The Relationship between Climate, Agriculture and Land Cover in Matopiba, Brazil (1985–2020)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Field
2.2. Methodological Approach
3. Results
3.1. Climate Analysis
3.2. Land Cover and Land Use Analysis
3.3. Agricultural Analysis
3.4. Relationship between Climate, Agricultural, Land Cover and Land Use Changes and Ocean–Atmosphere Anomalies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abrahams, D. Conflict in abundance and peacebuilding in scarcity: Challenges and opportunities in addressing climate change and conflict. World Dev. 2020, 132, 104998. [Google Scholar] [CrossRef]
- IPCC—Intergovernmental Panel on Climate Change. Summary for Policymakers; IPCC: Genebra, Switzerland, 2020; pp. 1–41. [Google Scholar]
- Muluneh, A. Impact of climate change on soil water balance, maize production, and potential adaptation measures in the Rift Valley drylands of Ethiopia. J. Arid Environ. 2020, 179, 104195. [Google Scholar] [CrossRef]
- IPCC—Intergovernmental Panel on Climate Change. Summary for Policymakers. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Cambridge, UK; New York, NY, USA, 2022; pp. 3–33. [Google Scholar]
- IPCC—Intergovernmental Panel on Climate Change. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Cambridge, UK; New York, NY, USA, 2021; pp. 3–32. [Google Scholar]
- Dai, S.; Shulski, M.D.; Hubbard, K.G.; Takle, E.S. A spatiotemporal analysis of Midwest US temperature and precipitation trends during the growing season from 1980 to 2013. Int. J. Climatol. 2016, 36, 517–552. [Google Scholar] [CrossRef]
- Santos, C.A.C.; Neale, C.M.U.; Mekonnen, M.M.; Gonçalves, I.Z.; Oliveira, G.; Ruiz-Alvarez, O.; Safa, B.; Rowe, C.M. Trends of extreme air temperature and precipitation and their impact on corn and soybean yields in Nebraska, USA. Theor. Appl. Climatol. 2022, 147, 1379–1399. [Google Scholar] [CrossRef]
- Rana, I.A. Disaster and climate change resilience: A bibliometric analysis. Int. J. Disaster Risk Reduct. 2020, 50, 101839. [Google Scholar] [CrossRef]
- Feldmeyer, D.; Nowak, W.; Jamshed, A.; Birkmann, J. An open resilience index: Crowdsourced indicators empirically developed from natural hazard and climatic event data. Sci. Total Environ 2021, 774, 145734. [Google Scholar] [CrossRef]
- Silva, W.K.M.; Medeiros, S.E.L.; da Silva, L.P.; Coelho, L.M., Jr.; Abrahão, R. Sugarcane production and climate trends in Paraíba state (Brazil). Environ. Monit. Assess. 2020, 192, 392. [Google Scholar] [CrossRef] [PubMed]
- Dou, Y.; Silva, R.F.B.; Batistella, M.; Torres, S.; Moran, E.; Liu, J. Mapping crop producer perceptions: The role of global drivers on local agricultural land use in Brazil. Land Use Policy 2023, 133, 106862. [Google Scholar] [CrossRef]
- Murray, A.B.; Lazarus, E.; Ashton, A.; Baas, A.; Coco, G.; Coulthard, T.; Fonstad, M.; Haff, P.; McNamara, D.; Paola, C.; et al. Geomorphology, complexity and emerging science of the earth’s surface. Geomorphology 2009, 103, 496–505. [Google Scholar] [CrossRef]
- Harden, C.P.; Chin, A.; English, M.R.; Fu, R.; Galvin, K.A.; Gerlak, A.K.; McDowell, P.F.; McNamara, D.E.; Peterson, J.M.; Poff, N.L.; et al. Understanding human-landscape interactions in the “Anthropocene”. Environ. Manag. 2014, 53, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Lupinacci, C.M.; Conceição, F.T.; Paschoal, L.G. Geomorphic responses due to the second-largest global producer of ceramic tiles in the State of São Paulo, Brazil. Catena 2022, 218, 106550. [Google Scholar] [CrossRef]
- Curtis, P.G.; Slay, C.M.; Harris, N.L.; Tyukavina, A.; Hansen, M.C. Classifying drivers of global forest loss. Science 2018, 361, 1108–1111. [Google Scholar] [CrossRef] [PubMed]
- Ward, F.A. Enhancing climate resilience of irrigated agriculture: A review. J. Environ. Manag. 2022, 302, 114032. [Google Scholar] [CrossRef] [PubMed]
- Araújo, M.L.S.A.; Sano, E.E.; Bolfe, E.L.; Santos, J.R.N.; Santos, J.S.; Silva, F.B. Spatiotemporal dynamics of soybean crop in the Matopiba region, Brazil (1990–2015). Land Use Policy 2019, 80, 57–67. [Google Scholar] [CrossRef]
- Luan, X.; Bommarco, R.; Vico, G. Coordinated evaporative demand and precipitation maximize rainfed maize and soybean crop yields in the USA. Ecohydrology 2023, 16, e2500. [Google Scholar] [CrossRef]
- MAPA—Ministério da Agricultura, Pecuária e Abastecimento. Projeções do Agronegócio. Brasil 2015/16 a 2025/26. Projeções de Longo Prazo, 7th ed.; MAPA: Brasília, Brazil, 2016; pp. 1–138. [Google Scholar]
- FMI—Fundo Monetário Internacional. International Financial Statistics; FMI: Washington, DC, USA, 2019; Available online: http://www.imf.org/external/datamapper/datasets/IFS (accessed on 20 March 2020).
- EMBRAPA—Empresa Brasileira de Pesquisa Agropecuária. Pesquisa, Desenvolvimento e Inovação. Brasil Lidera e é Referência no Desenvolvimento de Tecnologias Sustentáveis para Produção de soja. Embrapa Soja. Available online: https://www.embrapa.br/busca-de-noticias (accessed on 7 February 2024).
- Taherzadeh, O.; Caro, D. Drivers of water and land use embodied in international soybean trade. J. Clean. Prod. 2019, 223, 83–93. [Google Scholar] [CrossRef]
- Doorenbos, J.; Kassam, A.H. Efeitos da Água no Rendimento das Culturas; FAO: Roma, Italy, 1994; pp. 1–212. [Google Scholar]
- Rigo, A.A.; Dahmer, A.M.; Steffens, C.; Steffens, J.; Carrão-Panizzi, M.C. Characterization of soybean cultivars genetically improved for human consumption. Int. J. Food Eng. 2015, 1, 1–7. [Google Scholar] [CrossRef]
- De Mattos, E.C.; Márcia Bittar, A.T.U.I.; da Silva, A.M.; Roberto, A.; Ferreira, M.D.N.; dos Santos Soares, J.; Moraes, M.A. Estudo da identidade histológica de subprodutos de soja (Glycine max L.). Rev. Inst. Adolfo Lutz 2015, 74, 104–110. [Google Scholar] [CrossRef]
- FAO—Food and Agriculture Organization of the United Nations. CropWat. Available online: http://www.fao.org/land-water/databases-and-software/cropwat/en/ (accessed on 18 February 2021).
- CONAB—Companhia Nacional de Abastecimento. Histórico Mensal Soja. Análise Mensal. Soja. Outubro de 2018. Available online: https://www.conab.gov.br/info-agro/analises-do-mercado-agropecuario-e-extrativista/analises-do-mercado/historico-mensal-de-soja (accessed on 7 April 2022).
- CONAB—Companhia Nacional de Abastecimento. Com Novo Recorde, Produção de Grãos na Safra 2022/23 Chega a 3228 Milhões de Toneladas. Available online: https://www.conab.gov.br/ultimas-noticias/5157-com-novo-recorde-producao-de-graos-na-safra-2022-23-chega-a-322-8-milhoes-de-toneladas (accessed on 10 February 2023).
- Miranda, E.E.; Magalhães, L.A.; Carvalho, C.A. Proposta de Delimitação Territorial do Matopiba; Embrapa, Nota técnica GITE: Campinas, Brazil, 2014; pp. 1–18. [Google Scholar]
- Santos Filho, J.I.S.; Talamini, D.J.D.; Scheuermann, G.N.; Bertol, T.M. Potencial do Matopiba na produção de aves e suínos. Rev. Polít. Agríc. 2016, 25, 90–102. [Google Scholar]
- Anderson, M.C.; Zolin, C.A.; Sentelhas, P.C.; Hain, C.R.; Semmens, K.; Yilmaz, M.T.; Gao, F.; Otkin, J.A.; Tetrault, R. The evaporative stress index as an indicator of agricultural drought in Brazil: An assessment based on crop yield imapcts. Remote Sens. Environ. 2016, 174, 82–99. [Google Scholar] [CrossRef]
- EMBRAPA–Empresa Brasileira de Pesquisa Agropecuária. Macrozoneamento Ecológico-Econômico do Estado do Maranhão; Embrapa Monitoramento por Satélite: Campinas, Brazil, 2013; pp. 1–448. [Google Scholar]
- Bolfe, E.; Victória, D.; Contini, E.; Bayma-Silva, G.; Spinelli-Araújo, L.; Gomes, D. MATOPIBA em crescimento agrícola: Aspectos territoriais e socioeconômicos. Rev. Polít. Agríc. 2016, 25, 38–62. [Google Scholar]
- Reis, L.C.; Silva, C.M.S.; Bezerra, B.G.; Mutti, P.R.; Spyrides, M.H.C.; Silva, P.E. Analysis of climate extreme indices in the MATOPIBA region, Brazil. Pure Appl. Geophys. 2020, 177, 4457–4478. [Google Scholar] [CrossRef]
- Asewar, B.; Jagtap, M.; Shinde, G.; Mehetre, S.; Pendke, M. Climate-Resilient Technologies for Enhancing Productivity of Soybean in India. In Soybean-Recent Advances in Research and Applications; IntechOpen: London, UK, 2022; pp. 1–284. [Google Scholar]
- MacCarthy, D.S.; Traore, P.S.; Freduah, B.S.; Adiku, S.G.K.; Dodor, D.E.; Kumahor, S.K. Productivity of soybean under projected climate change in a semi-arid region of West Africa: Sensitivity of current production system. Agronomy 2022, 12, 2614. [Google Scholar] [CrossRef]
- MAPA—Ministério da Agricultura, Pecuária e Abastecimento. Projeções do Agronegócio. Brasil 2022/23 a 2032/33. Projeções de Longo Prazo; MAPA: Brasília, Brazil, 2023; pp. 1–108. [Google Scholar]
- IBGE–Instituto Brasileiro de Geografia e Estatística. Mapas. Rio de Janeiro: IBGE. Available online: http://mapas.ibge.gov.br/tematicos (accessed on 28 March 2022).
- Magalhães, L.A.; Miranda, E.E. MATOPIBA: Quadro Natural; Embrapa, Nota Técnica GITE: Campinas, Brazil, 2014; pp. 1–41. [Google Scholar]
- Araújo, M.L.S.A. Dinâmica Espaço-Temporal da Cultura de Soja na Região do Matopiba, Brasil (1990–2015). Master’s Thesis, University of Brasilia, Brasília, Brazil, 2018. [Google Scholar]
- INMET—Instituto Nacional de Meteorologia. Boletim Agrometeorológico Mensal. Available online: https://portal.inmet.gov.br (accessed on 4 March 2020).
- Arguez, A.; Vose, R.S. The definition of the standard WMO climate normal: The key to deriving alternative climate normal. Bull. Am. Meteorol. Soc. 2011, 92, 699–704. [Google Scholar] [CrossRef]
- MapBiomas. Projeto MapBiomas—Coleção 6.0 da Série Anual de Mapas de Cobertura e Uso de Solo do Brasil. Available online: https://mapbiomas.org/download (accessed on 6 July 2021).
- IBGE—Instituto Brasileiro de Geografia e Estatística. Sistema IBGE de Recuperação Automática. Banco de Tabelas Estatísticas; IBGE: Rio de Janeiro, Brazil, 2021. Available online: https://sidra.ibge.gov.br/ (accessed on 28 October 2021).
- NOAA—National Oceanic and Atmospheric Administration. Physical Sciences Laboratory. Available online: https://psl.noaa.gov/ (accessed on 6 July 2021).
- Mann, H.B. Non-parametric test against trend. Econometria 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Silva, F.B.; Santos, J.R.N.; Feitosa, F.E.C.S.; Silva, I.D.C.; Araújo, M.L.S.; Guterres, C.E.; Santos, J.S.; Ribeiro, C.V.; Bezerra, D.S.; Neres, R.L. Evidências de mudanças climáticas na região de transição Amazônia-Cerrado no estado do Maranhão. Rev. Bras. Meteorol. 2016, 31, 330–336. [Google Scholar] [CrossRef]
- Bačević, N.R.; Pavlović, M.; Rasljanin, I. Trend assessing using Mann-Kendall’s test for Priština meteorological station temperature and precipitation data, Kosovo and Metohija, Serbia. Nat. Sci. 2018, 8, 39–43. [Google Scholar] [CrossRef]
- XLSTAT. Software XLSTAT. Available online: https://www.xlstat.com/en/ (accessed on 6 July 2021).
- Pearson, K. Notes on the history of correlation. Biometrika 1920, 13, 25–45. [Google Scholar] [CrossRef]
- Liu, Y.; Shana, F.; Yue, H.; Wanga, X.; Fan, Y. Global analysis of the correlation and propagation among meteorological, agricultural, surface water, and groundwater droughts. J. Environ. Manag. 2023, 333, 117460. [Google Scholar] [CrossRef]
- Bathke, D.J.; Oglesby, R.J.; Rowe, C.M.; Whilhite, D.A. Understanding and Assessing Climate Change: Implications for Nebraska; Lincoln: Detroit, MI, USA, 2014; pp. 1–73. [Google Scholar]
- Zhu, X.; Troy, T.J. Agriculturally relevant climate extremes and their trends in the world’s major growing regions. Earth’s Future 2018, 6, 656–672. [Google Scholar] [CrossRef]
- EMBRAPA–Empresa Brasileira de Pesquisa Agropecuária. Tecnologias de Produção de Soja—Região Central do Brasil 2014; Embrapa Soja: Londrina, Brazil, 2013; pp. 1–265. [Google Scholar]
- Marcos Filho, J. Germinação de Sementes. In Semana de Atualização em Produção de Sementes; Fundação Cargill: Campinas, Brazil, 1986; pp. 11–39. [Google Scholar]
- Fagan, E.B.; Rodrigues, J.D.; Ono, E.O.; Teixeira, W.F.; Neto, D.D. Soja: Fisiologia da Produção; Editora Andrei: São Paulo, Brazil, 2020; pp. 1–247. [Google Scholar]
- EMBRAPA–Empresa Brasileira de Pesquisa Agropecuária. Soja Tolerante a Veranicos é Lançada na Bahia; Embrapa Cerrados: Brasília, Brazil, 2019; Available online: https://www.embrapa.br/busca-de-noticias/-/noticia/43736399/soja-tolerante-a-veranicos-e-lancada-na-bahia (accessed on 1 April 2022).
- EMBRAPA—Empresa Brasileira de Pesquisa Agropecuária. A Evolução da Produção de Soja na Macrorregião Sojícola 4. Embrapa Soja. Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/201375/1/p-25.pdf (accessed on 1 February 2023).
- Hirakuri, M.H. Avaliação Econômica da Produção de Soja nos Estados do Paraná e Rio Grande do Sul na Safra 2016/17; Embrapa Soja: Londrina, Brazil, 2017; pp. 1–4. [Google Scholar]
- Sentelhas, P.C.; Battisti, R.; Câmara, G.M.S.; Farias, J.R.B.; Hampf, A.; Nendel, C. The soybean yield gap in Brazil–magnitude, causes and possible solutions for a sustainable production. J. Agric. Sci. 2015, 153, 1394–1411. [Google Scholar] [CrossRef]
- Chou, S.C.; Lyra, A.; Mourão, C.; Dereczynski, C.; Pilotto, I.; Gomes, J.; Bustamante, J.; Tavares, P.; Silva, A.; Rodrigues, D.; et al. Assessment of climate change over South America under RCP 4.5 and 8.5 downscaling scenarios. Am. J. Clim. Change 2014, 3, 512–525. [Google Scholar] [CrossRef]
- Salvador, M.A.; Brito, J.I.B. Trend of annual temperature and frequency of extreme events in the MATOPIBA region of Brazil. Theor. Appl. Climatol. 2018, 133, 253–261. [Google Scholar] [CrossRef]
- Gong, L.; Liu, D.; Jiang, L.; Li, X.; Lv, J. Distribution characteristics of climate potential productivity of soybean in frigid region and its response to climate change. Environ. Sci. Pollut. Res. 2022, 29, 7452–7464. [Google Scholar] [CrossRef]
- Dai, Y.S.; Huynh, N.Q.A.; Zheng, Q.H.; Zhou, W.X. Correlation structure analysis of the global agricultural futures market. Res. Int. Bus. Financ. 2022, 61, 101677. [Google Scholar] [CrossRef]
- Nikolakopoulos, S.; Cator, E.; Janssen, M.P. Extending the Mann–Kendall test to allow for measurement uncertainty. Statistics 2023, 57, 577–596. [Google Scholar] [CrossRef]
- Wu, J.; Gu, Y.; Sun, K.; Wang, N.; Shen, H.; Wang, Y.; Ma, X. Correlation of climate change and human activities with agricultural drought and its impact on the net primary production of winter wheat. J. Hydrol. 2023, 620, 129504. [Google Scholar] [CrossRef]
- CONAB—Companhia Nacional de Abastecimento. Boletim da Safra de Grãos. Available online: https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos (accessed on 7 February 2024).
- Pino, A.F. Sazonalidade na agricultura. Rev. Econ. Agríc. 2014, 61, 63–93. [Google Scholar]
- Kayano, M.T.; Andreoli, R.V. Relations of South American summer rainfall interannual variations with the Pacific Decadal Oscillation. Int. J. Climatol. 2007, 27, 531–540. [Google Scholar] [CrossRef]
- Marengo, J.; Torres, R.R.; Alves, L.M. Drought in Northeast Brazil—Past, present, and future. Theor. Appl. Climatol. 2017, 129, 1189–1200. [Google Scholar] [CrossRef]
- Timmermann, A.; An, S.I.; Kug, J.S.; Jin, F.F.; Cai, W.; Capotondi, A.; Cobb, K.M.; Lengaigne, M.; McPhaden, M.J.; Stuecker, M.F.; et al. El Niño—Southern Oscillation complexity. Nature 2018, 559, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Utida, G.; Cruz, F.W.; Etourneau, J.; Bouloubassi, I.; Schefuß, E.; Vuille, M.; Novello, V.F.; Prado, L.F.; Sifeddine, A.; Klein, V.; et al. Tropical South Atlantic influence on northeastern Brazil precipitation and ITCZ displacement during the past 2300 years. Sci. Rep. 2019, 9, 1698. [Google Scholar] [CrossRef] [PubMed]
- Marengo, J.; Souza, M. Mudanças Climáticas: Impactos e Cenários para a Amazônia; Alana: São Paulo, Brazil, 2018; pp. 1–33. Available online: https://www.researchgate.net/publication/329466396_Mudancas_Climaticas_impactos_e_cenarios_para_a_Amazonia (accessed on 7 February 2024).
Forest | Soybean |
---|---|
Forest Formation | Temporary Cultivation—Soybean |
Savannah | Agriculture and Cattle Raising |
Savannah Formation | Pasture Area |
Other Forest Formation | Temporary Cultivations—Others |
Mangrove | Perennial Crops |
Wooded Sandbank (beta) | Silviculture |
Non-Forestal Natural Formation | Agriculture and Pasture Area Mosaic |
Flooded Field e Swamp Area | Non-Vegetated Area |
Rural Formation | Beach, Dune, and Sandbank |
Apicum | Urbanized Area |
Rocky Outcrop | Mining |
Other Non-Forestal Formation | Other Non-Vegetated Areas |
Body of Water | |
River, Lake, and Ocean | |
Fish Farming |
Natural Formation | Anthropic Action |
---|---|
Forest Formation | Pasture Area |
Savannah Formation | Temporary Cultivations |
Mangrove | Perennial Crops |
Wooded Sandbank (beta) | Silviculture |
Flooded Field and Swamp Area | Agriculture and Pasture Area Mosaic |
Rural Formation | Urbanized Area |
Apicum | Mining |
Rocky Outcrop | Fish Farming |
Other Non-Forestal Formations | |
Beach, Dune, and Sandbank | |
Other Non-Vegetated Areas | |
River, Lake, and Ocean |
UF | Weather Stations | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Annual |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BA | Barreiras | −0.056 | −0.020 | −0.001 | 0.009 | −0.029 | −0.051 | −0.041 | −0.062 | −0.063 | −0.122 | −0.043 | −0.109 | −0.052 |
Bom Jesus da Lapa | −0.084 | −0.002 | 0.008 | 0.006 | −0.003 | −0.005 | −0.080 | −0.052 | −0.068 | −0.050 | −0.017 | −0.147 | −0.038 | |
Carinhanha | −0.034 | −0.009 | 0.041 | 0.021 | 0.011 | −0.013 | −0.067 | −0.049 | −0.045 | −0.023 | −0.009 | −0.110 | −0.015 | |
Correntina | −0.074 | −0.008 | 0.009 | 0.034 | 0.013 | 0.006 | −0.070 | −0.029 | −0.078 | −0.058 | −0.015 | −0.147 | −0.022 | |
Santa Rita de Cássia | −0.036 | −0.018 | −0.018 | −0.033 | −0.057 | −0.007 | −0.029 | −0.019 | −0.081 | −0.049 | 0.012 | −0.100 | −0.034 | |
MA | Alto Parnaíba | −0.020 | −0.006 | 0.037 | −0.027 | −0.007 | 0.003 | −0.030 | 0.005 | −0.056 | −0.057 | −0.009 | −0.099 | −0.024 |
Bacabal | −0.011 | 0.034 | −0.046 | −0.019 | −0.023 | −0.033 | −0.065 | −0.013 | 0.008 | −0.080 | −0.035 | −0.017 | −0.032 | |
Balsas | 0.037 | 0.029 | −0.050 | −0.033 | −0.002 | −0.018 | 0.025 | −0.023 | −0.036 | −0.033 | −0.037 | −0.103 | −0.030 | |
Barra do Corda | −0.007 | −0.012 | −0.039 | −0.042 | 0.033 | −0.006 | −0.011 | −0.021 | 0.010 | −0.021 | −0.033 | −0.029 | −0.018 | |
Carolina | −0.015 | 0.001 | −0.010 | −0.006 | 0.000 | 0.000 | 0.007 | −0.011 | −0.036 | −0.054 | −0.019 | −0.063 | −0.022 | |
Caxias | −0.029 | −0.007 | −0.074 | −0.048 | −0.048 | −0.079 | −0.045 | −0.056 | −0.016 | −0.027 | −0.052 | −0.062 | −0.052 | |
Chapadinha | −0.005 | 0.014 | −0.036 | −0.022 | −0.022 | 0.008 | −0.014 | −0.091 | −0.092 | −0.039 | 0.031 | −0.005 | −0.022 | |
Colinas | −0.046 | −0.034 | −0.089 | −0.107 | −0.048 | −0.065 | 0.001 | −0.042 | −0.060 | −0.055 | −0.080 | −0.111 | −0.069 | |
Imperatriz | 0.002 | 0.002 | −0.026 | −0.013 | 0.002 | −0.033 | −0.016 | −0.027 | −0.042 | −0.011 | −0.041 | −0.008 | −0.012 | |
PI | Bom Jesus do Piauí | 0.009 | 0.017 | 0.025 | −0.067 | 0.030 | −0.020 | 0.004 | −0.044 | −0.051 | −0.029 | −0.063 | −0.034 | −0.022 |
Vale do Gurguéia | −0.031 | −0.018 | −0.032 | −0.007 | −0.047 | −0.112 | −0.058 | −0.013 | −0.097 | −0.079 | −0.022 | −0.077 | −0.044 | |
TO | Araguaína | −0.035 | 0.040 | 0.007 | −0.030 | 0.004 | −0.019 | 0.002 | −0.029 | −0.050 | −0.059 | −0.015 | −0.050 | −0.020 |
Palmas | 0.063 | 0.026 | 0.025 | 0.036 | −0.014 | 0.019 | −0.035 | −0.014 | −0.008 | −0.025 | 0.012 | −0.015 | 0.006 | |
Pedro Afonso | −0.004 | −0.015 | −0.021 | 0.026 | 0.030 | 0.010 | −0.021 | −0.023 | −0.045 | −0.073 | −0.014 | −0.073 | −0.020 | |
Peixe | −0.038 | −0.048 | −0.039 | −0.019 | −0.001 | −0.008 | −0.045 | −0.099 | −0.041 | −0.035 | −0.020 | −0.079 | −0.029 | |
Porto Nacional | −0.009 | −0.022 | −0.008 | −0.027 | 0.028 | 0.010 | −0.048 | −0.059 | −0.070 | −0.078 | −0.034 | −0.069 | −0.028 | |
Taguatinga | −0.042 | −0.060 | 0.035 | −0.001 | −0.027 | 0.031 | −0.059 | −0.054 | −0.052 | −0.055 | 0.027 | −0.116 | −0.022 |
UF | Weather Stations | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Annual |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BA | Barreiras | 0.145 | 0.049 | 0.119 | 0.048 | 0.114 | 0.081 | 0.061 | 0.055 | 0.105 | 0.183 | 0.103 | 0.195 | 0.101 |
Bom Jesus da Lapa | 0.205 | 0.111 | 0.146 | 0.070 | 0.078 | 0.144 | 0.138 | 0.120 | 0.179 | 0.207 | 0.100 | 0.215 | 0.128 | |
Carinhanha | 0.173 | 0.047 | 0.072 | 0.035 | 0.070 | 0.156 | 0.130 | 0.118 | 0.144 | 0.162 | 0.088 | 0.163 | 0.087 | |
Correntina | 0.176 | 0.129 | 0.169 | 0.090 | 0.112 | 0.164 | 0.155 | 0.132 | 0.203 | 0.212 | 0.101 | 0.211 | 0.131 | |
Santa Rita de Cássia | 0.238 | 0.134 | 0.140 | 0.135 | 0.183 | 0.201 | 0.169 | 0.153 | 0.161 | 0.218 | 0.121 | 0.198 | 0.154 | |
MA | Alto Parnaíba | 0.096 | 0.053 | 0.120 | 0.152 | 0.210 | 0.258 | 0.268 | 0.248 | 0.278 | 0.257 | 0.114 | 0.211 | 0.138 |
Bacabal | 0.195 | 0.159 | 0.228 | 0.234 | 0.253 | 0.329 | 0.298 | 0.341 | 0.347 | 0.376 | 0.287 | 0.166 | 0.202 | |
Balsas | 0.165 | 0.159 | 0.258 | 0.267 | 0.297 | 0.412 | 0.451 | 0.414 | 0.437 | 0.301 | 0.199 | 0.282 | 0.225 | |
Barra do Corda | 0.184 | 0.205 | 0.270 | 0.319 | 0.303 | 0.348 | 0.415 | 0.405 | 0.422 | 0.372 | 0.278 | 0.197 | 0.198 | |
Carolina | 0.146 | 0.137 | 0.215 | 0.169 | 0.206 | 0.289 | 0.350 | 0.391 | 0.354 | 0.256 | 0.185 | 0.246 | 0.170 | |
Caxias | 0.275 | 0.180 | 0.290 | 0.345 | 0.351 | 0.426 | 0.411 | 0.482 | 0.488 | 0.445 | 0.304 | 0.261 | 0.254 | |
Chapadinha | 0.199 | 0.158 | 0.294 | 0.290 | 0.259 | 0.268 | 0.299 | 0.348 | 0.379 | 0.387 | 0.247 | 0.122 | 0.162 | |
Colinas | 0.179 | 0.192 | 0.244 | 0.234 | 0.246 | 0.343 | 0.370 | 0.374 | 0.403 | 0.324 | 0.206 | 0.220 | 0.186 | |
Imperatriz | 0.162 | 0.130 | 0.254 | 0.217 | 0.195 | 0.285 | 0.384 | 0.456 | 0.456 | 0.348 | 0.239 | 0.200 | 0.201 | |
PI | Bom Jesus do Piauí | 0.239 | 0.204 | 0.219 | 0.242 | 0.189 | 0.141 | 0.037 | 0.015 | −0.012 | 0.019 | 0.067 | 0.171 | 0.119 |
Vale do Gurguéia | 0.158 | 0.118 | 0.132 | 0.135 | 0.223 | 0.235 | 0.152 | 0.154 | 0.148 | 0.189 | 0.104 | 0.166 | 0.122 | |
TO | Araguaína | 0.028 | 0.029 | 0.064 | 0.055 | 0.120 | 0.133 | 0.130 | 0.183 | 0.225 | 0.202 | 0.115 | 0.141 | 0.092 |
Palmas | 0.087 | 0.075 | 0.121 | 0.122 | 0.314 | 0.483 | 0.444 | 0.415 | 0.330 | 0.170 | 0.107 | 0.135 | 0.163 | |
Pedro Afonso | 0.182 | 0.169 | 0.241 | 0.207 | 0.200 | 0.249 | 0.314 | 0.337 | 0.364 | 0.292 | 0.221 | 0.273 | 0.177 | |
Peixe | 0.106 | 0.094 | 0.135 | 0.150 | 0.202 | 0.204 | 0.139 | 0.132 | 0.237 | 0.204 | 0.115 | 0.185 | 0.129 | |
Porto Nacional | 0.103 | 0.086 | 0.096 | 0.109 | 0.178 | 0.297 | 0.269 | 0.275 | 0.289 | 0.192 | 0.130 | 0.182 | 0.126 | |
Taguatinga | 0.080 | 0.063 | 0.079 | 0.089 | 0.133 | 0.106 | 0.116 | 0.117 | 0.194 | 0.247 | 0.106 | 0.186 | 0.114 |
UF | Weather Stations | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Annual |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BA | Barreiras | 0.227 | 0.194 | 0.263 | 0.200 | 0.121 | 0.134 | 0.067 | 0.092 | 0.044 | 0.139 | 0.234 | 0.173 | 0.095 |
Bom Jesus da Lapa | 0.347 | 0.332 | 0.338 | 0.290 | 0.198 | 0.185 | 0.205 | 0.261 | 0.248 | 0.286 | 0.313 | 0.319 | 0.196 | |
Carinhanha | 0.307 | 0.256 | 0.336 | 0.245 | 0.177 | 0.228 | 0.212 | 0.195 | 0.190 | 0.145 | 0.290 | 0.281 | 0.157 | |
Correntina | −0.023 | −0.033 | 0.086 | −0.035 | −0.063 | −0.083 | −0.098 | −0.086 | −0.105 | −0.096 | −0.005 | −0.100 | −0.023 | |
Santa Rita de Cássia | −0.126 | −0.142 | −0.150 | −0.156 | −0.073 | −0.038 | −0.038 | −0.006 | −0.030 | −0.041 | −0.046 | −0.191 | −0.060 | |
MA | Alto Parnaíba | 0.133 | 0.162 | 0.168 | 0.127 | 0.106 | 0.026 | −0.017 | 0.002 | 0.014 | 0.063 | 0.174 | 0.082 | 0.062 |
Bacabal | 0.213 | 0.203 | 0.219 | 0.190 | 0.254 | 0.241 | 0.212 | 0.142 | 0.184 | 0.195 | 0.144 | 0.161 | 0.190 | |
Balsas | 0.026 | 0.019 | 0.026 | 0.017 | 0.072 | −0.034 | 0.029 | 0.079 | 0.124 | 0.172 | 0.153 | 0.134 | 0.049 | |
Barra do Corda | 0.386 | 0.400 | 0.440 | 0.461 | 0.464 | 0.338 | 0.333 | 0.359 | 0.476 | 0.494 | 0.472 | 0.419 | 0.347 | |
Carolina | 0.108 | 0.084 | 0.189 | 0.182 | 0.234 | 0.173 | 0.138 | 0.091 | 0.193 | 0.234 | 0.157 | 0.128 | 0.131 | |
Caxias | 0.143 | 0.190 | 0.211 | 0.206 | 0.314 | 0.278 | 0.251 | 0.178 | 0.312 | 0.409 | 0.378 | 0.310 | 0.243 | |
Chapadinha | 0.222 | 0.256 | 0.316 | 0.333 | 0.353 | 0.374 | 0.341 | 0.290 | 0.343 | 0.372 | 0.325 | 0.319 | 0.288 | |
Colinas | 0.062 | 0.119 | 0.099 | 0.082 | 0.165 | 0.073 | 0.084 | 0.090 | 0.157 | 0.207 | 0.178 | 0.127 | 0.090 | |
Imperatriz | −0.093 | −0.022 | 0.028 | −0.041 | 0.084 | 0.072 | 0.160 | 0.059 | 0.035 | −0.044 | −0.080 | −0.118 | −0.008 | |
PI | Bom Jesus do Piauí | −0.126 | 0.046 | 0.001 | −0.051 | 0.040 | 0.158 | 0.156 | 0.034 | −0.225 | −0.038 | 0.063 | 0.118 | 0.020 |
Vale do Gurguéia | 0.420 | 0.354 | 0.343 | 0.276 | 0.269 | 0.223 | 0.283 | 0.312 | 0.322 | 0.433 | 0.415 | 0.376 | 0.288 | |
TO | Araguaína | 0.116 | 0.125 | 0.181 | 0.169 | 0.200 | 0.203 | 0.173 | 0.135 | 0.135 | 0.138 | 0.174 | 0.112 | 0.101 |
Palmas | 0.042 | 0.096 | 0.147 | 0.160 | 0.229 | 0.321 | 0.369 | 0.369 | 0.385 | 0.289 | 0.196 | 0.133 | 0.195 | |
Pedro Afonso | 0.177 | 0.202 | 0.252 | 0.260 | 0.232 | 0.115 | 0.033 | 0.040 | 0.074 | 0.238 | 0.309 | 0.246 | 0.137 | |
Peixe | 0.156 | 0.153 | 0.155 | 0.145 | 0.024 | 0.042 | −0.079 | −0.061 | −0.015 | 0.158 | 0.200 | 0.144 | 0.064 | |
Porto Nacional | 0.196 | 0.202 | 0.237 | 0.314 | 0.253 | 0.260 | 0.233 | 0.195 | 0.237 | 0.277 | 0.281 | 0.231 | 0.183 | |
Taguatinga | 0.291 | 0.230 | 0.240 | 0.239 | 0.247 | 0.211 | 0.160 | 0.156 | 0.162 | 0.253 | 0.166 | 0.277 | 0.187 |
UF | Municipality | Production | Yield | UF | Municipality | Production | Yield |
---|---|---|---|---|---|---|---|
BA | Barreiras | 0.635 | 0.699 | MA | Alto Parnaíba | 0.879 | 0.637 |
Bom Jesus da Lapa | −0.182 | −0.182 | Bacabal | - | - | ||
Carinhanha | 0.446 | 0.456 | Balsas | 0.889 | 0.640 | ||
Correntina | 0.841 | 0.610 | Barra do Corda | −0.115 | −0.093 | ||
Santa Rita de Cássia | 0.208 | 0.214 | Carolina | 0.828 | 0.686 | ||
TO | Araguaína | 0.449 | 0.370 | Caxias | 0.572 | 0.464 | |
Palmas | 0.763 | 0.700 | Chapadinha | 0.808 | 0.675 | ||
Pedro Afonso | 0.391 | 0.532 | Colinas | 0.698 | 0.633 | ||
Peixe | 0.681 | 0.641 | Imperatriz | - | - | ||
Porto Nacional | 0.707 | 0.719 | PI | Bom Jesus do Piauí | 0.828 | 0.631 | |
Taguatinga | 0.175 | 0.244 | Vale do Gurguéia | - | - |
Precipitation Mann–Kendall | Temperature Maximum Mann–Kendall | Temperature Minimum Mann–Kendall | |
---|---|---|---|
Average production | −0.214 | −0.101 | −0.506 |
Production Mann–Kendall | 0.067 | 0.203 | −0.283 |
Average yield | 0.103 | 0.043 | −0.389 |
Yield Mann–Kendall | 0.002 | 0.062 | −0.044 |
Land use and land cover change | 0.168 | −0.066 | −0.010 |
Natural formation (1985) | −0.359 | 0.626 | 0.005 |
Anthropic action (1985) | 0.359 | −0.649 | −0.039 |
Natural formation (2020) | −0.364 | 0.534 | 0.009 |
Anthropic action (2020) | 0.365 | −0.557 | −0.036 |
Average Production | Average Yield | |
---|---|---|
Pacific Decadal Oscillation (PDO) | −0.108 | −0.186 |
Multivariate Enso Index (MEI) | −0.167 | −0.242 |
Atlantic multidecadal Oscillation (AMO)) | 0.553 | 0.621 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araújo, M.L.S.d.; Rufino, I.A.A.; Silva, F.B.; Brito, H.C.d.; Santos, J.R.N. The Relationship between Climate, Agriculture and Land Cover in Matopiba, Brazil (1985–2020). Sustainability 2024, 16, 2670. https://doi.org/10.3390/su16072670
Araújo MLSd, Rufino IAA, Silva FB, Brito HCd, Santos JRN. The Relationship between Climate, Agriculture and Land Cover in Matopiba, Brazil (1985–2020). Sustainability. 2024; 16(7):2670. https://doi.org/10.3390/su16072670
Chicago/Turabian StyleAraújo, Mayara Lucyanne Santos de, Iana Alexandra Alves Rufino, Fabrício Brito Silva, Higor Costa de Brito, and Jessflan Rafael Nascimento Santos. 2024. "The Relationship between Climate, Agriculture and Land Cover in Matopiba, Brazil (1985–2020)" Sustainability 16, no. 7: 2670. https://doi.org/10.3390/su16072670
APA StyleAraújo, M. L. S. d., Rufino, I. A. A., Silva, F. B., Brito, H. C. d., & Santos, J. R. N. (2024). The Relationship between Climate, Agriculture and Land Cover in Matopiba, Brazil (1985–2020). Sustainability, 16(7), 2670. https://doi.org/10.3390/su16072670