI, and STI. “Very High” GWPZs make up 4.98%, 5.94%, and 7.96% of the study
area in turn (according to the AHP, VIKOR, and TOPSIS methods). The middle of the study
area has 450–700 mm of annual average rainfall and a moderate lineament density; hence, it
is classified as a “Moderate” GWPZ (60.68%, 52.41%, 51.56%). The “Low” and “Very Low”
GWPZ classes have inverse features to the “Very High” class, and they have less recharge
capacity [31]. The north of the study area and hilly places have steep slopes. They have
unsuitable geological formations and soil textures, so they are classified as “Low” (21.28%,
28.53, 20.90%) and “Very Low” (2.18%, 2.80%, 3.07%) GWPZs (Table 13).

Table 13. Classifications of groundwater potential zones.

Classes
AHP VIKOR TOPSIS

Area (km2) % Area Area (km2) % Area Area (km2) % Area

Very Low 345.23 2.18 443.38 2.80 487.38 3.07
Low 3373.18 21.28 4522.26 28.53 3313.61 20.90

Moderate 9618.81 60.68 8309.08 52.41 8173.84 51.56
High 1727.05 10.89 1636.26 10.32 2616.04 16.50

Very High 788.73 4.98 942.01 5.94 1262.14 7.96

Total 15,853 100

Data from 60 wells in the study area were utilized to validate the GWPZ analysis. The
wells in the study area were received from RTGDSHW together with location data. Wells
are recognized as indicators of the probable existence of groundwater [7,13,94]. Therefore,
they were used to verify the GWPZs. Two steps were determined for this aim. Firstly,
GWPZ classes and well locations were established (Figure 8).

The GWPZ maps generated were then confirmed with the ROC curve. The test data
consisted of 60 wells. AUC values were determined for the AHP, VIKOR, and TOPSIS
techniques, respectively (Figure 9). When the resulting values were analyzed, it was
discovered that all three procedures produced similar results. The VIKOR methodology
was determined to be the most accurate (76.5%). Although the TOPSIS approach had fairly
similar values to the other two methods, it was found to have the lowest AUC value among
these GIS-based methods (76.1%).
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5. Discussion

According to [28], in a study conducted in the Barind tract in the northwestern part of
Bangladesh, 4% of the study area was classified as “very high” and 13% as “high” GPWZs,
and [95] discovered that 19.34% of a study area in Dak Nong Province, Vietnam, has a “high”
groundwater potential. According to [66], in a study performed in Ethiopia’s Beles River
Basin, it was stated that approximately 19% of the region has “good” groundwater potential.
Furthermore, [32] found that around 6% to 18% of the area is classified as “very high” or
“high” GWPZs. In our study, 4.98%, 5.94, and 7.96% of the study area were classified as
“Very High,” with 10.89%, 10.32%, and 16.50% classified as “High”, respectively.

It was seen that GWPZ research has extensively used 5–8 parameters when previous
studies were investigated [30,32,96–98]. On the other hand, several studies have utilized
more parameters for GWPZ detection [99,100]. It was determined that LuLc, soil, drainage
density, lineament density, and geology are standard parameters and essential when GWPZ
studies are examined. Refs. [31,36] considered rainfall and drainage density relevant. The
annual average rainfall is 613.2 mm in Mersin; therefore, rainfall was an excellent parameter
for GWPZ detection in our study. However, more is needed to determine groundwater
potential [55] because a region that has much rainfall does not always point to the presence
of groundwater [101]. The soil diversity and texture in a region (TRI) [102], land use,
geological texture, abrasive power of water (SPI) [67], water-holding capacity (STI) [66],
quantity of percolation (DD) [31], and inflow (TWI) [55] directly affect the groundwater
potential. For these reasons, the stated rainfall parameter and other parameters should be
considered jointly for an optimum GWPZ analysis. The mentioned parameters were also
used in the study, and the GWPZs were tested to determine them precisely.

Their resolution is as important as the number of parameters utilized. It is a vital
component in ensuring the consistency of the analysis. Ref. [30] employed parameters that
can be considered high-resolution (30 m) for GWPZ detection in the Darjeeling Himalayan
region of India. Likewise, in a study conducted in [32] in southern Aseer, southwestern
Saudi Arabia, and in a study conducted in [96] in the Gandheswari watershed, West Bengal,
30 m-resolution satellite images were used. In this study, high-resolution parameters were
similarly chosen for the accuracy of GWPZ detection in the study area.

Fifteen parameters that are GIS-based were used in the study, and GWPZ maps were
created. Unlike previous investigations, fifteen parameters were evaluated for precision
and high accuracy. Not only did the number of parameters employed differ from other
studies, so did the validation analysis. Although they employed parameters ranging from
10 to 12, [100] did not perform any validation. On the other hand, [36,57,96,97,103] used
few parameters (5–8) despite their validation. A significant number of parameters were
used in this study, and validation was carried out.

In this study, the GIS-based AHP, VIKOR, and TOPSIS techniques were utilized to
detect GWPZs in the study area. In this regard, the study presents analyses that can be
compared to one another and distinguished from many other studies. The studies carried
out in [30,32,34,96,104] used just the AHP approach. There are also numerous studies
that use only the VIKOR [19,105–107] and TOPSIS [21,84,86,87] methods. There have been
few studies combining multiple approaches. Ref. [23] employed TOPSIS and VIKOR
algorithms in their research. The models were validated using the ROC curve. The values
were 86.7% and 70.2%, respectively. In that regard, this study differs from our research.
Ref. [81] chose to use the TOPSIS and VIKOR approaches.

This study involved an application on a Mersin provincial scale. Studies have been
carried out on part of the study area previously. However, no studies of this magnitude have
been conducted throughout Mersin. Ref. [108] researched groundwater and pollution in the
Göksu Delta, Silifke district. The study in [109] focused on a coastal aquifer in Tarsus district.
Ref. [110]’s study is noteworthy as it was also performed in Mersin. The study assessed
the potential groundwater in the Akdere and Yeşilovacık neighborhoods in Silifke district
using the AHP method and nine factors. In this study, GWPZ determination was carried
out inside the confines of Mersin province with the AHP, VIKOR, and TOPSIS methods.
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Moreover, Mersin confronts water requirement (drinking, agriculture, and industry)
problems owing to its increasing population, industrialization, drought, and global climate
change [111]. These situations are increasing the use of groundwater. As [49] stated, deter-
mining and monitoring groundwater levels is vital for the sustainable use of groundwater.
Uncontrolled and frequent groundwater use can cause adverse incidents, particularly in
drylands like Mersin, which has a drought risk [112]. Water resources should be utilized
optimistically as part of sustainable groundwater management [113,114].

Groundwater management should be conducted with scientific norms and innovative
methods for sustainable groundwater resources [6]. Groundwater’s long-term use and
strategic importance are precious for decision makers and policymakers regarding sustain-
able groundwater management [36]. As [31] stated, sustainable groundwater management
should be carried out according to each groundwater feature. Factors like the usage of
groundwater, quality, pollution, connected streams, and the ecosystem should be consid-
ered [115–117]. The scientific procedures used in groundwater extraction are substantial for
groundwater management, and the development of management plans will have a good
impact on the groundwater protection–use balance and improvement.

The groundwater potential zones were identified using several criteria in this study, and
validation was performed. Attention was drawn to sustainable groundwater management, as
managing these areas was as crucial as identifying potential groundwater zones.

6. Conclusions

Groundwater usage, protection, and management effectively satisfy water require-
ments and prevent future generations from suffering in the context of sustainable ground-
water management. In this regard, optimizing groundwater use, avoiding waste, and
reducing the water footprint in the study area where agricultural activities are carried out
effectively are critical. The first stage in this framework is the determination of groundwater
and groundwater recharge zones. The processes for determining management, use, and
protection policies follow. A GIS allows for spatial and visual inferences. In addition, it
is a dependable and cost-effective tool. Various analyses can be performed by integrating
the AHP, VIKOR, and TOPSIS into this tool. In this study, these methods were used. The
GWPZs in Mersin were determined, which face drought and global climate change threats.
The attained results were divided into five classes. The GWPZ models were then validated
with well data in the study area. Nonetheless, in studies where the wells in the GWPZs
are specifically assessed, GWPZ determination should be conducted using data such as
the well discharge, the yield of the well, and the depth level of the groundwater. In this
manner, the validation will be more accurate. The analysis will improve when more wells
are used. In the absence of such data, the proposed methodology and the parameters are
among the leading methods for assessing groundwater potential.

The study contributes fundamental knowledge to engineers, hydrologists, and water
management decision makers. This will allow people to make rapid and accurate decisions.
Furthermore, it will help to ensure that applications are implemented properly. In this
regard, it is considered to play a vital role in balancing time and cost. We think that the
parameters used in the study are appropriate to utilize without any alteration in regions
with drought and climate change.
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tion System and Analytical Hierarchy Process Methods. Master’s Thesis, Mersin University, Mersin, Turkey, 2022.

111. Cetin, M. The changing of important factors in the landscape planning occur due to global climate change in temperature, Rain
and climate types: A case study of Mersin City. Turk. J. Agric. Food Sci. Technol. 2020, 8, 2695–2701. [CrossRef]

112. Celiker, S.; Sarac Essiz, E.; Oturakci, M. Integrated Ahp-Fmea Risk Assessment Method To Stainless Tank Production Process.
Turk. J. Eng. 2021, 5, 118–122. [CrossRef]

113. Rahman, M.M.; AlThobiani, F.; Shahid, S.; Virdis, S.G.P.; Kamruzzaman, M.; Rahaman, H.; Momin, M.A.; Hossain, M.B.;
Ghandourah, E.I. GIS and remote sensing-based multi-criteria analysis for delineation of groundwater potential zones: A case
study for industrial zones in Bangladesh. Sustainability 2022, 14, 6667. [CrossRef]

114. Nga, D.V.; Trang, P.T.K.; Duyen, V.T.; Mai, T.T.; Lan, V.T.M.; Viet, P.H.; Postma, D.; Jakobsen, R. Spatial variations of arsenic in
groundwater from a transect in the Northwestern Hanoi. Vietnam. J. Earth Sci. 2017, 40, 70–77. [CrossRef]

115. El-Mezayen, M.M.; El-Hamid, A.; Hazem, T. Assessment of Water Quality and Modeling Trophic Level of Lake Manzala, Egypt
Using Remotely Sensed Observations after Recent Enhancement Project. J. Indian Soc. Remote Sens. 2023, 51, 197–211. [CrossRef]

https://doi.org/10.1007/s10661-015-5049-6
https://doi.org/10.1016/j.jksus.2016.08.003
https://doi.org/10.1080/15481603.2020.1794104
https://doi.org/10.1016/j.uclim.2023.101415
https://doi.org/10.1007/s10661-018-6507-8
https://doi.org/10.1007/s12665-009-0245-8
https://doi.org/10.1007/s11269-021-02957-6
https://doi.org/10.1007/s40899-020-00372-0
https://doi.org/10.1016/j.jafrearsci.2018.03.016
https://doi.org/10.3390/su14031830
https://doi.org/10.3390/w13050579
https://doi.org/10.1007/s11356-020-10646-x
https://www.ncbi.nlm.nih.gov/pubmed/32875448
https://doi.org/10.1080/01431160600554983
https://doi.org/10.1080/02626667.2019.1703993
https://doi.org/10.1111/jawr.12291
https://doi.org/10.1007/s11269-010-9700-2
https://doi.org/10.1016/j.watres.2022.119288
https://doi.org/10.24925/turjaf.v8i12.2695-2701.3891
https://doi.org/10.31127/tuje.702369
https://doi.org/10.3390/su14116667
https://doi.org/10.15625/0866-7187/40/1/10971
https://doi.org/10.1007/s12524-022-01635-3


Sustainability 2024, 16, 2202 27 of 27

116. Jannat, J.N.; Khan, M.S.I.; Islam, H.M.T.; Islam, M.S.; Khan, R.; Siddique, M.A.B.; Varol, M.; Tokatli, C.; Pal, S.C.; Islam, A.; et al.
Hydro-chemical assessment of fluoride and nitrate in groundwater from east and west coasts of Bangladesh and India. J. Clean.
Prod. 2022, 372, 133675. [CrossRef]

117. Priya, U.; Iqbal, M.A.; Salam, M.A.; Nur-E-Alam, M.; Uddin, M.F.; Islam, A.R.M.T.; Sarkar, S.K.; Imran, S.S.; Rak, A.E. Sustainable
groundwater potential zoning with integrating GIS, remote sensing, and AHP model: A case from North-Central Bangladesh.
Sustainability 2022, 14, 5640. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jclepro.2022.133675
https://doi.org/10.3390/su14095640

	Introduction 
	Study Area 
	Materials and Methods 
	Definition of the Thematic Layers 
	Topographical Data 
	Elevation Data 
	Hydrological Data 
	Auxiliary Data 

	AHP 
	VIKOR 
	TOPSIS 
	Validation 

	Results 
	Discussion 
	Conclusions 
	References

