Distribution and Change Characteristics of Ecosystem Services in Highly Urbanized Areas along Gradients of Human Activity Intensity: A Case Study of Shenzhen City, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. ESs Based on InVEST Model
2.3.2. Quantitative Modeling of HAI
- (1)
- Population density
- (2)
- Land use
- (3)
- Night-time lighting
- (4)
- Scenic area, commercial facility, and transport facilities (POI data)
2.3.3. Driving Mechanism Analysis
3. Results
3.1. Changing Characteristics of ESs
3.2. Changing Characteristics of HAI
3.3. Gradient Response of ESs Pattern Based on HAI
3.3.1. Changes in ESs along Gradients of HAI
3.3.2. Agglomeration Type between ESs and HAI at Different Gradients
3.3.3. Interactive Relationship between ESs and HAI at Different Gradients
4. Discussion
4.1. Validation of ES Assessment Results
4.2. Validation of HAI Results
4.3. Exploring the Relationship between HAI and ESs
4.4. Measures Recommendations
4.5. Limitations and Prospects
5. Conclusions
- (1)
- From 2010 to 2020, the HAI not only exhibited an increasing trend in terms of numerical value, but the area of the high gradient band of HAI also showed an expanding trend, with an overall progression towards the southwest coast of the study area.
- (2)
- From 2010 to 2020, the carbon storage, habitat quality soil conservation, and water conservation showed relatively similar numerical changes in their trends; although the value fluctuation range was different, the change amplitude was the same. Secondly, the spatial distribution pattern of ESs was similar, showing a high distribution in the southeast and a low distribution in the west and middle regions.
- (3)
- In the low-intensity human activity regions (1st–3rd gradient bands), the mean values of each ES were higher than the average level in the study area; as the gradient increased, in the high-intensity human activity regions (6th–10th gradient bands), the mean values of each ES were at more similar levels. In addition, the ESs have a significant negative relationship with HAI, which is mainly concentrated in the 1st to 3rd gradient bands.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ai, M.; Chen, X.; Yu, Q. Spatial correlation analysis between human disturbance intensity (HDI) and ecosystem services value (ESV) in the Chengdu-Chongqing urban agglomeration. Ecol. Indic. 2024, 158, 111555. [Google Scholar] [CrossRef]
- Sun, Y.X.; Liu, S.L.; Shi, F.M.; An, Y.; Li, M.Q.; Liu, Y.X. Spatio-temporal variations and coupling of human activity intensity and ecosystem services based on the four-quadrant model on the Qinghai-Tibet Plateau. Sci. Total Environ. 2020, 743, 140721. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; Ploeg, S.V.D.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Hou, Y.; Liu, Y.; Zeng, H. Assessment of urban ecosystem condition and ecosystem services in Shenzhen based on the MAES analysis framework. Ecol. Indic. 2023, 155, 110962. [Google Scholar] [CrossRef]
- Costanza, R. Valuing natural capital and ecosystem services toward the goals of efficiency, fairness, And sustainability. Ecosyst. Serv. 2020, 43, 101096. [Google Scholar] [CrossRef]
- Xie, Y.C.; Zhang, Y.; Luo, J.L.; Bi, L.Q.; Tong, K. Spatiotemporal heterogeneity and influencing factors of human activity intensity in the Guangxi Beibu Gulf Zone, China. Environ. Sustain. Indic. 2024, 22, 100372. [Google Scholar] [CrossRef]
- Anderson, C.B.; Seixas, C.S.; Barbosa, O.; Fennessy, M.S.; Herrera-F, B. Determining nature’s contributions to achieve the sustainable development goals. Sustain. Sci. 2019, 14, 543–547. [Google Scholar] [CrossRef]
- Aguilera, M.A.; Tapia, J.; Gallardo, C.; Núñez, P.; Varas-Belemmi, K. Loss of coastal ecosystem spatial connectivity and services by urbanization: Natural-to-urban integration for bay management. J. Environ. Manag. 2020, 276, 111297. [Google Scholar] [CrossRef]
- Amponsah, O.; Blija, D.K.; Ayambire, R.A.; Takyi, S.A.; Mensah, H.; Braimah, I. Global urban sprawl containment strategies and their implications for rapidly urbanising cities in Ghana. Land Use Policy 2022, 114, 105979. [Google Scholar] [CrossRef]
- Liu, H.; Fan, J.; Zhou, K.; Xu, X.; Zhang, H.; Guo, R.; Chen, S. Assessing the dynamics of human activity intensity and its natural and socioeconomic determinants in Qinghai–Tibet Plateau. Geogr. Sustain. 2023, 4, 294–304. [Google Scholar] [CrossRef]
- Casas-Ledón, Y.; Andrade, C.; Salazar, C.; Martínez-Martínez, Y.; Aguayo, M. Understanding the dynamics of human appropriation on ecosystems via an exergy-based net primary productivity indicator: A case study in south-central Chile. Ecol. Econ. 2023, 210, 107862. [Google Scholar] [CrossRef]
- Dai, X.; Yang, Y.; Zheng, H.; Meng, N.; Zhu, J.; Li, R.; Ma, J.; Lu, Z.; Li, Z. An integrated method to quantify human appropriation of net primary production in grasslands of the Qinghai-Tibet Plateau. Appl. Geogr. 2023, 158, 103055. [Google Scholar] [CrossRef]
- Kastner, T.; Matej, S.; Forrest, M.; Gingrich, S.; Haberl, H.; Hickler, T.; Krausmann, F.; Lasslop, G.; Niedertscheider, M.; Plutzar, C.; et al. Land use intensification increasingly drives the spatiotemporal patterns of the global human appropriation of net primary production in the last century. Glob. Chang. Biol. 2021, 28, 307–322. [Google Scholar] [CrossRef] [PubMed]
- Mildrexler, D.J.; Zhao, M.; Running, S.W. Testing a MODIS Global Disturbance Index across North America. Remote Sens. Environ. 2009, 113, 2103–2117. [Google Scholar] [CrossRef]
- Carrasco, J.; Acuna, M.; Miranda, A.; Alfaro, G.; Pais, C.; Weintraub, A. Exploring the multidimensional effects of human activity and land cover on fire occurrence for territorial planning. J. Environ. Manag. 2021, 297, 113428. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xu, Z. Functional Coupling Degree and Human Activity Intensity of Production–Living–Ecological Space in Underdeveloped Regions in China: Case Study of Guizhou Province. Land 2021, 10, 56. [Google Scholar] [CrossRef]
- Zhang, X.; Ning, X.; Wang, H.; Zhang, X.; Liu, Y.; Zhang, W. Quantitative assessment of the risk of human activities on landscape fragmentation: A case study of Northeast China Tiger and Leopard National Park. Sci. Total Environ. 2022, 851, 158413. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, E.W.; Jaiteh, M.; Levy, M.A.; Redford, K.H.; Wannebo, A.V.; Woolmer, G. The human footprint and the last of the wild. Bioscience 2002, 52, 891–904. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, W.; Yao, Y.; Pereira, P. The rising human footprint in the Tibetan Plateau threatens the effectiveness of ecological restoration on vegetation growth. J. Environ. Manag. 2024, 351, 119963. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, Y.; Zheng, Z.; Wu, Z. Spatiotemporal coupling analysis between human footprint and ecosystem service value in the highly urbanized Pearl River Delta urban Agglomeration, China. Ecol. Indic. 2023, 148, 110033. [Google Scholar] [CrossRef]
- Duan, H.T.; Luo, L.H. Summary and prospect of spatialization method of human activity intensity: Taking the Qinghai-Tibet Plateau as an example. J. Glaciol. Geocryol. 2021, 43, 1582–1593, (In Chinese with English Abstract). [Google Scholar]
- Hua, T.; Zhao, W.; Cherubini, F.; Hu, X.; Pereira, P. Continuous growth of human footprint risks compromising the benefits of protected areas on the Qinghai-Tibet Plateau. Glob. Ecol. Conserv. 2022, 34, e02053. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Ouyang, Z.Y.; Zhu, C.Q.; Yang, G.B.; Xu, W.H.; Xiao, Y. Gross ecosystem product: Concept, accounting framework and case study. Acta Ecol. Sin. 2013, 33, 6747–6761, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Xie, G.D.; Zhang, C.X.; Zhang, L.M.; Chen, W.H.; Li, S.M. Improvement of the Evaluation Method for Ecosystem Service Value Based on Per Unit Area. J. Nat. Resour. 2015, 30, 123–1254, (In Chinese with English Abstract). [Google Scholar]
- MA (Millennium Ecosystem Assessment). Ecosystems and Human Well-Being: A Framework for Assessment; Island Press: Washington, DC, USA, 2003. [Google Scholar]
- United nations environmental program. Millennium Ecosystem Assessment Ecosystems and Human Wellbeing Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Hou, L.; Wu, F.Q.; Xie, X.L. The spatial characteristics and relationships between landscape pattern and ecosystem service value along an urban-rural gradient in Xian city, China. Ecol. Indic. 2020, 108, 105720. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, Z.; Jeppesen, E.; Gao, Y.; Liu, Y.; Lu, Q.; Wang, C.; Sun, X. Assessment of the effectiveness of China’s protected areas in enhancing ecosystem services. Ecosyst. Serv. 2024, 65, 101588. [Google Scholar] [CrossRef]
- Ren, Q.; Liu, D.D.; Liu, Y.F. Spatio-temporal variation of ecosystem services and the response to urbanization: Evidence based on Shandong province of China. Ecol. Indic. 2023, 151, 110333. [Google Scholar] [CrossRef]
- Fang, Z.; Ding, T.H.; Chen, J.Y.; Xue, S.; Zhou, Q.; Wang, Y.D.; Wang, Y.X.; Huang, Z.D.; Yang, S.L. Impacts of land use/land cover changes on ecosystem services in ecologically fragile regions. Sci. Total Environ. 2022, 831, 154967. [Google Scholar] [CrossRef]
- Yu, H.; Chen, C.; Shao, C.F. Spatial and temporal changes in ecosystem service driven by ecological compensation in the Xin’an River Basin, China. Ecol. Indic. 2023, 146, 109798. [Google Scholar] [CrossRef]
- Gong, J.; Jin, T.T.; Liu, D.Q. Are ecosystem service bundles useful for mountainous landscape function zoning and management? A case study of Bailongjiang watershed in western China. Ecol. Indic. 2022, 134, 108495. [Google Scholar] [CrossRef]
- Guo, C.Q.; Xu, X.B.; Sun, Q. A review on the assessment methods of supply and demand of ecosystem services. Chin. J. Ecol. 2020, 39, 2086–2096, (In Chinese with English Abstract). [Google Scholar]
- Cong, W.; Sun, X.; Guo, H.; Shan, R. Comparison of the SWAT and InVEST models to determine hydrological ecosystem service spatial patterns, priorities and trade-offs in a complex basin. Ecol. Indic. 2020, 112, 106089. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, Z.; Sun, S.; Wen, Y.; Chen, H. Study on the driving factors of ecosystem service value under the dual influence of natural environment and human activities. J. Clean. Prod. 2023, 420, 138408. [Google Scholar] [CrossRef]
- Xu, Z.H.; Wei, H.J.; Fan, W.G.; Wang, X.C.; Zhang, P.; Ren, J.H.; Lu, N.C.; Gao, Z.C.; Dong, X.B.; Kong, W.D. Relationships between ecosystem services and human well-being changes based on carbon flow—A case study of the Manas River Basin, Xinjiang, China. Ecosyst. Serv. 2019, 37, 100934. [Google Scholar] [CrossRef]
- Sun, Y.H.; Zhang, S.R.; Xu, Q.H. Pollen-based land cover changes reveal temporal and spatial differences of human activity in north-central China during the Holocene. Catena 2022, 219, 106620. [Google Scholar] [CrossRef]
- Qi, Y.; Lian, X.; Wang, H.; Zhang, J.; Yang, R. Dynamic mechanism between human activities and ecosystem services: A case study of Qinghai lake watershed, China. Ecol. Indic. 2020, 117, 106528. [Google Scholar] [CrossRef]
- Rong, Y.; Li, K.; Guo, J. Multi-scale spatio-temporal analysis of soil conservation service based on MGWR model: A case of Beijing-Tianjin-Hebei, China. Ecol. Indic. 2022, 139, 108946. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Yang, W.B.; Kang, W. Multiscale Geographically Weighted Regression (MGWR). Ann. Am. Assoc. Geogr. 2017, 107, 1247–1265. [Google Scholar] [CrossRef]
- Liu, X.; Su, Y.; Li, Z.; Zhang, S. Constructing ecological security patterns based on ecosystem services trade-offs and ecological sensitivity: A case study of Shenzhen metropolitan area, China. Ecol. Indic. 2023, 154, 110626. [Google Scholar] [CrossRef]
- Xu, C.; Jiang, W.Y.; Huang, Q.Y.; Wang, Y.T. Ecosystem services response to rural-urban transitions in coastal and island cities: A comparison between Shenzhen and Hong Kong, China. J. Clean. Prod. 2020, 260, 121033. [Google Scholar] [CrossRef]
- Sharp, R.; Chaplin-Kramer, R.; Wood, S.; Guerry, A.; Tallis, H.; Ricketts, T.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST User’s Guide; The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund: Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- Zhang, X.R.; Zhou, J.; Li, G.N.; Chen, C.; Li, M.M.; Luo, J.M. Spatial pattern reconstruction of regional habitat quality based on the simulation of land use changes from 1975 To 2010. J. Geogr. Sci. 2020, 30, 601–620. [Google Scholar] [CrossRef]
- Zhao, Q.J.; Shao, J.F. Evaluating the impact of simulated land use changes under multiple scenarios on ecosystem services in Ji’an, China. Ecol. Indic. 2023, 156, 111040. [Google Scholar] [CrossRef]
- Cao, X.; Shi, Y.; Zhou, L.; Tao, T.; Yang, Q. Analysis of Factors Influencing the Urban Carrying Capacity of the Shanghai Metropolis Based on a Multiscale Geographically Weighted Regression (MGWR) Model. Land 2021, 10, 578. [Google Scholar] [CrossRef]
- Qiao, W.Y.; Huang, X.J. The impact of land urbanization on ecosystem health in the Yangtze River Delta urban agglomerations, China. Cities 2022, 130, 103981. [Google Scholar] [CrossRef]
- Mao, B.; Wang, X.; Liao, Z.; Miao, Y.; Yan, S. Spatiotemporal variations and tradeoff-synergy relations of ecosystem services under ecological water replenishment in Baiyangdian Lake, North China. J. Environ. Manage. 2023, 343, 118229. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.Q.; Shi, X.Q.; Li, Y.H.; Li, Y.M.; Huang, P. Spatio-temporal pattern and functional zoning of ecosystem services in the karst mountainous areas of southeastern Yunnan. Acta Geogr. Sin. 2022, 77, 736–756, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Wu, Y.D.; Meng, J.J. Quantifying the spatial pattern for the importance of natural resource ecosystem services in China. J. Nat. Resour. 2022, 37, 17–33. [Google Scholar] [CrossRef]
- Chen, T.; Ye, Y.H.; Sun, F.F. Assessment on the Importance of Ecosystem Service Function in Shenzhen City Based on SPOT Data. Ecol. Econ. 2018, 34, 151–157, (In Chinese with English Abstract). [Google Scholar]
- Zhao, Y.; Wang, N.; Luo, Y.; He, H.; Wu, L.; Wang, H.; Wang, Q.; Wu, J. Quantification of ecosystem services supply-demand and the impact of demographic change on cultural services in Shenzhen, China. J. Environ. Manag. 2022, 304, 114280. [Google Scholar] [CrossRef]
- Wen, D.; Wang, X.; Liu, J.; Xu, N.; Zhou, W.; Hong, M. Maintaining key ecosystem services under multiple development scenarios: A case study in Guangdong–Hong Kong–Macao greater bay Area, China. Ecol. Indic. 2023, 154, 110691. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, S.; Li, J.; Pan, C.; Wu, J.; Ran, J.; Su, Y. Remarkable improvement of ecosystem service values promoted by land use/land cover changes on the Yungui Plateau of China during 2001–2020. Ecol. Indic. 2022, 142, 109303. [Google Scholar] [CrossRef]
- Wu, W.; Yang, F.L.; Wang, J.J. Dynamic monitoring and analysis of ecosystem disturbances in major vegetation types based on MODIS time series data in Southwest China. Geogr. Res. 2021, 40, 1478–1494, (In Chinese with English Abstract). [Google Scholar]
- Chen, B.; Jing, X.; Liu, S.; Jiang, J.; Wang, Y. Intermediate human activities maximize dryland ecosystem services in the long-term land-use change: Evidence from the Sangong River watershed, northwest China. J. Environ. Manag. 2022, 319, 115708. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Abulizi, A.; Xu, Z.; Jiang, J.; Akbar, A.; Ou, B.; Xu, F. Evolution of environmental quality and its response to human disturbances of the urban agglomeration in the northern slope of the Tianshan Mountains. Ecol. Indic. 2023, 153, 110481. [Google Scholar] [CrossRef]
- Li, M.; Luo, G.; Li, Y.; Qin, Y.; Huang, J.; Liao, J. Effects of landscape patterns and their changes on ecosystem health under different topographic gradients: A case study of the Miaoling Mountains in southern China. Ecol. Indic. 2023, 154, 110796. [Google Scholar] [CrossRef]
- Sannigrahi, S.; Zhang, Q.; Pilla, F.; Joshi, P.K.; Basu, B.; Keesstra, S.; Roy, P.S.; Wang, Y.; Sutton, P.C.; Chakraborti, S.; et al. Responses of ecosystem services to natural and anthropogenic forcings: A spatial regression based assessment in the world’s largest mangrove ecosystem. Sci. Total Environ. 2020, 715, 137004. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Wang, S. Coexistence and transformation from urban industrial land to green space in decentralization of megacities: A case study of Daxing District, Beijing, China. Ecol. Indic. 2023, 156, 111120. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, D.C.; Fan, J.D.; Yu, C.; Zhou, Y.; Tang, J.J. Study on the change of ecosystem service value and its correlation with human activities: Taking Changzhou City as an example. J. Environ. Eng. Technol. 2022, 12, 2124–2131, (In Chinese with English Abstract). [Google Scholar]
Types | Module Data Requirement Type | Unit | Format | Data Sources |
---|---|---|---|---|
Shared data | Land use cover type map | int | Grid (30 m × 30 m) | Cas Geographic Data Cloud (https://www.casdc.cn/) (accessed on 2 June 2023) |
Water conservation | Precipitation | mm | Grid (1 km × 1 km) | National Tibetan Plateau Data Center (https://data.tpdc.ac.cn) (accessed on 14 June 2023) |
Potential evapotranspiration | mm | Global Potential evapotranspiration and Global Drought Index dataset (https://cgiarcsi.community/data/global-aridityand-pet-database/) (accessed on 10 June 2023) | ||
Soil texture | int | HWSD Soil Database | ||
Water content available to plants | % | Calculated based on the HWSD soil database | ||
Distribution map of catchment/subsets | int | Shp | DEM generation | |
Plant root depth | mm | dbf | China 1:100,000 Soil Database (http://www.soil.csdb.cn/) (accessed on 11 June 2023) | |
Evapotranspiration coefficient | - | dbf | Corrections InVEST model and references | |
Carbon storage | Carbon density data by land use type | t/hm2 | dbf | Corrections InVEST model and references |
Soil conservation | DEM data | m | Grid (30 m × 30 m) | Geospatial data cloud (https://www.gscloud.cn/) (accessed on 11 May 2023) |
Rainfall erosivity R | MJ·mm/ (hm2·h·a) | Grid (1 km × 1 km) | Calculation based on precipitation data | |
Soil erodibility factor (K) | t·hm2/ (MJ·mm) | Calculated based on the HWSD soil database | ||
Distribution map of catchment/subsets | int | Shp | DEM data generation | |
Vegetation management factor (C) | - | dbf | Calculation based on NDVI data | |
Vegetation management factor (P) | - | dbf | References | |
Habitat quality | Major threat factors | - | dbf | Corrections InVEST model and references |
Threat source factor weights | - | dbf | Corrections InVEST model and references | |
Sensitivity of land use types to stress factors | - | dbf | Corrections InVEST model and references | |
Human footprint index | Population data | Person/1 km2 | Grid (1 km × 1 km) | Data Center for Resource and Environmental Sciences, Chinese Academy of Sciences (http://www.resdc.cn) (accessed on 2 June 2023) |
Night-time lighting data | - | National Earth System Science Data Center http://www.geodata.cn/ (accessed on 14 June 2023) | ||
POI data | - | Shp | Gao De Map https://www.amap.com/ (accessed on 15 July 2023) |
Threat | Maximum Distance | Weight | Decay Type |
---|---|---|---|
Built-up land | 8 | 1 | Exponential |
Cropland | 4 | 0.7 | Linear |
Unused land | 5 | 0.75 | Linear |
Land Use Types | Carbon Density Values of Various Land Use Types (Unit: t/hm2) | Biophysical Tables Required for Soil Conservation | Biophysical Table for Water Conservation | ||||||
---|---|---|---|---|---|---|---|---|---|
C | P | root_depth | Kc | LULC_veg | |||||
Cropland | 16.61 | 4.15 | 10.84 | 0 | 0.05 | 0.15 | 700 | 0.65 | 1 |
Forestland | 21.1 | 5.28 | 22.57 | 0 | 0.03 | 1 | 3000 | 1 | 1 |
Grassland | 2.15 | 9.68 | 9.99 | 0 | 0.04 | 1 | 1500 | 0.6 | 1 |
Water | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.9 | 0 |
Unused land | 18.32 | 1.83 | 0.84 | 0 | 1 | 1 | 100 | 0.5 | 0 |
Built-up land | 0.92 | 0.09 | 15.88 | 0 | 0 | 0 | 1 | 0.3 | 0 |
Annual | m3/km2) | t/km2) | Carbon Storage (t/km2) | Habitat Quality |
---|---|---|---|---|
2010 | 1.498 | 1.720 | 3.158 | 0.464 |
2020 | 1.266 | 1.529 | 3.107 | 0.447 |
Year | Nanshan District | Futian District | Luohu District | Yantian District | Dapeng New District | Pingshan District | Longgang District | Longhua District | Guangming District | Bao’an District |
---|---|---|---|---|---|---|---|---|---|---|
2010 | 27.69 | 42.75 | 31.89 | 18.51 | 11.51 | 17.96 | 25.41 | 25.96 | 20.79 | 26.07 |
2010 | 27.52 | 39.06 | 28.15 | 15.69 | 10.23 | 13.96 | 21.86 | 23.27 | 17.77 | 22.95 |
ESs | High Values | Corresponding Gradient | Low Values | Corresponding Gradient | ||
---|---|---|---|---|---|---|
2010 | 2020 | 2010 | 2020 | |||
Carbon storage (t/km2) | 4.373 | 4.287 | Gradient 1 | 1.916 | 1.878 | Gradient 9 (2010) Gradient 10 (2020) |
Habitat quality | 0.868 | 0.838 | Gradient 1 | 0.058 | 0.042 | Gradient 9 (2010) Gradient 10 (2020) |
Soil conservation (t/km2) | 4.131 103 | 4.514 103 | Gradient 1 | 0.206 103 | 0.253 103 | Gradient 10 (2010) Gradient 9 (2020) |
Water conservation (m3/km2) | 1.725 103 | 1.504 103 | Gradient 1 | 1.297 103 | 1.071 103 | Gradient 10 |
Moran’s I | Carbon Storage vs. HAI | Habitat Quality vs. HAI | Soil Conservation vs. HAI | Water Conservation vs. HAI |
---|---|---|---|---|
2010 | −0.183 | −0.358 | −0.216 | −0.073 |
2020 | −0.223 | −0.362 | −0.206 | −0.095 |
Year | Model | Variable | Bandwidth | R2 | adj.R2 | AICc |
---|---|---|---|---|---|---|
2010 | MGWR | Carbon storage vs. HAI | 1903.73 | 0.862 | 0.816 | 15,707.71 |
Habitat quality vs. HAI | 1779.06 | |||||
Soil conservation vs. HAI | 1460.81 | |||||
Water conservation vs. HAI | 1938.82 | |||||
GWR | ESs vs. HAI | 3185.75 | 0.712 | 0.695 | 17,168.33 | |
2020 | MGWR | Carbon storage vs. HAI | 1813.23 | 0.876 | 0.821 | 15,716.28 |
Habitat quality vs. HAI | 1590.76 | |||||
Soil conservation vs. HAI | 1446.42 | |||||
Water conservation vs. HAI | 1948.02 | |||||
GWR | ESs vs. HAI | 3034.12 | 0.705 | 0.638 | 17,935.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Zhu, X. Distribution and Change Characteristics of Ecosystem Services in Highly Urbanized Areas along Gradients of Human Activity Intensity: A Case Study of Shenzhen City, China. Sustainability 2024, 16, 2543. https://doi.org/10.3390/su16062543
Yang Y, Zhu X. Distribution and Change Characteristics of Ecosystem Services in Highly Urbanized Areas along Gradients of Human Activity Intensity: A Case Study of Shenzhen City, China. Sustainability. 2024; 16(6):2543. https://doi.org/10.3390/su16062543
Chicago/Turabian StyleYang, Yijia, and Xuexin Zhu. 2024. "Distribution and Change Characteristics of Ecosystem Services in Highly Urbanized Areas along Gradients of Human Activity Intensity: A Case Study of Shenzhen City, China" Sustainability 16, no. 6: 2543. https://doi.org/10.3390/su16062543
APA StyleYang, Y., & Zhu, X. (2024). Distribution and Change Characteristics of Ecosystem Services in Highly Urbanized Areas along Gradients of Human Activity Intensity: A Case Study of Shenzhen City, China. Sustainability, 16(6), 2543. https://doi.org/10.3390/su16062543