Advancements and Challenges in Photovoltaic Cell Recycling: A Comprehensive Review
Abstract
:1. Introduction
2. Review Scope and Approach
3. Photovoltaic Technologies
3.1. Crystalline Silicon Technology
3.2. Thin-Film Technology
3.3. Alternative Technologies
4. Photovoltaic Recycling Technologies
4.1. Recycling of Crystalline Silicon Modules
4.2. Recycling of Thin-Film Modules
4.3. Recycling of Alternative PV Technologies
4.4. Discussion of Selected Representative Industrial Recycling Processes in Europe
4.4.1. Veolia Environment, S.A. (Rousset, France)
4.4.2. Lfficiency Holding GmbH (Tangermünde, Germany)
4.4.3. Suez Deutschland GmbH (Knittlingen, Germany)
4.4.4. Reiling Glas Recycling GmbH & Co. KG (Marienfeld, Germany)
5. Environmental and Economic Aspects
6. Challenges
7. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Fthenakis, V.M. End-of-life management and recycling of PV modules. Energy Policy 2000, 28, 1051–1058. [Google Scholar] [CrossRef]
- International Energy Agency. Renewables 2022: Analysis and Forecast to 2027; International Energy Agency: Paris, France, 2023. [Google Scholar]
- Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on Waste Electrical and Electronic Equipment (WEEE); European Union: Brussels, Belgium, 2012.
- Waste Electrical and Electronic Products Recycling Regulations; European Commission: Brussels, Belgium, 2012.
- Guidelines on End-of-Life Management of PV Modules; Ministry of Economy Trade and Industry Japan; Ministry of Environment Japan: Osaka, Japan, 2011.
- Solid Waste Management Rules and Hazardous and Ohter Wastes Rules; Ministry of Environment, Forest and Climate Change India: New Delhi, India, 2016.
- Product Stewardship Act. The Australian Government. Available online: https://www.legislation.gov.au/C2011A00076/latest/text (accessed on 20 February 2024).
- Andersen, R.W. Resource Conservation and Recovery Act of 1976. Wis. L. REv. 1978. [Google Scholar]
- Muhammad-Sukki, F.; Abu-Bakar, S.H.; Munir, A.B.; Yasin, S.; Ramirez-Iniguez, R.; McMeekin, S.G. Feed-in tariff for solar photovoltaic: The rise of Japan. Renew. Energy 2014, 68, 636–643. [Google Scholar] [CrossRef]
- Guidelines for Proving Information for Proper Treatment of Used Solar Cell Modules; JPEA: Dublin, Ireland, 2017.
- Senate Bill No. 489—Hazardous Waste: Photovoltaic Modules. State of California, USA. Available online: https://pluralpolicy.com/app/legislative-tracking/bill/details/state-ca-20152016-sb489/1579697 (accessed on 20 February 2024).
- Ranjan, S.; Balaji, S.; Panella, R.A.; Ydstie, B.E. Silicon solar cell production. Comput. Chem. Eng. 2011, 35, 1439–1453. [Google Scholar] [CrossRef]
- Sander, K. Study on the Development of a Take Back and Recovery System for Photovoltaic Products. 2007. Available online: https://www.oekopol.de/oekopol_archiv/en/Archiv/Stoffstrom/pv-cycle/Report%20PVCycle%20en.pdf (accessed on 20 February 2024).
- Müller, A.; Wambach, K.; Alsema, E. Life Cycle Analysis of Solar Module Recycling Process. MRS Online Proc. Libr. 2005, 895, 0895-G03. [Google Scholar] [CrossRef]
- ITRPV. International Technology Roadmap for Photovoltaic Results 2016, 8th ed.; ITRPV: Frankfurt, Germany, 2017. [Google Scholar]
- Fraunhofer Institute for Solar Energy Systems. Photovoltaics Report. 2017. Available online: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf (accessed on 20 February 2024).
- Green, M.A. Thin-film solar cells: Review of materials, technologies and commercial status. J. Mater. Sci. Mater. Electron. 2007, 18, 15–19. [Google Scholar] [CrossRef]
- Raugei, M.; Isasa, M.; Fullana Palmer, P. Potential Cd emissions from end-of-life CdTe PV. Int. J. Life Cycle Assess. 2012, 17, 192–198. [Google Scholar] [CrossRef]
- Fthenakis, V.M.; Moskowitz, P.D. Thin-film Photovoltaic Cells: Health and Environmental Issues in their Manufacture Use and Disposal. Prog. Photovolt. 1995, 3, 295–306. [Google Scholar] [CrossRef]
- Polman, A.; Knight, M.; Garnett, E.C.; Ehrler, B.; Sinke, W.C. Photovoltaic materials: Present efficiencies and future challenges. Science 2016, 352, aad4424. [Google Scholar] [CrossRef]
- Lunardi, M.M.; Alvarez-Gaitan, J.P.; Bilbao, J.I.; Corkish, R. A Review of Recycling Processes for Photovoltaic Modules. Sol. Panels Photovolt. Mater. 2018. [Google Scholar] [CrossRef]
- Wang, H.; Qin, Z.; Miao, Y.; Zhao, Y. Recent Progress in Large-Area Perovskite Photovoltaic Modules. Trans. Tianjin Univ. 2022, 28, 323–340. [Google Scholar] [CrossRef]
- Lee, D.-K.; Park, N.-G. Materials and Methods for High-Efficiency Perovskite Solar Modules. Solar RRL 2022, 6, 2100455. [Google Scholar] [CrossRef]
- Kim, H.-J.; Kim, H.-S.; Park, N.-G. Progress of Perovskite Solar Modules. Adv. Energy Sustain. Res. 2021, 2, 2000051. [Google Scholar] [CrossRef]
- Werner, J.; Boyd, C.C.; Moot, T.; Wolf, E.J.; France, R.M.; Johnson, S.A.; van Hest, M.F.A.M.; Luther, J.M.; Zhu, K.; Berry, J.J.; et al. Learning from existing photovoltaic technologies to identify alternative perovskite module designs. Energy Environ. Sci. 2020, 13, 3393–3403. [Google Scholar] [CrossRef]
- Snaith, H.J.; Hacke, P. Enabling reliability assessments of pre-commercial perovskite photovoltaics with lessons learned from industrial standards. Nat. Energy 2018, 3, 459–465. [Google Scholar] [CrossRef]
- Celik, I.; Phillips, A.B.; Song, Z.; Yan, Y.; Ellingson, R.J.; Heben, M.J.; Apul, D. Environmental analysis of perovskites and other relevant solar cell technologies in a tandem configuration. Energy Environ. Sci. 2017, 10, 1874–1884. [Google Scholar] [CrossRef]
- Lal, N.N.; Dkhissi, Y.; Li, W.; Hou, Q.; Cheng, Y.-B.; Bach, U. Perovskite Tandem Solar Cells. Adv. Energy Mater. 2017, 7, 1602761. [Google Scholar] [CrossRef]
- You, J.; Dou, L.; Hong, Z.; Li, G.; Yang, Y. Recent trends in polymer tandem solar cells research. Prog. Polym. Sci. 2013, 38, 1909–1928. [Google Scholar] [CrossRef]
- Nelson, C.A.; Monahan, N.R.; Zhu, X.-Y. Exceeding the Shockley–Queisser limit in solar energy conversion. Energy Environ. Sci. 2013, 6, 3508. [Google Scholar] [CrossRef]
- Ehrler, B.; Alarcón-Lladó, E.; Tabernig, S.W.; Veeken, T.; Garnett, E.C.; Polman, A. Photovoltaics Reaching for the Shockley—Queisser Limit. ACS Energy Lett. 2020, 5, 3029–3033. [Google Scholar] [CrossRef]
- Granata, G.; Pagnanelli, F.; Moscardini, E.; Havlik, T.; Toro, L. Recycling of photovoltaic panels by physical operations. Sol. Energy Mater. Sol. Cells 2014, 123, 239–248. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, J. Dissolution of ethylene vinyl acetate in crystalline silicon PV modules using ultrasonic irradiation and organic solvent. Sol. Energy Mater. Sol. Cells 2012, 98, 317–322. [Google Scholar] [CrossRef]
- Berger, W.; Simon, F.-G.; Weimann, K.; Alsema, E.A. A novel approach for the recycling of thin film photovoltaic modules. Resour. Conserv. Recycl. 2010, 54, 711–718. [Google Scholar] [CrossRef]
- Frisson, L.; Lieten, K.; Bruton, T.; De Clercq, K.; Szlufcik, J.; de Moor, H.; Goris, M.; Benali, A.; Aceves, O. Recent improvements in industrial PV module recycling. In Proceedings of the 16th European Photovoltaic Solar Energy Conference, Glasgow, UK, 1–5 May 2000. [Google Scholar]
- Doni, A.; Dughiero, F. Electrothermal heating process applied to c-Si PV recycling. In Proceedings of the 2012 38th IEEE Photovoltaic Specialists Conference, Austin, TX, USA, 3–8 June 2012. [Google Scholar]
- Park, J.; Kim, W.; Cho, N.; Lee, H.; Park, N. An eco-friendly method for reclaimed silicon wafers from a photovoltaic module: From separation to cell fabrication. Green Chem. 2016, 18, 1706–1714. [Google Scholar] [CrossRef]
- Klugmann-Radziemska, E.; Ostrowski, P. Chemical treatment of crystalline silicon solar cells as a method of recovering pure silicon from photovoltaic modules. Renew. Energy 2010, 35, 1751–1759. [Google Scholar] [CrossRef]
- Wang, T.-Y.; Hsiao, J.-C.; Du, C.-H. Recycling of materials from silicon base solar cell module. In Proceedings of the 2012 38th IEEE Photovoltaic Specialists Conference, Austin, TX, USA, 3–8 June 2012; pp. 2355–2358. [Google Scholar]
- Krueger, L. Overview of Rist Solar’s Module Collection and Recycling Program. In Proceedings of the 1st International Conference on PV Module Recycling, Berlin, Germany, 26 January 2010. [Google Scholar]
- FirstSolar. Leading the World’s Sustainable Energy Future. 2023. Available online: https://www.firstsolar.com/en-Emea/ (accessed on 20 February 2024).
- Latunussa, C.; Mancini, L.; Blengini, G.; Ardente, F.; Pennington, D. Analysis of Material Recovery from Silicon Photovoltaic Panels; Publications Office of the European Union: Brussels, Belgium, 2016. [Google Scholar]
- Campo, M.D.; Bonnet, D.; Gegenwart, R.; Beier, J. Process for Recyxcling CdTe/Cds Thin Film Solar Cell Modules US6572782B2. Available online: https://patents.google.com/patent/US6572782B2/en?oq=US6572782 (accessed on 15 December 2023).
- Dobra, T.; Vollprecht, D.; Pomberger, R. Thermal delamination of end-of-life crystalline silicon photovoltaic modules. Waste Manag. Res. 2022, 40, 96–103. [Google Scholar] [CrossRef]
- Camargo, P.S.S.; Da Domingues, A.S.; Palomero, J.P.G.; Kasper, A.C.; Dias, P.R.; Veit, H.M. Photovoltaic module recycling: Thermal treatment to degrade polymers and concentrate valuable metals. Detritus 2021, 16, 48–62. [Google Scholar] [CrossRef]
- Bakhiyi, B.; Labreche, F.; Zayed, J. The photovoltaic industry on the path to a sustainable future—Environmental and occupational health issues. Environ. Int. 2014, 73, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Doi, T.; Tsuda, I.; Unagida, H.; Murata, A.; Sakuta, K.; Kurokawa, K. Experimental study on PV module recycling with organic solvent method. Sol. Energy Mater. Sol. Cells 2001, 67, 397–403. [Google Scholar] [CrossRef]
- Kang, S.; Yoo, S.; Lee, J.; Boo, B.; Ryu, H. Experimental investigations for recycling of silicon and glass from waste photovoltaic modules. Renew. Energy 2012, 47, 152–159. [Google Scholar] [CrossRef]
- Alberi, K.; Berry, J.J.; Cordell, J.J.; Friedman, D.J.; Geisz, J.F.; Kirmani, A.R.; Larson, B.W.; McMahon, W.E.; Mansfield, L.M.; Ndione, P.F.; et al. A roadmap for tandem photovoltaics. Joule 2024, 8, 1–35. [Google Scholar] [CrossRef]
- Peters, I.M.; Hauch, J.; Brabec, C. Cradle-to-cradle recycling in terawatt photovoltaics: A vision of perpetual utility. Joule 2024, 8, 1–14. [Google Scholar] [CrossRef]
- Defrenne, N. New Challenges of PV Life Cycle. 2018. Available online: https://www.ask-eu.de/Artikel/31027/MechanischeVerbundsauftrennung-beim-Recycling-von-c-Si-Photovoltaikmodulen-Aktueller-Standund-neue-Ans%C3%A4tze.htm (accessed on 12 December 2023).
- Kempe, M. Encapsulant Materials for PV Modules. Photovolt. Sol. Energy 2017, 478–490. [Google Scholar] [CrossRef]
- Tesoma GmbH. Recycling von ausgedienten Photovoltaik-Panels mit weltweit einzig sinnvollem Verfahren. 2019. Available online: https://tesoma.de/anwendungen-de/solar/ (accessed on 12 December 2023).
- Suez Deutschland GmbH. Wiederverwertung von Photovoltaikmodulen. Available online: https://www.pv-magazine.de/2018/09/07/suez-nimmt-innovative-anlage-zum-photovoltaik-recycling-in-betrieb/ (accessed on 12 December 2023).
- Heitmann, B. Recycling von siliziumbasierten Photovoltaikmodulen. 2018. Available online: https://www.ressource-deutschland.de/themen/kreislaufwirtschaft/innovative-recyclingtechnologien/pv-module/ (accessed on 20 February 2024).
- Serafin, A. Say Voltaic. Three Europe-Based Industrial Experts Develop Recycling of Photovoltaic Panels That Would Otherwise End Up in Landfills. 2023. Available online: https://www.eib.org/en/stories/recycle-photovoltaic-panels (accessed on 21 February 2024).
- European Commission. Recycling of Photovoltaic Waste Boosts Circular Economy. 2018. Available online: https://cordis.europa.eu/article/id/240250-recycling-of-photovoltaic-waste-boosts-circular-economy (accessed on 21 February 2024).
- Huang, B.; Zhao, J.; Chai, J.; Xue, B.; Zhao, F.; Wang, X. Environmental influence assessment of China’s multi-crystalline silicon (multi-Si) photovoltaic modules considering recycling process. Sol. Energy 2017, 143, 132–141. [Google Scholar] [CrossRef]
- Kwak, J.I.; Nam, S.-H.; Kim, L.; An, Y.-J. Potential environmental risk of solar cells: Current knowledge and future challenges. J. Hazard. Mater. 2020, 392, 122297. [Google Scholar] [CrossRef] [PubMed]
- Nain, P.; Kumar, A. Metal dissolution from end-of-life solar photovoltaics in real landfill leachate versus synthetic solutions: One-year study. Waste Manag. 2020, 114, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Piasecka, I.; Bałdowska-Witos, P.; Piotrowska, K.; Tomporowski, A. Eco-Energetical Life Cycle Assessment of Materials and Components of Photovoltaic Power Plant. Energies 2020, 13, 1385. [Google Scholar] [CrossRef]
- Sica, D.; Malandrino, O.; Supino, S.; Testa, M.; Lucchetti, M.C. Management of end-of-life photovoltaic panels as a step towards a circular economy. Renew. Sustain. Energy Rev. 2018, 82, 2934–2945. [Google Scholar] [CrossRef]
- Bošnjaković, M.; Santa, R.; Crnac, Z.; Bošnjaković, T. Environmental Impact of PV Power Systems. Sustainability 2023, 15, 11888. [Google Scholar] [CrossRef]
- Deng, R.; Chang, N.; Lunardi, M.M.; Dias, P.; Bilbao, J.; Ji, J.; Chong, C.M. Remanufacturing end-of-life silicon photovoltaics: Feasibility and viability analysis. Prog. Photovolt. 2021, 29, 760–774. [Google Scholar] [CrossRef]
- Tsanakas, J.A.; van der Heide, A.; Radavičius, T.; Denafas, J.; Lemaire, E.; Wang, K.; Poortmans, J.; Voroshazi, E. Towards a circular supply chain for PV modules: Review of today’s challenges in PV recycling, refurbishment and re-certification. Prog. Photovolt. 2020, 28, 454–464. [Google Scholar] [CrossRef]
- Trivedi, H.; Meshram, A.; Gupta, R. Recycling of photovoltaic modules for recovery and repurposing of materials. J. Environ. Chem. Eng. 2023, 11, 109501. [Google Scholar] [CrossRef]
- D’Adamo, I.; Ferella, F.; Gastaldi, M.; Ippolito, N.M.; Rosa, P. Circular solar: Evaluating the profitability of a photovoltaic panel recycling plant. Waste Manag. Res. 2023, 41, 1144–1154. [Google Scholar] [CrossRef]
- Allouhi, A.; Rehman, S.; Buker, M.S.; Said, Z. Up-to-date literature review on Solar PV systems: Technology progress, market status and R&D. J. Clean. Prod. 2022, 362, 132339. [Google Scholar]
- Deng, R.; Zhuo, Y.; Shen, Y. Recent progress in silicon photovoltaic module recycling processes. Resour. Conserv. Recycl. 2022, 187, 106612. [Google Scholar] [CrossRef]
- Dias, P.; Veit, H. Recycling Crystalline Silicon Photovoltaic Modules. Emerg. Photovolt. Mater. Silicon Beyond 2018, 61–102. [Google Scholar] [CrossRef]
- Khawaja, M.K.; Ghaith, M.; Alkhalidi, A. Public-private partnership versus extended producer responsibility for end-of-life of photovoltaic modules management policy. Sol. Energy 2021, 222, 193–201. [Google Scholar] [CrossRef]
- Fortune Business Insights. Solar Panel Recycling Market Size, Share & Industry Analysis, by Type (Monocrystalline, Polycrystalline, Thin-Film), by Process (Thermal, Mechanical, Laser) and Regional Forcast 2024–2032. 2024. Available online: https://www.fortunebusinessinsights.com/industry-reports/solar-panel-recycling-market-101756 (accessed on 21 February 2024).
- Mordor Intelligence. Solar Panel Recycling Market Size & Share Analysis. Growth Trends & Forecasts (2024–2029). 2024. Available online: https://www.mordorintelligence.com/industry-reports/solar-panel-recycling-market (accessed on 21 February 2024).
- Chowdhury, M.S.; Rahman, K.S.; Chowdhury, T.; Nuthammachot, N.; Techato, K.; Akhtaruzzaman, M.; Tiong, S.K.; Sopian, K.; Amin, N. An overview of solar photovoltaic panels’ end-of-life material recycling. Energy Strategy Rev. 2020, 27, 100431. [Google Scholar] [CrossRef]
- Isherwood, P.J.M. Reshaping the Module: The Path to Comprehensive Photovoltaic Panel Recycling. Sustainability 2022, 14, 1676. [Google Scholar] [CrossRef]
- Granata, G.; Altimari, P.; Pagnanelli, F.; de Greef, J. Recycling of solar photovoltaic panels: Techno-economic assessment in waste management perspective. J. Clean. Prod. 2022, 363, 132384. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Q.; Wang, H. Cost-benefit analysis of waste photovoltaic module recycling in China. Waste Manag. 2020, 118, 491–500. [Google Scholar] [CrossRef]
- Ardente, F.; Latunussa, C.E.L.; Blengini, G.A. Resource efficient recovery of critical and precious metals from waste silicon PV panel recycling. Waste Manag. 2019, 91, 156–167. [Google Scholar] [CrossRef]
- Monier, V.; Hestin, M. Study on photovoltaic panels supplementing the impact assessment for a recast of the WEEE directive. Final. Rep. 2014. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2016/IRENA_IEAPVPS_End-of-Life_Solar_PV_Panels_2016.pdf (accessed on 20 February 2024).
- Weckend, S.; Wade, A.; Heath, G. End-of-Life Management Solar Photovoltaic Panels. IRENA and IEA-PVPS; National Renewable Energy Lab.: Golden, CO, USA, 2016. [Google Scholar]
- Zobel, F. EoL—Development of an Industrial Recycling Process for PV Modules. 2019. Available online: https://www.ise.fraunhofer.de/en/research-projects/eol.html (accessed on 20 February 2024).
- Sener, C.; Fthenakis, V. Energy policy and financing options to achieve solar energy grid penetration targets: Accounting for external costs. Renew. Sustain. Energy Rev. 2014, 32, 854–868. [Google Scholar] [CrossRef]
- Bustamante, M.L.; Gaustad, G. Challenges in assessment of clean energy supply-chains based on byproduct minerals: A case study of tellurium use in thin film photovoltaics. Appl. Energy 2014, 123, 397–414. [Google Scholar] [CrossRef]
- Deetman, S.; Pauliuk, S.; van Vuuren, D.P.; van der Voet, E.; Tukker, A. Scenarios for Demand Growth of Metals in Electricity Generation Technologies, Cars, and Electronic Appliances. Environ. Sci. Technol. 2018, 52, 4950–4959. [Google Scholar] [CrossRef] [PubMed]
- Regulation of the European Parliament and the Council Concerning Batteries and Waste Batteries, Repealing Directive 2006/66/EC and Amending Regulation (EU) No2019/1020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020PC0798 (accessed on 20 November 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerold, E.; Antrekowitsch, H. Advancements and Challenges in Photovoltaic Cell Recycling: A Comprehensive Review. Sustainability 2024, 16, 2542. https://doi.org/10.3390/su16062542
Gerold E, Antrekowitsch H. Advancements and Challenges in Photovoltaic Cell Recycling: A Comprehensive Review. Sustainability. 2024; 16(6):2542. https://doi.org/10.3390/su16062542
Chicago/Turabian StyleGerold, Eva, and Helmut Antrekowitsch. 2024. "Advancements and Challenges in Photovoltaic Cell Recycling: A Comprehensive Review" Sustainability 16, no. 6: 2542. https://doi.org/10.3390/su16062542
APA StyleGerold, E., & Antrekowitsch, H. (2024). Advancements and Challenges in Photovoltaic Cell Recycling: A Comprehensive Review. Sustainability, 16(6), 2542. https://doi.org/10.3390/su16062542