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Abstract: This article presents a resilient Integrated Resource Planning (IRP) framework designed for
transmission systems, with a specific focus on analyzing and optimizing responses to High-Impact
Low-Probability (HILP) events. The framework aims to improve the resilience of transmission
networks in the face of extreme events by prioritizing the assessment of events with significant
consequences. Unlike traditional reliability-based planning methods that average the impact of
various outage durations, this work adopts a metric based on the proximity of outage lines to
generators to select HILP events. The system’s baseline resilience is evaluated by calculating load
curtailment in different parts of the network resulting from HILP outage events. The transmission
network is represented as an undirected graph. Graph-theoretic techniques are used to identify
islands with or without generators, potentially forming segmented grids or microgrids. This article
introduces Expected Load Curtailment (ELC) as a metric to quantify the system’s resilience. The
framework allows for the re-evaluation of system resilience by integrating additional generating
resources to achieve desired resilience levels. Optimization is performed in the re-evaluation stage to
determine the optimal placement of distributed energy resources (DERs) for enhancing resilience, i.e.,
minimizing ELC. Case studies on the IEEE 24-bus system illustrate the effectiveness of the proposed
framework. In the broader context, this resilient IRP framework aligns with energy sustainability
goals by promoting robust and resilient transmission networks, as the optimal placement of DERs
for resilience enhancement not only strengthens the system’s ability to withstand and recover from
disruptions but also contributes to efficient resource utilization, advancing the overarching goal of
energy sustainability.

Keywords: high-impact low-probability events; integrated resource planning; optimization; resilience
planning; resilience metrics; transmission systems

1. Introduction

Modern electrical power systems encounter substantial difficulties in ensuring a
consistent and dependable electricity supply when faced with extreme weather events
and other disruptions characterized by High-Impact Low-Probability (HILP) [1,2]. These
occurrences can result in severe repercussions, causing widespread power outages and
incurring significant financial burdens. To illustrate, Winter Storm Uri in Texas, United
States, in February 2021 led to extensive power disruptions, affecting 4.5 million customers
without electricity [3]. Additionally, in the year 2023 alone, the United States experienced
28 weather-related disasters, each with costs exceeding USD 1 billion [4]. The influence
of extreme events extends beyond the United States, as demonstrated by incidents such
as a severe storm in Australia in 2016, a windstorm in Canada in 2015, and the 2016
tornado in Jiangsu Province, China [5]. These occurrences emphasize the critical necessity
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for tools to gauge resilience and strategic planning approaches based on such metrics,
ultimately leading to strategies to invest in grid capacity to endure and recover from
these challenging events expediently [6]. In the broader context, incorporating energy
sustainability principles into these strategies becomes imperative for creating resilient and
environmentally conscious power systems.

In recent years, there has been a notable surge in interest regarding strategies to
enhance the resilience of electric power supply, driven by the growing dependence on
electricity access and the increasing occurrence and severity of extreme weather events [7].
These strategies aim to strengthen the resilience of power systems, incorporating both
planning-based and operation-based approaches. Operation-based strategies are centered
on optimizing the efficient utilization of existing resources to mitigate the impact of extreme
events and the subsequent outages [8]. Conversely, planning-based strategies focus on
expanding electricity infrastructures to fortify them against potential future events, with
a key emphasis on selecting investments that ensure a dependable and resilient power
supply to end-use customers [9]. Examples of planning-based strategies may encompass
the installation of underground cables, planning for energy storage, and other relevant
measures [10–12].

Previous studies have investigated different planning strategies for boosting the re-
silience of power systems. In the work of Nazemi et al. [13], an optimization problem
was devised through linear programming to strategically deploy energy storage for earth-
quake resilience. The researchers introduced a new metric that measures the resilience
of distribution networks, taking into account uncertainties such as the location, duration,
and intensity of potential extreme events. A resilient transmission expansion planning
model that optimizes the configuration of the transmission network was presented in [14],
minimizing cascading outage effects and enhancing resilience by considering security and
N − 1 security criterion, utilizing an iterative algorithm to estimate cascading outages, and
employing a multistage solution procedure based on Benders decomposition algorithm
for the efficient handling of investment decisions and resilience requirements. In [15], a
resilience-oriented distribution system planning strategy was introduced, utilizing a multi-
stage hybrid–stochastic–robust formulation with a progressive hedging algorithm, aiming
to enhance power system resilience by addressing the challenges of multiple extreme
weather events in the context of increasing renewable penetration and climate change
uncertainties. The study presented in [11] introduced a planning strategy focused on
resilience for the optimal setup of urban multienergy systems. This strategy conducted
a thorough analysis of impacts originating from the supply, network, and demand as-
pects. An impactful planning approach utilizing mobile energy storage systems to enhance
distribution system resilience during disasters was presented in [16], focusing on postdis-
aster restoration in conjunction with photovoltaic-powered electric vehicle parking lots,
distributed generation, and network reconfiguration. The study outlined in [17] intro-
duced a resilience assessment framework oriented towards planning. This framework
was designed to evaluate the power system’s resilience in the face of typhoon disasters
and identify its vulnerabilities. Through a detailed analysis of the potential impacts of
various typhoon disasters on each transmission corridor, a comprehensive investigation
of the power system’s resilience was conducted, pinpointing its weak points. Moreover,
the framework could guide measures aimed at enhancing resilience by addressing these
weaknesses, such as expanding or upgrading vulnerable transmission corridors. A multi-
stage optimization framework for resilient distribution system expansion planning was
proposed in [18], focusing on nonutility DER bidding strategies in external shock conditions
to enhance system resilience and reduce costs. A planning-targeted resilience assessment
framework for electric power transmission systems in coastal areas was presented in [19],
leveraging data-driven schemes and the analytic hierarchy process to identify weak links
and select optimal resilience improvement strategies against typhoon disasters. A robust
mixed-integer optimization model for integrated planning of a power network and electric
vehicle charging infrastructure was introduced in [20], enhancing power system resilience
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by determining optimal joint expansion decisions under various extreme weather scenarios,
validated through case studies on IEEE 30-bus and IEEE 118-bus power systems. In [21], a
comprehensive model for planning the joint transmission system and DER was introduced
with the aim of enhancing the resiliency of the power system, taking into account both
regular and emergency operating conditions, along with the duration of each situation.
Additionally, the emergency condition was characterized by a series of damage scenarios,
categorizing transmission system components into three damage states: moderate damage,
severe damage, and complete damage. Although these studies have substantially con-
tributed to the domain of power system resilience planning, there exists a noticeable gap
in research. Specifically, there is a requirement for a comprehensive framework that not
only identifies weak points in the system but also quantifies resilience and recommends
investment in assets to improve resilience. Such a framework should facilitate Integrated
Resource Planning to attain predefined resilience levels.

In this article, we present a resilient Integrated Resource Planning (IRP) framework
designed specifically for transmission systems, with a focus on the analysis and evaluation
of HILP events. Our framework is developed to gauge and improve the resilience of trans-
mission networks, employing the proximity of outage lines to generators as a metric for
selecting HILP events. Through the generation of numerous random line outage scenarios,
we selectively examine HILP events to assess the system’s foundational resilience. Further-
more, we integrate additional generating resources into the framework and re-evaluate
system resilience after the proposed investment according to desired levels. By quantifying
load curtailment and introducing the resilience metric Expected Load Curtailment (ELC),
our framework provides a comprehensive evaluation of system resilience. To showcase
the effectiveness of our proposed framework, we conduct case studies on the IEEE 24-bus
system, highlighting its capabilities and potential for optimizing resource placement and
planning decisions. Through the advancement of resilient power system planning, our
research contributes to the development of more robust and resilient transmission networks
capable of withstanding and recovering from disruptive events. Importantly, our approach
aligns with energy sustainability principles, ensuring the development of resilient power
systems that are environmentally conscious and sustainable. The main contributions of
this article are summarized as follows:

• Introduction of a resilient IRP framework for the transmission system, incorporating
analysis, evaluation, and optimization considering HILP events.

• Proposal of the proximity index, a metric based on the closeness of outage lines to
generators, facilitating the selection of HILP events from a broad array of randomly
generated multiple-line outage scenarios.

• Development of a methodology for conducting power flows on islands formed due to
multiple-line outages and calculating the total load curtailment in the outage scenario.

• Introduction of the resilience metric ELC to quantify the anticipated load curtailment
in all HILP scenarios, serving as a measure for resilience planning.

• Proposal of the strategic placement of DER investments to achieve a desired level of
resilience.

The remainder of this article is organized as follows: Section 2 describes the proposed
IRP framework and solution approach, along with the proposed metrics and optimization
problem formulation for reassessing the system resilience. Section 3 presents the analysis
of results and validates the proposed work through case studies on the IEEE 24-bus system.
Section 4 provides the concluding remarks along with potential future works.

2. Proposed Framework

In this section, we introduce the proposed framework designed for the IRP of resilient
transmission systems. The framework adopts a comprehensive approach to tackle the
specific challenges presented by HILP events. The proposed framework establishes a
systematic process for assessing the base case resilience of the system, identifying network
configurations that yield HILP events, and reassessing resilience with the incorporation
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of new resources. By providing a holistic understanding of the system’s resilience, the
proposed framework facilitates well-informed decision making in the realm of IRP.

The transmission network is depicted as a graph using graph theory methods, where
generators, loads, buses, transmission lines, and transformers are components. Buses are
nodes, while lines and transformers are edges in this graph. This representation eliminates
the necessity of separately modeling generators and loads in the graph by connecting their
information to the respective buses. Node information includes all connected generator and
load details linked to a specific bus. Figure 1b illustrates the graph theory representation of
a hypothetical six-bus transmission network, as shown in Figure 1a.
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Figure 1. (a) Hypothetical transmission network with six buses, (b) graph theory representation
of the network, (c) outage of lines 4–5 and 4–6 in the network, and (d) creation of two connected
components (or islands) due to the outage.

The transmission network is illustrated as an undirected graph, G = (N , E ), where
N denotes the nodes (or vertices), and E represents the edges (or branches). This graphical
model offers a distinct visual and mathematical depiction of the interconnected parts of the
transmission system [22].

Additionally, this work utilizes the concept of connected components from graph
theory. In an undirected graph, a connected component is defined as the largest set of
nodes where each pair of nodes is connected by a path [23]. Essentially, within a connected
component, every pair of nodes is linked by either a direct or an indirect path. Connected
components are crucial for understanding the behavior and resilience of the system, as they
represent distinct networks within the transmission system. By identifying and analyzing
these connected components, valuable insights can be gained into the structural integrity,
load distribution, and susceptibility to disruptions of the system. Figure 1d illustrates the
creation of two connected components in the hypothetical transmission network following
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the outage of lines 4–5 and 4–6 (depicted in Figure 1c). The first connected component
(CC-1) consists of nodes 2 and 4, while the second connected component (CC-2) comprises
nodes 1, 3, 5, and 6.

Connected components form a partition of the set of graph vertices, meaning they are
nonempty, pairwise disjoint, and their union encompasses all the vertices in the graph [23].
Another way to conceptualize connected components is by understanding the relationship
between nodes. The relation that associates two nodes if and only if they belong to the
same connected component is an equivalence relation. This equivalence relation is reflexive,
symmetric, and transitive, allowing for the identification and classification of distinct
networks within the transmission system.

Utilizing graph theory modeling and the concept of connected components, the pro-
posed framework establishes a strong analytical basis for evaluating and improving the
resilience of transmission systems. This framework is structured into three primary stages,
as depicted in Figure 2. The following subsections elaborate on each stage, detailing their
aims, approaches, and contributions to a thorough grasp of the system’s resilience.

Outage Data Generation, Selection of HILP 

Events, and Scenario Reduction

Evaluation of the Base Case Resilience of the 

System

Re-evaluation of System Resilience with 

Additional Resources

Figure 2. Three main stages of the proposed resilience IRP framework.

2.1. Outage Data Generation, Selection of HILP Events, and Scenario Reduction

In the first stage of the proposed framework, outage data are generated, HILP events
are selected, and scenario reduction is performed. To thoroughly evaluate the resilience of
the transmission system, numerous line outage scenarios are randomly generated from a
uniform distribution. These scenarios represent a broad array of potential disruptions that
the system might face. By incorporating a diverse set of outage scenarios, the framework
aims to encompass the entire range of potential multiple-line outages that could affect the
system’s resilience [24].

To select HILP events from the randomly generated line outage scenarios, a metric
known as the proximity index (PI) is utilized. The PI is based on the proximity or closeness
of the outage lines to the generators. This metric is based on the understanding that outages
occurring near generators are more likely to result in higher load curtailments within
the system. By evaluating the proximity of outage lines to generators, the framework
identifies events that have a higher likelihood of causing significant disruptions and load
curtailments. The mathematical expression for the PI of the ith scenario is as follows:

PIi =
Ni

∑
k=1

Cik (1)

where Ni represents the total number of outaged lines in the ith scenario, and Cik is a binary
variable indicating whether the kth line of the ith scenario is connected to a generator (1 if
connected, 0 if not).
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A threshold is established to determine the qualification of an event as a HILP event.
This threshold ensures that the number of line outages exceeds a certain level, indicating
a significant impact on the system. By setting an appropriate threshold, the framework
concentrates on events with high impact. This approach is in line with a resilience-oriented
perspective, enabling a focused analysis of events that are most likely to test the system’s
resilience. The binary condition in Equation (2) is utilized for selecting a HILP event.

HILP Selection:

{
HILP Event if PIi ≥ PIth

Not HILP Event otherwise
(2)

where PIth denotes the threshold value of the PI, which is established at six for this
particular study.

Through this stage, the framework selectively narrows down the set of outage scenar-
ios to specifically focus on HILP events. By prioritizing events with a high potential for
severe consequences, the framework ensures that the subsequent analysis and evaluation
are concentrated on the most critical disruptions. This approach provides a more refined
understanding of the system’s vulnerabilities and aids in the development of effective
resilience enhancement strategies.

The final phase of this stage involves scenario reduction. While leveraging a diverse
set of HILP scenarios can undoubtedly improve the accuracy of the approach, managing
such an extensive dataset can pose computational challenges and consume a significant
amount of time [25]. This is where the scenario reduction technique becomes crucial. In
this study, scenario reduction (or clustering) based on load curtailment (LC) is employed.
Scenarios are grouped into specific clusters based on the similarity in LC values of those
scenarios. Algorithm 1 presents the LC-based scenario reduction adopted in this work.

Algorithm 1: Load Curtailment (LC)-based Scenario Reduction
Input : Data: scenarios, Number of clusters: num_clusters, Maximum iterations:

max_iterations
Output : Cluster labels: labels, Final centroids: centroids
// Initialize centroids
data_array← Convert scenarios to array
initial_centroid_indices← Randomly select num_clusters indices from data_array
centroids← Initialize centroids with data points at initial_centroid_indices
total_distances← Empty list
for itr← 1 to max_iterations do

// Calculate distances to centroids
distances← Calculate distances between each scenario and centroids
labels← Assign scenarios to the closest centroid
total_distance← Calculate total distance
total_distances.append(total_distance)
// Update centroids
new_centroids← Select representative scenario from each cluster
new_distances← Calculate distances for new centroids
new_total_distance← Calculate total distance for new centroids
if new_total_distance < total_distance then

centroids← new_centroids
// Check for convergence
if len(total_distances) > 20 then

last_20← total_distances[-20:]
if all(elem == last_20[0] for elem in last_20) then

break

return labels, centroids
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The overall load curtailment for each outage scenario is calculated by aggregating the
load curtailment across all islands. Mathematically, the total load curtailment for the jth
scenario is expressed as follows:

LCj =

Nislands,j

∑
k=1

LCisland,j,k (3)

where LCisland,j,k is the load curtailment of the kth island of the jth outage scenario, and
Nislands,j is the number of islands in the jth outage scenario.

The power flow is solved to compute the load curtailment in (3). The power balance
equations for an AC power flow are as follows [26]:

PGx − PLx = Vx

Nbus

∑
y=1

Vy(Gxy cos θxy + Bxy sin θxy) (4)

QGx −QLx = Vx

Nbus

∑
y=1

Vy(Gxy sin θxy + Bxy cos θxy) (5)

where PGx, QGx, PLx, and QLx represent active power generation, reactive power generation,
active load, and reactive load, respectively, for bus x; Vy is the voltage magnitude of bus y;
Nbus is the number of buses; θxy is the difference between voltage angles of buses x and y;
and Gxy and Bxy, respectively, are the real and imaginary parts of the element of the bus
admittance matrix corresponding to the xth row and the ythe column.

2.2. Evaluation of the Base Case Resilience of the System

The second phase of the provided framework centers on assessing the base case re-
silience of the transmission system. This assessment occurs without the introduction of
extra generating resources into the system. Instead, the analysis revolves around harness-
ing the intrinsic capabilities of the existing system, such as the establishment of stable
sustainable grid segments or microgrids, to bolster resilience.

In the event of a HILP outage event, the transmission system can be segmented into
several interconnected components or islands, with some islands featuring generators and
others not. This stage employs graph-theoretic techniques to pinpoint these connected
components within the system. By discerning the separate networks of connected compo-
nents, it becomes feasible to evaluate the outage’s impact on each network and quantify
the ensuing load curtailment.

The evaluation of base case resilience involves calculating the LC for each network
of connected components. This assessment provides valuable insights into the system’s
ability to withstand and recover from disruptive events. By quantifying the amount of load
curtailment, a realistic picture of the system’s performance under various HILP outage
scenarios can be obtained.

A key resilience metric is introduced in this stage: Expected Load Curtailment (ELC).
ELC signifies the expected value of total load curtailments across all HILP outage scenarios
under consideration. This metric offers a comprehensive gauge of the system’s resilience,
factoring in both the probability and magnitude of curtailed loads in the reduced HILP
scenarios. The calculation of ELC is as follows:

ELC =
Nreduced

∑
i=1

pi × LCi (6)

where Nreduced is the total of reduced HILP scenarios; pi represents the probability of the ith
reduced HILP scenario; and LCi is the amount of load curtailed in case of the ith reduced
HILP scenario.
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2.3. Re-Evaluation of System Resilience with Additional Resources

In the first and second stages, the framework generated outage scenarios and evaluated
the system’s initial resilience. Building on these assessments, the third and final stage of
the framework shifts to reassessing the system’s resilience after integrating extra resources.
This stage evaluates how these resources affect the system’s capacity to endure and rebound
from HILP events.

In this stage, different resources are introduced into the system to achieve the desired
resilience level. These resources can be a mix of renewable energy sources, energy storage
systems, microreactors, or other options like reclosers, microgrids, and infrastructure
reinforcement. Their selection and positioning are informed by the findings from the
earlier stages of the framework. The framework seeks to enhance the system’s resilience by
strategically integrating extra generation resources, aiming to decrease load curtailment
and improve demand coverage during HILP events. These resources are placed considering
the system’s vulnerabilities and critical failure points, with the aim of optimizing their
allocation and use to attain the desired resilience level. After the integration of extra
generating resources, the system’s resilience is reassessed by repeating the earlier analyses
with the updated configuration. This reassessment evaluates the system’s performance
during HILP outage scenarios, considering the advantages and capabilities of the newly
added generating resources.

In this study, an optimization problem concerning the optimal placement of DERs is
addressed to reassess system resilience. The objective of the problem is to determine the
optimal locations and sizes of DERs that achieve the target Expected Load Curtailment
(ELC) while minimizing the total DER capacity, subject to constraints imposed by power
balance equations and the maximum capacities of DERs. The considered optimization
problem is formulated as follows:

minimize |ELCtarget − ELC|+ β×∑
k

PDER,k (7)

subject to

∀k : PDER,k ≤ Pmax
DER (8)

Equations (4) and (5)

where ELC is the Expected Load Curtailment calculated similarly to (6) but with the
system consisting of DERs; ELCtarget is the target ELC; PDER,k is the capacity of DER at
candidate bus k; β is the penalty factor empirically determined; and Pmax

DER is the maximum
allowable capacity of each DER. The candidate buses and PDER,k are the decision variables of
the problem.

The optimization problem presented above is characterized as nonlinear due to the
incorporation of a large number of HILP outage scenarios during the determination of
ELC. This nonlinearity makes the problem challenging to address using conventional
optimization techniques. Consequently, this study employs graph theory and a genetic
algorithm (GA), which is a population-based evolutionary search technique [27]. The
GA implementation in this research involves considering crossover, mutation, and elitist-
based selection strategies to enhance the optimization process [28]. These approaches
enable the exploration of a diverse solution space and contribute to the effectiveness of
the optimization algorithm in handling the complexity introduced by the multitude of
outage scenarios. Since the objective function of the optimization problem under consid-
eration is of minimization type, the fitness function for the GA is calculated using the
following expression:

F =
1

1 + OF
(9)

where OF represents the minimization-type objective function in Equation (7).
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3. Case Studies and Discussion

In this section, we present a comprehensive exploration of case studies conducted on
the IEEE 24-bus system, widely recognized as the Reliability Test System (RTS) [29]. The
primary objective is to provide a detailed demonstration of the functionality and efficacy
of the proposed resilient IRP framework. By examining a wide range of outage scenarios
on the RTS, we aim to illustrate the practical application and impact of the framework.
Through these case studies, we delve into the analysis of HILP outages, the base case
resilience level, and the optimal placement of DERs to achieve the desired value of system
resilience facilitated by the proposed framework.

3.1. Simulation Setup

The IEEE 24-bus system is commonly utilized as a benchmark in power system
analysis, consisting of 24 interconnected buses connected by transmission lines and trans-
formers. This configuration provides a simplified yet realistic representation of an actual
power system. Within this system, there are 11 generator buses (including the slack bus),
13 load buses, 5 transformers, and 29 lines (including 4 double-circuit lines treated as single
lines). The detailed system data are provided in Appendix A. We construct an undirected
graph, considering buses as vertices and branches (lines and transformers) as edges in the
graph. This graph-theory-based approach aids in visually understanding and studying the
system’s structure and connections, forming the foundation of our case studies. The Python
package “pandapower” [30] is employed to conduct power flow analyses within both the
primary network and isolated network segments. In this work, the DC approximation [31]
to the AC power flow is considered, where bus voltage magnitudes are assumed to be unity
and reactive power flow is neglected, along with other assumptions.

3.2. Analysis of the Outage Scenarios

To showcase the effectiveness of the framework, we systematically examine a diverse
set of 10,000 randomly generated multiple-line outage scenarios within the IEEE 24-bus
system. Each scenario undergoes evaluation to determine its classification as a HILP event,
based on the criteria established by our proposed proximity index. This index calculates
the proximity of outage lines to generator buses, enabling the identification of scenarios
with the potential for significant disruptions. Our focus is then directed towards the
HILP events, as they offer valuable insights into the system’s resilience. Leveraging the
introduced resilience metric, we conduct a quantitative assessment of the system’s response
to these HILP scenarios.

Illustrative figures play a crucial role in communicating the specifics of our case
study findings. Figures 3 and 4 showcase two representative outage scenarios selected
from the pool of 10,000 randomly generated instances. In scenario 1, the outage affects
six transmission lines: 2–6, 3–9, 7–8, 11–13, 16–17, and 20–23. Conversely, scenario 2 in-
volves the outage of lines 2–6, 7–8, 11–13, 15–21, 16–17, and 20–23, with the only distinction
being the substitution of lines 3–9 from scenario 1 with lines 15–21. Despite both scenarios
featuring six line outages, only the latter, scenario 2, is classified as a HILP event. This clas-
sification is determined by the proximity index (PI), which assesses the direct connections
between the outaged lines and generator buses. It is noteworthy that the PI for scenario 2 is
six, surpassing the PI threshold of six, while the PI for scenario 1 is five, falling just below
the PI threshold.

Delving into a more in-depth analysis of each line outage scenario, we focus on the
computation of the total load curtailment. Figure 5 provides a detailed examination of
Scenario 1. In this scenario, bus 7 becomes isolated, leading to the creation of an isolated
island. Notably, within Island-1, consisting of bus 7, the total load of 125 MW is less
than the total available generation of 300 MW, resulting in no load curtailment. Similarly,
the remainder of the primary network exhibits a total available generation of 3105 MW,
exceeding the total load of 2725 MW, thereby eliminating the need for load curtailment.
Consequently, Scenario 1 is characterized by zero total load curtailment.



Sustainability 2024, 16, 2449 10 of 20

Generator Bus

Load Bus

Line

Transformer

Outage

Generator Bus

Load Bus

Line

Transformer

Outage

Figure 3. Outage Scenario 1 in the graph-theoretic network of the IEEE 24-bus system.

Generator Bus

Load Bus

Line

Transformer

Outage

Generator Bus

Load Bus

Line

Transformer

Outage

Figure 4. Outage Scenario 2 in the graph-theoretic network of the IEEE 24-bus system.
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Figure 5. Analysis of outage in Scenario 1 showing an island formed in the IEEE 24-bus system.

Similarly, Figure 6 provides the analysis of Scenario 2. In contrast to Scenario 1,
Scenario 2 introduces a more intricate situation where two islands are formed. Island-1,
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resembling the isolated island from Scenario 1, once again experiences no load curtailment.
Island-2 consists of three generator buses (buses 18, 21, and 22) and a load bus (bus 17).
With a total generation capacity of 1100 MW exceeding the load demand of 333 MW,
Island-2 remains free from curtailment. However, the disconnection of these islands from
the primary network results in load curtailment. The total load of the primary network
is 2392 MW, but the available capacity remains confined to 2005 MW, leading to a load
curtailment of 387 MW. Therefore, the total load curtailment is 387 MW in Scenario 2.
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Line

Transformer

Outage

Generator Bus

Load Bus

Line

Transformer

Outage

Island-1

Island-2

Figure 6. Analysis of outage in Scenario 2 showing islands formed in the IEEE 24-bus system.

The examination of these scenarios underscores the justification for choosing HILP
events, as demonstrated by Scenario 2, which exhibits a more significant disruption at-
tributable to its higher load curtailment. This further substantiates the HILP classification
approach relying on the proximity index.

3.3. Scenario Reduction and Evaluation of the Base Case Resilience

Expanding on the preceding analysis, we progress to the second stage, which involves
a comprehensive examination of the system’s base case resilience. Within the pool of
10,000 randomly generated multiple-line outage scenarios, a total of 5237 scenarios were
identified as HILP events. The distribution of load curtailment (LC) in the original set of
HILP scenarios is visually depicted in Figure 7.
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Figure 7. Distribution of load curtailment in original HILP scenarios.
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Recognizing the computational challenges associated with evaluating ELC using the
full set of 5237 HILP scenarios, we implement a scenario reduction approach based on load
curtailment values. This reduction involves clustering the original HILP scenarios into
100 reduced HILP scenarios, grouping them based on the similarity of LC values. Figure 8
illustrates the distribution of load curtailment in these reduced HILP scenarios.

0 200 400 600 800 1000
Load Curtailment (MW)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Pr

ob
ab

ili
ty

Figure 8. Load curtailments and respective probabilities of reduced HILP scenarios.

As a result of LC-based scenario reduction in this work, the computation time to
calculate the ELC on a 64-bit 12th-generation Intel i5 1.6 GHz 16 GB RAM PC running
the Windows 10 platform is 4 s, compared with 360 s when all 5237 HILP scenarios were
considered. Despite the time reduction benefit, there is a compromise in the accuracy of the
ELC metric. The ELC calculated using 5237 HILP scenarios is 304.326 MW, whereas with
100 reduced scenarios, an ELC of 256.125 MW was obtained. Thus, the accuracy is reduced
by 15.8% as a result of scenario reduction. There is a trade-off between computation time
and accuracy resulting from scenario reduction. Based on the desired level of accuracy,
scenario reduction can be performed.

The proposed approach not only addresses computational efficiency concerns but also
provides a meaningful representation of the system’s base case resilience, considering a
condensed yet representative set of scenarios. The subsequent sections delve into the impli-
cations of these findings and explore strategies for enhancing system resilience considering
the optimal placement of DERs.

3.4. Resilience Enhancement through Optimal Placement of DERs

The third stage of the study unfolds a systematic approach involving the re-evaluation
of resilience metrics through the optimal placement of DERs utilizing a genetic algorithm
(GA). In this stage, a population size of 10 is considered, where the size of individual chro-
mosomes is contingent on the maximum limit of DER capacity, the assumed granularity
of DERs, and the number of candidate DER locations. All load buses are considered as
candidate DER locations, with an arbitrary maximum limit of DER size set at 150 MW and
a granularity of 10 MW. The individual chromosomes are represented in binary form, em-
ploying a three-point crossover, and incorporating a randomized multipoint mutation. The
simulation is halted when the maximum, minimum, and average fitness values converge.

For a thorough exploration, the simulation is iteratively performed with ELC reduction
values ranging from 10 MW to 100 MW at intervals of 10 MW. Figure 9 illustrates the
evolution of maximum, minimum, and average fitness, along with the ELC error, as the
GA generation progresses toward convergence in the case of an ELC reduction of 10 MW.
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Figure 9. Evolution of the fitness function and ELC error for the ELC reduction of 10 MW.

The ELC error, as calculated in Equation (10), measures the percentage deviation from
the target ELC from the ELC obtained from the GA:

ELCerror =
|ELCtarget − ELC|

ELCtarget
× 100 (10)

In the case of an ELC reduction of 10 MW, the maximum, minimum, and average
fitness values converge after 58 generations, as shown in Figure 9. The continuous decrease
and stabilization of the ELC error after convergence indicate a consistent and satisfactory
solution. As can be seen from the figure, the simulation is allowed to run for an additional
10 generations post convergence to assess if the problem is stuck in a local optimum.

Similarly, Figure 10 portrays the progression of maximum, minimum, and average
fitness, along with the ELC error, as the GA generation advances toward convergence in the
case of an ELC reduction of 20 MW. The convergence pattern remains similar to the earlier
scenario, but the notable distinction lies in the convergence generation. In this instance,
convergence is achieved at the 120th generation. As before, the simulation is continued for
an extra 10 generations post convergence.
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Figure 10. Evolution of the fitness function and ELC error for the ELC reduction of 20 MW.
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While similar plots can be generated for higher values of ELC reduction, they are
omitted here for the sake of brevity. Table 1 provides a comprehensive overview of the
outcomes derived from the optimal placement of DERs for diverse target ELC values,
ranging from an ELC reduction of 10 MW to 100 MW. The table outlines the optimal
configurations of DERs, offering insights into the optimal locations and capacities required
for achieving specific levels of resilience improvement.

Table 1. Optimization results in the case of the IEEE 24-bus system with different values of target
ELC.

ELC Reduction (MW) Target ELC (MW) Optimal DER
Locations (Buses)

Optimal DER
Capacities (MW)

Total DER Capacity
(MW)

10 246.125 6 20 20

20 236.125 3, 8, 13, 14, 15 20, 10, 40, 30, 10 110

30 226.125 1, 3, 13, 14 40, 60, 30, 40 170

40 216.125 4, 5, 15, 16, 19 30, 10, 60, 120, 20 240

50 206.125 1, 2, 6, 10, 14, 16 30, 50, 100, 30, 10, 50 270

60 196.125 2, 3, 6, 9, 13 120, 80, 10, 70, 50 330

70 186.125 1, 4, 6, 8, 10, 14, 19 30, 20, 110, 10, 20, 140,
140 470

80 176.125 1, 3, 6, 10, 16, 20 80, 110, 90, 30, 100, 110 520

90 166.125 2, 3, 7, 10, 13, 14, 16, 19 150, 80, 50, 10, 50, 100,
90, 100 630

100 156.125 1, 2, 3, 5, 7, 15, 16, 19 90, 50, 120, 90, 30, 140,
120, 60 700

Furthermore, Figure 11 complements the tabulated results by providing a graphical
representation of the correlation between ELC reduction and total DER capacity. This visual
representation highlights the increase in total DER capacity as the desired ELC reduction
grows. The observed trend indicates that aiming for higher levels of resilience enhancement
leads to the deployment of increased DER capacities.
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Figure 11. Plot of the total DER capacity for different values of ELC reduction.

The overarching implication derived from these findings is that decisions regarding the
desired level of resilience should be informed by comprehensive technoeconomic analyses.
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However, it is important to note that detailed technoeconomic analyses are beyond the
scope of this article.

3.5. Comparison of HILP-Based Planning with Traditional Reliability-Based Planning

Traditional reliability-based planning methods typically focus on the average value of
all events, encompassing both low-impact and high-impact events [32]. Figure 12 illustrates
the distribution of load curtailment in the original 10,000 randomly generated multiple-
line outage scenarios. In comparison with Figure 7, which includes only 1400 outage
scenarios with load curtailment ranging from 0 to 143 MW, Figure 12 reveals that more
than 5000 outage scenarios have load curtailment within the same range. This abundance
of lower-impact scenarios would lead to a decreased value of ELC in the reliability-based
planning approach. The ELC computed based on the original scenarios is 178.79 MW, which
is lower than the ELC obtained from the HILP scenarios. This difference arises because
traditional reliability-based analysis tends to average out scenarios, often overlooking
high-impact events. Resilience planning, on the other hand, emphasizes a higher risk level
and investment, as reflected by the higher values of ELC.
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Figure 12. Distribution of load curtailment in orginal outage scenarios.

3.6. Scalability Challenges

The proposed framework for the resilient IRP of transmission systems itself does
not pose any scalability challenges and can be easily adopted or implemented in larger
transmission systems. However, scalability challenges may arise due to the use of GA
for the optimal placement of DERs for enhanced resilience. It is important to note that
the proposed resilient IRP is a planning problem that does not require frequent execution.
Consequently, high-speed computation is not a primary concern in this context. Modern
computers are capable of handling this task for most practical-sized systems. However,
in situations where resources are limited or specific needs arise, the framework remains
flexible. It can accommodate simpler and approximate optimization methods for the
optimal placement of DERs. This flexibility ensures that the proposed framework remains
a reliable and practical solution, even when resources are scarce.

4. Conclusions and Future Work

In this article, we introduced a resilient IRP framework tailored for transmission sys-
tems, specifically designed to tackle the challenges posed by HILP events. The framework
unfolds across three distinct stages: (a) outage data generation, selection of HILP events,
and scenario reduction; (b) evaluation of base case resilience; and (c) re-evaluation of
system resilience with additional resources, incorporating the use of a GA. Employing
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graph-theoretic modeling and strategically considering connected components, the frame-
work provides a systematic methodology for assessing, enhancing, and optimizing the
resilience of the transmission system.

The application of our proposed framework, including the utilization of a GA, yields
valuable insights into the vulnerabilities and behavior of the transmission system when
subjected to HILP events. The evaluation of base case resilience establishes a benchmark for
gauging system performance, while the selection of HILP events concentrates on disruptive
incidents with substantial impacts. Subsequently, the re-evaluation stage enables the
assessment of the effectiveness of additional resources, particularly demonstrated through
the optimal placement of DERs using the GA, to achieve the desired values of ELC reduction.
By quantifying the resilience metric ELC, our framework, enhanced by the GA, facilitates
informed decision making for investment in resource allocation, ultimately enhancing the
system’s ability to withstand and recover from disruptions. Furthermore, this approach
contributes to the broader goal of advancing energy sustainability by promoting efficient
resource utilization and resilient power system planning.

In future research endeavors, a promising avenue to explore involves conducting
a technoeconomic analysis. This analysis aims to determine the optimal sizes of DERs,
considering both the benefits derived from increased resiliency, as indicated by ELC reduc-
tion, and the associated costs arising from the augmentation of DER capacity for resilience
enhancement. This integrated approach ensures a comprehensive understanding of the
trade-offs between resiliency benefits and economic considerations, contributing to the
development of more robust and economically viable transmission systems. Additionally,
incorporating the outage probability of generators into the proposed resilience planning
framework could be a potential future avenue, further enhancing the framework’s capabil-
ity to address system vulnerabilities.
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Appendix A

Table A1. Bus data for the IEEE 24-bus system.

Bus Rated Voltage (kV) Max Voltage Limit (pu) Min Voltage Limit (pu)

1 138 1.05 0.95
2 138 1.05 0.95
3 138 1.05 0.95
4 138 1.05 0.95
5 138 1.05 0.95
6 138 1.05 0.95
7 138 1.05 0.95
8 138 1.05 0.95
9 138 1.05 0.95

10 138 1.05 0.95
11 230 1.05 0.95
12 230 1.05 0.95
13 230 1.05 0.95
14 230 1.05 0.95
15 230 1.05 0.95
16 230 1.05 0.95
17 230 1.05 0.95
18 230 1.05 0.95
19 230 1.05 0.95
20 230 1.05 0.95
21 230 1.05 0.95
22 230 1.05 0.95
23 230 1.05 0.95
24 230 1.05 0.95

Table A2. Load data for the IEEE 24-bus system.

Bus Active Power (MW) Reactive Power (MVAr)

1 108 22
2 97 20
3 180 37
4 74 15
5 71 14
6 136 28
7 125 25
8 171 35
9 175 36
10 195 40
13 265 54
14 194 39
15 317 64
16 100 20
18 333 68
19 181 37
20 128 26
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Table A3. Generator bus data for the IEEE 24-bus system.

Bus Active Power
(MW)

Rated Voltage
(pu)

Min Reactive
Power Limit

(MVAr)

Max Reactive
Power Limit

(MVAr)

Max Active
Power Limit

(MW)

Min Active
Power Limit

(MW)

1 172 1.035 −50 80 192 62.4
2 172 1.035 −50 80 192 62.4
7 240 1.025 0 180 300 75

14 0 0.98 −50 200 0 0
15 215 1.014 −50 110 215 66.3
16 155 1.017 −50 80 155 54.3
18 400 1.05 −50 200 400 100
21 400 1.05 −50 200 400 100
22 300 1.05 −60 96 300 60
23 660 1.05 −125 310 660 248.6

Table A4. Line data for the IEEE 24-bus system.

From Bus To Bus Line Resistance (Ω) Line Reactance (Ω) Line Capacitance (nF)

1 2 0.495144 2.647116 6422.525403
1 3 10.398024 40.220928 796.7218673
1 5 4.151592 16.09218 318.967321
2 4 6.246432 24.128748 477.7545463
2 6 9.464868 36.56448 724.2926067
3 9 5.865552 22.66236 448.504268
4 9 5.103792 19.748628 391.3965817
5 10 4.342032 16.815852 332.896025
6 10 2.647116 11.52162 34,250.68307
7 8 3.027996 11.693016 231.216486
8 9 8.131788 31.441644 622.6130677
8 10 8.131788 31.441644 622.6130677
11 13 3.2269 25.1804 500.9319097
11 14 2.8566 22.1122 440.7599086
12 13 3.2269 25.1804 500.9319097
12 23 6.5596 51.1014 1017.909686
13 23 5.8719 45.7585 911.6058177
14 16 2.645 20.5781 410.1724746
15 16 1.1638 9.1517 182.5217369
15 21 3.3327 25.921 516.4763434
15 24 3.5443 27.4551 547.0637773
16 17 1.7457 13.7011 273.281172
16 19 1.587 12.2199 243.1951714
17 18 0.9522 7.6176 151.934303
17 22 7.1415 55.7037 1109.170555
18 21 1.7457 13.7011 273.281172
19 20 2.6979 20.9484 417.6939748
20 23 1.4812 11.4264 228.1521711
21 22 4.6023 35.8662 714.0410805
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