Rain-Based Train Washing: A Sustainable Approach to Reduce PM Concentrations in Underground Environments
Abstract
:1. Introduction
Case Study | Outdoor PM10 [μg/m3] | Station Platform PM10 [μg/m3] | References |
---|---|---|---|
Athens (2014–2012) | - | 107–172 | [44,45,46,47,48] |
Barcelona (2011) | - | 346 | [24] |
Beijing (2016) | 275 | 262 | [38] |
Budapest (2014–2006) | - | 180–288 | [37,38,39,40,41,42,43] |
Frankfurt (2013) | - | 101 | [49] |
Istanbul (2007) | 70 | 170 | [45] |
Los Angeles (2010) | 31 | 78 | [53] |
Milan (2012) | 37 | 188 | [40] |
Naples (2014) | 24 | 195 | [3] |
New York (2021) | 29 | 142 | [46] |
Paris (2013–2006) | - | 220–320 | [36,37,38,39,40,41] |
Prague (2013) | - | 215 | [42] |
Rome (2012–2010) | 32 | 407–409 | [22,23,24,25,26,27,28,29,30,31,32,33,34] |
Seoul (2015–2004) | 43–155 | 108–359 | [32,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77] |
Shanghai (2013) | 190 | 457 | [33] |
Stockholm (2017–2000) | 16–55 | 233–469 | [32,33,34,35,36,37,38,39] |
Sydney (2015) | 20 | 55 | [54] |
Taipei (2007–2016) | 60 | 55–66 | [51,52] |
Tehran (2018–2011) | 72–139 | 94–275 | [35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50] |
2. Materials and Methods
2.1. System Devices to Reduce Particulate Matter Concentrations in Underground Metro Systems
2.2. Case Study
2.3. Monitoring Method
2.4. Measurement Campaigns
- the first campaign was performed on clear weather conditions with surface temperatures ranging within the seasonal average values (12–18 °C), low wind conditions (wind speed < 10 km/h), and outdoor relative humidity ranging from 50% to 60% (Table 2). During this survey, the average measured temperatures on the underground station platform were moderately higher (16–17 °C) than those at street level and the relative humidity was, as said, always lower than 55%;
- the second campaign was performed during a storm of strong intensity, with surface temperatures ranging between 10–15 °C and mid-high wind conditions (wind speed > 10 km/h), with a relative humidity ranging from 65% to 85% (Table 2). Precisely, this survey was carried out for one hour within the morning peak period during a storm of strong intensity and starting the measures 30 min after the onset of adverse weather conditions.
Outdoor Environment Conditions | Dry Conditions | Wet Conditions |
---|---|---|
Surface temperature | 12–18 °C | 10–15 °C |
Wind speed | 3–9 km/h | 14–26 km/h |
Relative humidity | 50–70% | 65–85% |
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mbandi, A.M.; Malley, C.S.; Schwela, D.; Vallack, H.; Emberson, L.; Ashmore, M.R. Assessment of the impact of road transport policies on air pollution and greenhouse gas emissions in Kenya. Energy Strat. Rev. 2023, 49, 101120. [Google Scholar] [CrossRef]
- Lestari, P.; Arrohman, M.K.; Damayanti, S.; Klimont, Z. Emissions and spatial distribution of air pollutants from anthro-pogenic sources in Jakarta. Atmos. Pollut. Res. 2022, 13, 101521. [Google Scholar] [CrossRef]
- Cartenì, A.; Cascetta, F.; Campana, S. Underground and ground-level particulate matter concentrations in an Italian metro system. Atmos. Environ. 2015, 101, 328–337. [Google Scholar] [CrossRef]
- European Commission. EU Energy, Transport and GHG Emissions, Trends to 2050-Reference Scenario 2013; European Commission: Brussels, Belgium, 2014. [Google Scholar]
- Cartenì, A.; Cascetta, F.; Di Francesco, L.; Palermo, F. Particulate Matter Short-Term Exposition, Mobility Trips and COVID-19 Diffusion: A Correlation Analyses for the Italian Case Study at Urban Scale. Sustainability 2021, 13, 4553. [Google Scholar] [CrossRef]
- Carteni, A. How to Reduce Particulate Matter Concentrations in a Railway Metro System? In Proceedings of the 2017 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO), Prague, Czech Republic, 20–22 May 2017; pp. 268–273. [Google Scholar]
- Cartenì, A.; Cascetta, F. Particulate matter concentrations in a high-quality rubber-tyred metro system: The case study of Turin in Italy. Int. J. Environ. Sci. Technol. 2017, 15, 1921–1930. [Google Scholar] [CrossRef]
- Carteni, A. Particulate matter concentrations in urban metro systems: Case studies and a literature review. In Proceedings of the 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), Florence, Italy, 7–10 June 2016; pp. 1–6. [Google Scholar]
- Henke, I.; Cartenì, A.; Di Francesco, L. A sustainable evaluation processes for investments in the transport sector: A combined multi-criteria and cost–benefit analysis for a new highway in Italy. Sustainability 2020, 12, 9854. [Google Scholar] [CrossRef]
- Chen, X.; Wang, M.; Ling, J.; Wu, H.; Wu, B.; Li, C. Ship imaging trajectory extraction via an aggregated you only look once (YOLO) model. Eng. Appl. Artif. Intell. 2024, 130, 107742. [Google Scholar] [CrossRef]
- Kumar, P.; Zavala-Reyes, J.C.; Kalaiarasan, G.; Abubakar-Waziri, H.; Young, G.; Mudway, I.; Dilliway, C.; Lakhdar, R.; Mumby, S.; Kłosowski, M.M.; et al. Characteristics of fine and ultrafine aerosols in the London underground. Sci. Total Environ. 2023, 858, 159315. [Google Scholar] [CrossRef]
- Li, C.; Bai, L.; Wang, H.; Li, Z. Promoting the design of future urban metro systems to improve air pollution: Based on metal element pollution in Chinese metro system. Sustain. Cities Soc. 2023, 97, 104753. [Google Scholar] [CrossRef]
- Zhang, Z.; Chai, H.; Guo, Z. Quantitative resilience assessment of the network-level metro rail service’s responses to the COVID-19 pandemic. Sustain. Cities Soc. 2023, 89, 104315. [Google Scholar] [CrossRef]
- Hasan, U.; Whyte, A.; Al Jassmi, H. Public bus transport service satisfaction: Understanding its value to urban passengers towards improved uptake. Trans. Transp. Sci. 2021, 12, 25–37. [Google Scholar] [CrossRef]
- Bouscasse, H.; de Lapparent, M. Perceived comfort and values of travel time savings in the Rhône-Alpes Region. Transp. Res. A Policy Pract. 2019, 124, 370–387. [Google Scholar] [CrossRef]
- Echaniz, E.; Dell’Olio, L.; Ibeas, A. Modelling perceived quality for urban public transport systems using weighted variables and random parameters. Transp. Policy 2018, 67, 31–39. [Google Scholar] [CrossRef]
- Cartenì, A.; Cascetta, F.; Henke, I.; Molitierno, C. The role of particle resuspension within PM concentrations in underground subway systems. Int. J. Environ. Sci. Technol. 2020, 17, 4075–4094. [Google Scholar] [CrossRef]
- Kang, S.; Hwang, H.; Park, Y.; Kim, H.; Ro, C.-U. Chemical compositions of subway particles in Seoul, Korea determined by a quantitative single particle analysis. Environ. Sci. Technol. 2008, 42, 9051–9057. [Google Scholar] [CrossRef]
- Ma, C.-J. Exposure to fine particle along different commuting routes in urban area of Fukuoka, Japan. Asian J. Atmos. Environ. 2015, 9, 205–213. [Google Scholar] [CrossRef]
- Park, D.; Lee, T.; Hwang, D.; Jung, W.; Lee, Y.; Cho, K.; Kim, D.; Lee, K. Identification of the sources of PM10 in a subway tunnel using positive matrix factorization. J. Air Waste Manag. Assoc. 2014, 64, 1361–1368. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Woo, H.Y.; Park, J.C. Major factors affecting the aerosol particle concentration in the underground stations. Indoor Built Environ. 2014, 23, 629–639. [Google Scholar] [CrossRef]
- Perrino, C.; Marcovecchio, F.; Tofful, L.; Canepari, S. Particulate matter concentration and chemical composition in the subway system of Rome, Italy. Environ. Sci. Pollut. Res. 2015, 22, 9204–9214. [Google Scholar] [CrossRef]
- Awad, A.H.A. Environmental study in subway metro Stations in Cairo, Egypt. J. Occup. Health 2002, 44, 112–118. [Google Scholar] [CrossRef]
- Querol, X.; Moreno, T.; Karanasiou, A.; Reche, C.; Alastuey, A.; Viana, M.; Font, O.; Gil, J.; De Miguel, E.; Capdevila, M. Var-iability of levels and composition of PM10 and PM2.5 in the Barcelona metro system. Atmos. Chem. Phys. 2012, 12, 5055–5076. [Google Scholar] [CrossRef]
- Martins, V.; Moreno, T.; Mendes, L.; Eleftheriadis, K.; Diapouli, E.; Alves, C.A.; Duarte, M.; de Miguel, E.; Capdevila, M.; Querol, X.; et al. Factors controlling air quality in different European subway systems. Environ. Res. 2016, 146, 35–46. [Google Scholar] [CrossRef]
- European Commission. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe; Technical Report 2008/50/EC; European Commission: Brussels, Belgium, 2008. [Google Scholar]
- European Standard EN 12341; Reference Method for the Determination of the PM-10 Fraction of Particles. European Standard: Bruxelles, Belgium, 1998.
- Nieuwenhuijsen, M.J.; Gómez-Perales, J.E.; Colvile, R.N. Levels of particulate air pollution, its elemental composition, deter-minants and health effects in subway systems. Atmos. Environ. 2007, 41, 7995–8006. [Google Scholar] [CrossRef]
- Moreno, T.; Pérez, N.; Reche, C.; Martins, V.; de Miguel, E.; Capdevila, M.; Centelles, S.; Minguillón, M.C.; Amato, F.; Alastuey, A.; et al. Subway platform air quality: Assessing the influences of tunnel ventilation, train piston effect and station design. Atmos. Environ. 2014, 92, 461–468. [Google Scholar] [CrossRef]
- Martins, V.; Moreno, T.; Minguillón, M.C.; Amato, F.; de Miguel, E.; Capdevila, M.; Querol, X. Exposure to airborne particulate matter in the subway system. Sci. Total Environ. 2015, 511, 711–722. [Google Scholar] [CrossRef] [PubMed]
- Passi, A.; Nagendra, S.S.; Maiya, M. Characteristics of indoor air quality in underground metro stations: A critical review. J. Affect. Disord. 2021, 198, 107907. [Google Scholar] [CrossRef]
- Johansson, C.; Johansson, P. Particulate matter in the underground of Stockholm. Atmos. Environ. 2003, 37, 3–9. [Google Scholar] [CrossRef]
- Bao, L.M.; Lei, Q.T.; Tan, M.G.; Li, X.L.; Zhang, G.L.; Liu, W.; Li, Y. Study on transition metals in airborne particulate matter in Shanghai city’s subway. Huanjing Kexue/Environ. Sci. 2014, 35, 2052–2059. [Google Scholar]
- Ripanucci, G.; Grana, M.; Vicentini, L.; Magrini, A.; Bergamaschi, A. Dust in the Underground Railway Tunnels of an Italian Town. J. Occup. Environ. Hyg. 2006, 3, 16–25. [Google Scholar] [CrossRef]
- Parchami, M.; Motlagh, M.S.; Pardakhti, A. Particulate matter concentrations and characterization in urban subway system-case study Tehran, Iran. J. Environ. Health Sci. Eng. 2022, 20, 953–962. [Google Scholar] [CrossRef]
- Raut, J.-C.; Chazette, P.; Fortain, A. Link between aerosol optical, microphysical and chemical measurements in an underground railway station in Paris. Atmos. Environ. 2009, 43, 860–868. [Google Scholar] [CrossRef]
- Papp, E.; Angyal, A.; Furu, E.; Szoboszlai, Z.; Török, Z.; Kertész, Z. Case Studies of Aerosol Pollution in Different Public Transport Vehicles in Hungarian Cities. Atmosphere 2022, 13, 692. [Google Scholar] [CrossRef]
- Pan, S.; Du, S.; Wang, X.; Zhang, X.; Xia, L.; Liu, J.; Pei, F.; Wei, Y. Analysis and interpretation of the particulate matter (PM10 and PM2.5) concentrations at the subway stations in Beijing, China. Sustain. Cities Soc. 2018, 45, 366–377. [Google Scholar] [CrossRef]
- Cha, Y.; Tu, M.; Elmgren, M.; Silvergren, S.; Olofsson, U. Variation in airborne particulate levels at a newly opened underground railway station. Aerosol Air Qual. Res. 2019, 19, 737–748. [Google Scholar] [CrossRef]
- Colombi, C.; Angius, S.; Gianelle, V.; Lazzarini, M. Particulate matter concentrations, physical characteristics and elemental composition in the Milan underground transport system. Atmos. Environ. 2013, 70, 166–178. [Google Scholar] [CrossRef]
- Molle, R.; Mazoué, S. Impact of train braking systems on particle levels in the Paris subway. J. Earth Sci. Geotech. Eng. 2017, 7, 333–335. [Google Scholar]
- Cusack, M.; Talbot, N.; Ondracek, J.; Minguillon, M.C.; Martins, V.; Klouda, K.; Schwarz, J.; Zdimal, V. Variability of aerosols and chemical composition of PM10, PM2.5 and PM1 on a platform of the Prague underground subway. Atmos. Environ. 2015, 118, 176–183. [Google Scholar] [CrossRef]
- Salma, I.; Weidinger, T.; Maenhaut, W. Time-resolved mass concentration, composition and sources of aerosol particles in a metropolitan underground railway station. Atmos. Environ. 2007, 41, 8391–8405. [Google Scholar] [CrossRef]
- Barmparesos, N.; Assimakopoulos, V.D.; Assimakopoulos, M.; Tsaridi, E. Particulate matter levels and comfort conditions in the trains and platforms of the Athens underground subway. AIMS Environ. Sci. 2016, 3, 199–219. [Google Scholar] [CrossRef]
- Şahin, Ü.A.; Onat, B.; Stakeeva, B.; Ceran, T.; Karim, P. PM10 concentrations and the size distribution of Cu and Fe-containing particles in Istanbul’s subway system. Transp. Res. Part D Transp. Environ. 2012, 17, 48–53. [Google Scholar] [CrossRef]
- Azad, S.; Luglio, D.G.; Gordon, T.; Thurston, G.; Ghandehari, M. Particulate matter concentration and composition in the New York City subway system. Atmos. Pollut. Res. 2023, 14, 101767. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.-B.; Jeong, W.; Park, D.; Kim, K.-T.; Cho, K.H. A multivariate study for characterizing particulate matter (PM10, PM2.5, and PM1) in Seoul metropolitan subway stations, Korea. J. Hazard. Mater. 2015, 297, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Grydaki, N.; Colbeck, I.; Mendes, L.; Eleftheriadis, K.; Whitby, C. Bioaerosols in the Athens Metro: Metagenetic insights into the PM10 microbiome in a naturally ventilated subway station. Environ. Int. 2021, 146, 106186. [Google Scholar] [CrossRef]
- Gerber, B.; Groneberg, S.; Bundschuh, A. Airborne particulate matter in public transport: A field study at major intersection points in Frankfurt am Main (Germany). J. Occup. Med. Toxicol. 2014, 9, 13. [Google Scholar] [CrossRef] [PubMed]
- Kamani, H.; Hoseini, M.; Seyedsalehi, M.; Mahdavi, Y.; Jaafari, J.; Safari, G.H. Concentration and characterization of airborne particles in Tehran’s subway system. Environ. Sci. Pollut. Res. 2014, 21, 7319–7328. [Google Scholar] [CrossRef]
- Cheng, Y.-H.; Lin, Y.-L.; Liu, C.-C. Levels of PM10 and PM2.5 in Taipei Rapid Transit System. Atmos. Environ. 2008, 42, 7242–7249. [Google Scholar] [CrossRef]
- Cheng, Y.-H.; Ninh, X.-H.; Yeh, S.-L. Dominant factors influencing the concentrations of particulate matters inside train Carriages traveling in different environments in the Taipei mass rapid transit system. Aerosol Air Qual. Res. 2019, 19, 1579–1592. [Google Scholar] [CrossRef]
- Kam, W.; Cheung, K.; Daher, N.; Sioutas, C. Particulate matter (PM) concentrations in underground and ground-level rail systems of the Los Angeles Metro. Atmos. Environ. 2011, 45, 1506–1516. [Google Scholar] [CrossRef]
- Mohsen, M.; Ahmed, M.B.; Zhou, J.L. Particulate matter concentrations and heavy metal contamination levels in the railway transport system of Sydney, Australia. Transp. Res. Part D Transp. Environ. 2018, 62, 112–124. [Google Scholar] [CrossRef]
- Abdul-Rahman, T.; Roy, P.; Bliss, Z.S.B.; Mohammad, A.; Corriero, A.C.; Patel, N.T.; Wireko, A.A.; Shaikh, R.; Faith, O.E.; Arevalo-Rios, E.C.E.; et al. The Impact of Air Quality on Cardiovascular Health: A State of the Art Review. Curr. Probl. Cardiol. 2023, 49, 102174. [Google Scholar] [CrossRef]
- Henning, R.J. Particulate matter air pollution is a significant risk factor for cardiovascular disease. Curr. Probl. Cardiol. 2023, 49, 102094. [Google Scholar] [CrossRef] [PubMed]
- Fazlzadeh, M.; Rostami, R.; Yousefian, F.; Yunesian, M.; Janjani, H. Long term exposure to ambient air particulate matter and mortality effects in Megacity of Tehran, Iran: 2012–2017. Particuology 2021, 58, 139–146. [Google Scholar] [CrossRef]
- Liang, F.; Liu, F.; Huang, K.; Yang, X.; Li, J.; Xiao, Q.; Chen, J.; Liu, X.; Cao, J.; Shen, C.; et al. Long-term exposure to fine particulate matter and cardio-vascular disease in China. J. Am. Coll. Cardiol. 2020, 75, 707–717. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Review of Evidence on Health Aspects of Air Pollution—REVIHAAP Project. 2013. Available online: https://iris.who.int/bitstream/handle/10665/341712/WHO-EURO-2013-4101-43860-61757-eng.pdf?sequence=1 (accessed on 13 February 2024).
- Valavanidis, A.; Fiotakis, K.; Vlachogianni, T. Airborne particulate matter and human health: Toxicological assessment and Importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J. Environ. Sci. Health Part C 2008, 26, 339–362. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A.; Dockery, D.W. Cardiovascular mortality and long-term exposure to particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef] [PubMed]
- Delfino, R.J.; Sioutas, C.; Malik, S. Potential role of ultrafine particles in associations between airborne particle mass and car-diovascular health. Environ. Health Perspect. 2005, 113, 934–946. [Google Scholar] [CrossRef]
- Wang, J.; Ma, T.; Ma, D.; Li, H.; Hua, L.M.; He, Q.; Deng, X. The impact of air pollution on neurodegenerative diseases. Ther. Drug Monit. 2021, 43, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Ji, X.; Shou, Y.; Huang, Y.; Hu, Y.; Wang, H. Recent advances in understanding the mechanisms of PM2.5-mediated neurodegenerative diseases. Toxicol. Lett. 2020, 329, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Jayaraj, R.L.; Rodriguez, E.A.; Wang, Y.; Block, M.L. Outdoor ambient air pollution and neurodegenerative diseases: The neuroinflammation hypothesis. Curr. Environ. Health Rep. 2017, 4, 166–179. [Google Scholar] [CrossRef]
- Li, N.; Wang, M.Y.; Bramble, L.A.; Schmitz, D.A.; Schauer, J.J.; Sioutas, C.; Harkema, J.R.; Nel, A.E. The adjuvant effect of ambient particulate matter is closely reflected by the particulate oxidant potential. Environ. Health Perspect. 2009. [Google Scholar] [CrossRef]
- Campbell, A. Inflammation, neurodegenerative diseases, and environmental exposures. Ann. N. Y. Acad. Sci. 2004, 1035, 117–132. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, H.L.; Nilsson, L.; Möller, L. Subway particles are more genotoxic than street particles and induce oxidative stress in cultured human lung cells. Chem. Res. Toxicol. 2005, 18, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Chun, H.S.; Moon, J.Y.; Choi, J.S.; Park, D.; Lee, Y.C. Correlation of α/γ-Fe2O3 nanoparticles with the toxicity of particulate matter originating from subway tunnels in Seoul stations, Korea. J. Hazard. Mater. 2020, 382, 121175. [Google Scholar]
- Roy, D.; Lyou, E.S.; Kim, J.; Lee, T.K.; Park, J. Commuters health risk associated with particulate matter exposures in subway system–Globally. Build. Environ. 2022, 216, 109036. [Google Scholar] [CrossRef]
- Bachoual, R.; Boczkowski, J.; Goven, D.; Amara, N.; Tabet, L.; On, D.; Leçon-Malas, V.; Aubier, M.; Lanone, S. Biological effects of particles from the Paris subway system. Chem. Res. Toxicol. 2007, 20, 1426–1433. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-M.; Huang, T.-H.; Chi, M.-C.; Guo, S.-E.; Lee, C.-W.; Hwang, S.-L.; Shi, C.-S. N-acetylcysteine alleviates fine particulate matter (PM2.5)-induced lung injury by attenuation of ROS-mediated recruitment of neutrophils and Ly6Chigh monocytes and lung inflammation. Ecotoxicol. Environ. Saf. 2022, 239, 113632. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, Q.; Tian, Y.; Hu, X. The lung microbiota affects pulmonary inflammation and oxidative stress induced by PM2. 5 exposure. Environ. Sci. Technol. 2022, 56, 12368–12379. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.-J.; Kim, B.; Ryu, J.; Maskey, S.; Kim, J.-C.; Sohn, J.; Ro, C.-U. Source identification of particulate matter collected at underground subway stations in Seoul, Korea using quantitative single-particle analysis. Atmos. Environ. 2010, 44, 2287–2293. [Google Scholar] [CrossRef]
- Kim, K.-H.; Ho, D.X.; Jeon, J.-S.; Kim, J.-C. A noticeable shift in particulate matter levels after platform screen door installation in a Korean subway station. Atmos. Environ. 2012, 49, 219–223. [Google Scholar] [CrossRef]
- Chen, Y.-Y.; Lu, C.-Y.; Chen, P.-C.; Mao, I.-F.; Chen, M.-L. Analysis of aerosol composition and assessment of tunnel washing performance within a mass rapid transit system in Taiwan. Aerosol Air Qual. Res. 2017, 17, 1527–1538. [Google Scholar] [CrossRef]
- Kim, K.Y.; Kim, Y.S.; Roh, Y.M.; Lee, C.M.; Kim, C.N. Spatial distribution of particulate matter (PM10 and PM2.5) in Seoul Metropolitan Subway stations. J. Hazard. Mater. 2008, 154, 440–443. [Google Scholar] [CrossRef]
- Khodja, A.; Zheng, Z.; Mo, J.; Zhang, D.; Chen, L. Rain to rain: Learning real rain removal without ground truth. IEEE Access 2021, 9, 57325–57337. [Google Scholar] [CrossRef]
- Ibraeva, A.; Correia, G.H.d.A.; Silva, C.; Antunes, A.P. Transit-oriented development: A review of research achievements and challenges. Transp. Res. Part A Policy Pract. 2019, 132, 110–130. [Google Scholar] [CrossRef]
- Peng, Y.-T.; Li, Z.-C.; Choi, K. Transit-oriented development in an urban rail transportation corridor. Transp. Res. Part B Methodol. 2017, 103, 269–290. [Google Scholar] [CrossRef]
- Loo, B.P.; Chen, C.; Chan, E.T. Rail-based transit-oriented development: Lessons from New York City and Hong Kong. Landsc. Urban Plan. 2010, 97, 202–212. [Google Scholar] [CrossRef]
- Napolike. Available online: https://www.napolike.it (accessed on 13 February 2024).
- Met One Inc. EsamplerTM; Met One Inc.: Grants Pass, OR, USA, 2008. [Google Scholar]
- AEROCET 531 Operation Manual, AEROCET-531-9800 REV F 1999; pp. 3–38. Available online: https://archive-resources.coleparmer.com/Manual_pdfs/00138DR.pdf (accessed on 13 February 2024).
- Cartenì, A.; Campana, S. Particulate Matter concentrations in a new section of a metro line: A case study in Italy. WIT Trans. Built Environ. 2014, 135, 523–534. [Google Scholar] [CrossRef]
- Nyhan, M.; McNabola, A.; Misstear, B. Comparison of particulate matter dose and acute heart rate variability response in cyclists, pedestrians, bus and train passengers. Sci. Total Environ. 2014, 468–469, 821–831. [Google Scholar] [CrossRef] [PubMed]
- Foster, A.; Kumar, N. Health effects of air quality regulations in Delhi, India. Atmos. Environ. 2011, 45, 1675–1683. [Google Scholar] [CrossRef] [PubMed]
- Invernizzi, G.; Ruprecht, A.; Mazza, R.; De Marco, C.; Močnik, G.; Sioutas, C.; Westerdahl, D. Measurement of black carbon concentration as an indicator of air quality benefits of traffic restriction policies within the ecopass zone in Milan, Italy. Atmos. Environ. 2011, 45, 3522–3527. [Google Scholar] [CrossRef]
- McNabola, A.; McCreddin, A.; Gill, L.W.; Broderick, B.M. Analysis of the relationship between urban background air pollution concentrations and the personal exposure of office workers in Dublin, Ireland, using baseline separation techniques. Atmos. Pollut. Res. 2011, 2, 80–88. [Google Scholar] [CrossRef]
- Lee, K.; Hahn, E.J.; Pieper, N.; Okoli, C.T.C.; Repace, J.; Troutman, A. Differential impacts of smoke-free laws on indoor air quality. J. Environ. Health 2008, 70, 24–30, 54. [Google Scholar]
- Kumar, N.; Chu, A.; Foster, A. An empirical relationship between PM2.5 and aerosol optical depth in Delhi Subwaypolitan. Atmos. Environ. 2007, 41, 4492–4503. [Google Scholar] [CrossRef] [PubMed]
- European Standard EN 12341/14; Ambient Air—Standard Gravimetric Measurement Method for the Determination of the PM10 Or PM2.5 Mass Concentration of Suspended Particulate Matter. European Standard: Bruxelles, Belgium, 2014.
- Day, D.E.; Malm, W.C.; Kreidenweis, S.M. Aerosol light scattering measurements as a function of relative humidity. J. Air Waste Manag. Assoc. 2000, 50, 710–716. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, B.; Fine, P.M.; Delfino, R.; Sioutas, C. Performance evaluation of the active-flow personal DataRAM PM2.5. Mass monitor (Thermo Anderson pDR-1200) designed for continuous personal exposure measurements. Atmos. Environ. 2004, 38, 3329–3340. [Google Scholar] [CrossRef]
- Sioutas, C.; Kim, S.; Chang, M.C.; Terrell, L.L.; Gong, H. Field evaluation of a modified DataRAM MIE scattering monitor for real-time PM2.5 mass concentration measurements. Atmos. Environ. 2000, 34, 4829–4838. [Google Scholar] [CrossRef]
- Direzione Regionale Difesa del Suolo e Protezione Civile Settore. Available online: https://www.cfr.toscana.it/bollettini/bollettino14_3_legenda.php (accessed on 11 January 2024).
- ilMeteo. 2023. Available online: https://www.ilmeteo.it/portale/archivio-meteo/Napoli (accessed on 13 February 2024).
Station Platform | Dry Sample | Wet Sample | (Wet − Dry)/Dry | ||||||
---|---|---|---|---|---|---|---|---|---|
Min | Average | Max | St. Dev. | Min | Average | Max | St. Dev. | Average Percentage Variation | |
Piscinola | 15.0 | 20.7 | 47.0 | 10.1 | 12.0 | 16.0 | 24.0 | 4.0 | −22.6% |
Vanvitelli | 132.0 | 176.3 | 220.0 | 33.0 | 50.0 | 73.9 | 88.0 | 12.1 | −58.1% |
Museo | 141.0 | 179.9 | 255.0 | 33.5 | 54.0 | 82.5 | 127.0 | 23.8 | −54.1% |
Dante | 175.0 | 183.0 | 190.0 | 6.2 | 72.0 | 84.5 | 100.0 | 10.6 | −53.8% |
Garibaldi | 172.0 | 191.6 | 220.0 | 17.6 | 58.0 | 99.4 | 145.0 | 28.5 | −48.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cartenì, A.; Cascetta, F.; Falanga, A.; Picone, M. Rain-Based Train Washing: A Sustainable Approach to Reduce PM Concentrations in Underground Environments. Sustainability 2024, 16, 2708. https://doi.org/10.3390/su16072708
Cartenì A, Cascetta F, Falanga A, Picone M. Rain-Based Train Washing: A Sustainable Approach to Reduce PM Concentrations in Underground Environments. Sustainability. 2024; 16(7):2708. https://doi.org/10.3390/su16072708
Chicago/Turabian StyleCartenì, Armando, Furio Cascetta, Antonella Falanga, and Mariarosaria Picone. 2024. "Rain-Based Train Washing: A Sustainable Approach to Reduce PM Concentrations in Underground Environments" Sustainability 16, no. 7: 2708. https://doi.org/10.3390/su16072708
APA StyleCartenì, A., Cascetta, F., Falanga, A., & Picone, M. (2024). Rain-Based Train Washing: A Sustainable Approach to Reduce PM Concentrations in Underground Environments. Sustainability, 16(7), 2708. https://doi.org/10.3390/su16072708