Optimization of Ultrasonic-Assisted Extraction of Antioxidants in Apple Pomace (var. Belorusskoje malinovoje) Using Response Surface Methodology: Scope and Opportunity to Develop as a Potential Feed Supplement or Feed Ingredient
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Selection and Collection
2.2. Proximate Analyses and Fatty Acid Content
2.3. Mineral and Vitamin Content
2.4. Amino Acid Content
2.5. Extraction Procedure
2.6. Response Surface Methodology
2.7. Total Phenolic Content
2.8. DPPH• Radical Scavenging Assay
2.9. ABTS•+ Radical Scavenging Assay
2.10. Statistical Analyses
3. Results and Discussion
3.1. Proximate Analyses and Fatty Acid Content
3.1.1. Minerals and Vitamin Content
3.1.2. Amino Acid Content
3.2. Optimization of Conventional Extraction of TPC, DPPH•, and ABTS•+
3.3. Optimization of Ultrasound-Assisted Extraction of TPC, DPPH•, and ABTS•+
3.4. Comparison between Conventional and Ultrasound-Assisted Extraction and Antioxidant Content of Apple Pomace
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Plazzotta, S.; Manzocco, L.; Nicoli, M.C. Fruit and vegetable waste management and the challenge of fresh-cut salad. Trends Food Sci. Technol. 2017, 63, 51–59. [Google Scholar] [CrossRef]
- Malenica, D.; Bhat, R. Current research trends in fruit and vegetables wastes and by-products management-Scope and opportunities in the Estonian context. Agron. Res. 2020, 18, 1760–1795. [Google Scholar]
- Malenica, D.; Kass, M.; Bhat, R. Sustainable Management and Valorization of Agri-Food Industrial Wastes and By-products as Animal Feed: For Ruminants, Non-Ruminants and as Poultry Feed. Sustainability 2022, 15, 117. [Google Scholar] [CrossRef]
- Kasapidou, E.; Sossidou, E.; Mitlianga, P. Fruit and vegetable co-products as functional feed ingredients in farm animal nutrition for improved product quality. Agriculture 2015, 5, 1020–1034. [Google Scholar] [CrossRef]
- Wadhwa, M.; Bakshi, M.P.S. Utilization of fruit and vegetable wastes as livestock feed and as substrates for generation of other value-added products. Rap Publ. 2013, 4, 67. [Google Scholar]
- Bakshi, M.P.S.; Wadhwa, M.; Makkar, H.P.S. Waste to worth: Vegetable wastes as animal feed. CABI Rev. 2016, 11, 1–26. [Google Scholar] [CrossRef]
- Skinner, R.C.; Gigliotti, J.C.; Ku, K.-M.; Tou, J.C. A comprehensive analysis of the composition, health benefits, and safety of apple pomace. Nutr. Rev. 2018, 76, 893–909. [Google Scholar] [CrossRef]
- Gołębiewska, E.; Kalinowska, M.; Yildiz, G. Sustainable use of apple pomace (AP) in different industrial sectors. Materials 2022, 15, 1788. [Google Scholar] [CrossRef]
- Barreira, J.C.; Arraibi, A.A.; Ferreira, I.C. Bioactive and functional compounds in apple pomace from juice and cider manufacturing: Potential use in dermal formulations. Trends Food Sci. Technol. 2019, 90, 76–87. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, T.; Wang, X.; Lü, X. Apple pomace as a potential valuable resource for full-components utilization: A review. J. Clean. Prod. 2021, 329, 129676. [Google Scholar] [CrossRef]
- Lyu, F.; Luiz, S.; Azeredo, D.R.; Cruz, A.; Ajlouni, S.; Ranadheera, C.S. Apple pomace as a functional and healthy ingredient in food products: A review. Processes 2020, 8, 319. [Google Scholar] [CrossRef]
- Gurev, A.; Cesko, T.; Dragancea, V.; Ghendov-Mosanu, A.; Pintea, A.; Sturza, R. Ultrasound-and microwave-assisted extraction of pectin from apple pomace and its effect on the quality of fruit bars. Foods 2023, 12, 2773. [Google Scholar] [CrossRef] [PubMed]
- Rashid, R.; Wani, S.M.; Manzoor, S.; Masoodi, F.A.; Dar, M.M. Green extraction of bioactive compounds from apple pomace by ultrasound assisted natural deep eutectic solvent extraction: Optimisation, comparison and bioactivity. Food Chem. 2023, 398, 133871. [Google Scholar] [CrossRef] [PubMed]
- Coman, V.; Teleky, B.E.; Mitrea, L.; Martău, G.A.; Szabo, K.; Călinoiu, L.F.; Vodnar, D.C. Bioactive potential of fruit and vegetable wastes. Adv. Nutr. Res. 2020, 91, 157–225. [Google Scholar]
- Bas-Bellver, C.; Barrera, C.; Betoret, N.; Seguí, L. Turning agri-food cooperative vegetable residues into functional powdered ingredients for the food industry. Sustainability 2020, 12, 1284. [Google Scholar] [CrossRef]
- Antonic, B.; Jancikova, S.; Dordevic, D.; Tremlova, B. Apple pomace as food fortification ingredient: A systematic review and meta-analysis. J. Food Sci. 2020, 85, 2977–2985. [Google Scholar] [CrossRef]
- Rumsey, T.S.; Kern, D.L.; Slyter, L.L. Rumen microbial population, movement of ingesta from the rumen, and water intake of steers fed apple pomace diets. J. Anim. Sci. 1979, 48, 1202–1208. [Google Scholar] [CrossRef]
- Fang, J.; Cao, Y.; Matsuzaki, M.; Suzuki, H.; Kimura, H. Effects of apple pomace-mixed silage on growth performance and meat quality in finishing pigs. Anim. Sci. J. 2016, 87, 1516–1521. [Google Scholar] [CrossRef]
- Rumsey, T.S.; Lindahl, I.L. Apple pomace and urea for gestating ewes. J. Anim. Sci. 1982, 54, 221–234. [Google Scholar] [CrossRef]
- Toyokawa, K.; Saito, Z.; Inoue, T.; Mikami, S.; Takayasu, I.; Tsubomatsu, K. The effects of apple pomace silage on the milk production and the reduction of the feed cost for lactating cows. Bull. Fac. Agric.-Hirosaki Univ. 1984, 41, 89–112. [Google Scholar]
- Kafilzadeh, F.; Tassoli, G.; Maleki, A. Kinetics of digestion and fermentation of apple pomace from juice and puree making. Res. J. Biol. Sci. 2008, 3, 1143–1146. [Google Scholar]
- Corino, C.; Rossi, R. Antioxidants in animal nutrition. Antioxidants 2021, 10, 1877. [Google Scholar] [CrossRef] [PubMed]
- Fawole, F.J.; Sahu, N.P.; Pal, A.K.; Lakra, W.S. Evaluation of antioxidant and antimicrobial properties of selected Indian medicinal plants. Int. J. Med. Aromat. Plants 2013, 3, 69–77. [Google Scholar]
- Amaeze, O.U.; Ayoola, G.A.; Sofidiya, M.O.; Adepoju-Bello, A.A.; Adegoke, A.O.; Coker, H.A.B. Evaluation of Antioxidant Activity of Tetracarpidium conophorum (Mull. Arg) Hutch & Dalziel Leaves. J. Oxid. Med. Cell. Longev. 2011, 2011, 976701. [Google Scholar]
- Wang, L.; Kim, S.W.; Piao, X.S.; Shen, Y.B.; Lee, H.S. Effects of Forsythia suspensa extract on growth performance, nutrient digestibility, and antioxidant activities in broiler chickens under high ambient temperature. Poult. Sci. 2008, 87, 1287–1294. [Google Scholar] [CrossRef] [PubMed]
- Ognik, K.; Cholewińska, E.; Sembratowicz, I.; Grela, E.; Czech, A. The potential of using plant antioxidants to stimulate antioxidant mechanisms in poultry. World’s Poult. Sci. J. 2016, 72, 291–298. [Google Scholar] [CrossRef]
- Lee, M.T.; Lin, W.C.; Yu, B.; Lee, T.-T. Antioxidant capacity of phytochemicals and their potential effects on oxidative status in animals—A review. Asian-Australas. J. Anim. Sci. 2016, 30, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Abuelo, A.; Hernández, J.; Benedito, J.L.; Castillo, C. The importance of the oxidative status of dairy cattle in the periparturient period: Revisiting antioxidant supplementation. J. Anim. Physiol. Anim. Nutr. 2014, 99, 1003–1016. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xiong, P.; Zhang, H.; Zhu, Q.; Liao, C.; Jiang, G. Analysis, occurrence, toxicity and environmental health risks of synthetic phenolic antioxidants: A review. Environ. Res. 2021, 201, 111531. [Google Scholar] [CrossRef]
- Wojcik, M.; Burzynska-Pedziwiatr, I.; Wozniak, L. A review of natural and synthetic antioxidants important for health and longevity. Curr. Med. Chem. 2010, 17, 3262–3288. [Google Scholar] [CrossRef]
- Xu, X.; Liu, A.; Hu, S.; Ares, I.; Martínez-Larrañaga, M.R.; Wang, X.; Martínez, M.A. Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action. Food Chem. 2021, 353, 129488. [Google Scholar] [CrossRef] [PubMed]
- Montenegro-Landívar, M.F.; Tapia-Quirós, P.; Vecino, X.; Reig, M.; Valderrama, C.; Granados, M.; Saurina, J. Fruit and vegetable processing wastes as natural sources of antioxidant-rich extracts: Evaluation of advanced extraction technologies by surface response methodology. J. Environ. Chem. Eng. 2021, 9, 105330. [Google Scholar] [CrossRef]
- Sánchez, M.; Laca, A.; Laca, A.; Díaz, M. Value-Added Products from Fruit and Vegetable Wastes: A Review. CLEAN–Soil Air Water 2021, 49, 2000376. [Google Scholar] [CrossRef]
- Ben-Othman, S.; Kaldmäe, H.; Rätsep, R.; Bleive, U.; Aluvee, A.; Rinken, T. Optimization of ultrasound-assisted extraction of phloretin and other phenolic compounds from apple tree leaves (Malus domestica Borkh.) and comparison of different cultivars from Estonia. Antioxidants 2021, 10, 189. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, B.K. Ultrasound: A clean, green extraction technology. TrAC Trends Anal. Chem. 2015, 71, 100–109. [Google Scholar] [CrossRef]
- Dzah, C.S.; Duan, Y.; Zhang, H.; Wen, C.; Zhang, J.; Chen, G.; Ma, H. The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. Food Biosci. 2020, 35, 100547. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrason. Sonochemistry 2020, 70, 105325. [Google Scholar] [CrossRef]
- Bedin, S.; Netto, F.M.; Bragagnolo, N.; Taranto, O.P. Reduction of the process time in the achieve of rice bran protein through ultrasound-assisted extraction and microwave-assisted extraction. Sep. Sci. Technol. 2019, 55, 300–312. [Google Scholar] [CrossRef]
- Mushtaq, A.; Roobab, U.; Denoya, G.I.; Inam-Ur-Raheem, M.; Gullón, B.; Lorenzo, J.M.; Barba, F.J.; Zeng, X.; Wali, A.; Aadil, R.M. Advances in green processing of seed oils using ultrasound-assisted extraction: A review. J. Food Process. Preserv. 2020, 44, e14740. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of phenolic compounds: A review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef]
- Narenderan, S.T.; Meyyanathan, S.N.; Babu, B.J.F.R.I. Review of pesticide residue analysis in fruits and vegetables. Pre-treatment, extraction and detection techniques. Food Res. Int. 2020, 133, 109141. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Zhang, Z.; Sun, D.-W.; Sivagnanam, S.P.; Tiwari, B.K. Combination of emerging technologies for the extraction of bioactive compounds. Crit. Rev. Food Sci. Nutr. 2019, 60, 1826–1841. [Google Scholar] [CrossRef] [PubMed]
- Cerda-Tapia, A.; Pérez-Chabela, M.d.L.; Pérez-Álvarez, J.; Fernández-López, J.; Viuda-Martos, M. Valorization of pomace powder obtained from native Mexican apple (Malus domestica var. rayada): Chemical, techno-functional and antioxidant properties. Plant Foods Hum. Nutr. 2015, 70, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Kapp, K.; Kalder, K.; Kikas, A.; Univer, T.; Püssa, T.; Raal, A. Polyphenolic compounds in apple (Malus domestica Borkh.) cultivars grown in Estonia. Proc. Estonian Acad. Sci. 2023, 72, 154–166. [Google Scholar] [CrossRef]
- Orozco-Flores, L.A.; Salas, E.; Rocha-Gutiérrez, B.; Peralta-Pérez, M.D.R.; González-Sánchez, G.; Ballinas-Casarrubias, L. Determination of Polyphenolic Profile of Apple Pomace (Malus domestica Golden Delicious Variety) by HPLC–MS. ACS Omega 2023, 9, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Pollini, L.; Cossignani, L.; Juan, C.; Mañes, J. Extraction of phenolic compounds from fresh apple pomace by different non-conventional techniques. Molecules 2021, 26, 4272. [Google Scholar] [CrossRef] [PubMed]
- Candrawinata, V.I.; Golding, J.B.; Roach, P.D.; Stathopoulos, C.E. Optimisation of the phenolic content and antioxidant activity of apple pomace aqueous extracts. CyTA-J. Food 2014, 13, 293–299. [Google Scholar] [CrossRef]
- Chandrasekar, V. Optimizing the Microwave-Assisted Extraction of Phenolic Antioxidants from Apple Pomace and Microencapsulation in Cyclodextrins. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 2010. [Google Scholar]
- Zhang, T.; Wei, X.; Miao, Z.; Hassan, H.; Song, Y.; Fan, M. Screening for antioxidant and antibacterial activities of phenolics from Golden Delicious apple pomace. Chem. Central J. 2016, 10, 1–9. [Google Scholar] [CrossRef]
- Razola-Díaz, M.d.C.; Aznar-Ramos, M.J.; Guerra-Hernández, E.J.; García-Villanova, B.; Gómez-Caravaca, A.M.; Verardo, V. Establishment of a Sonotrode Ultrasound-Assisted Extraction of Phenolic Compounds from Apple Pomace. Foods 2022, 11, 3809. [Google Scholar] [CrossRef]
- Wosiacki, G.; Sato, M.F.; Vieira, R.G.; Zardo, D.M.; Falcão, L.D.; Nogueira, A. Apple pomace from eleven cultivars: An approach to identify sources of bioactive compounds. Acta Sci. Agron. 2010, 32, 29–35. [Google Scholar] [CrossRef]
- Krasnova, I.; Segliņa, D. Content of phenolic compounds and antioxidant activity in fresh apple, pomace and pomace water extract—Effect of cultivar. Proc. Latv. Acad. Sci. Sect. B. Nat. Exact. Appl. Sci. 2019, 73, 513–518. [Google Scholar] [CrossRef]
- Kobus, Z.; Wilczyński, K.; Nadulski, R.; Rydzak, L.; Guz, T. Effect of solvent polarity on the efficiency of ultrasound-assisted extraction of polyphenols from apple pomace. In Proceedings of the IX International Scientific Symposium “Farm Machinery and Processes Management in Sustainable Agriculture”, Lublin, Poland, 22–24 November 2017. [Google Scholar]
- Garcia-Montalvo, J.; Garcia-Martín, A.; Ibañez Bujan, J.; Santos Mazorra, V.E.; Yustos Cuesta, P.; Bolivar, J.M.; Ladero, M. Extraction of antioxidants from grape and apple pomace: Solvent selection and process kinetics. Appl. Sci. 2022, 12, 4901. [Google Scholar] [CrossRef]
- Wang, L.; Boussetta, N.; Lebovka, N.; Vorobiev, E. Effects of ultrasound treatment and concentration of ethanol on selectivity of phenolic extraction from apple pomace. Int. J. Food Sci. Technol. 2018, 53, 2104–2109. [Google Scholar] [CrossRef]
- Egüés, I.; Hernandez-Ramos, F.; Rivilla, I.; Labidi, J. Optimization of ultrasound assisted extraction of bioactive compounds from apple pomace. Molecules 2021, 26, 3783. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.; Rana, A.; Gupta, S.; Bhushan, S. Varietal influence on phenolic constituents and nutritive characteristics of pomace obtained from apples grown in western Himalayas. J. Food Sci. Technol. 2020, 58, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Wojdyło, A.; Oszmiański, J.; Laskowski, P. Polyphenolic compounds and antioxidant activity of new and old apple varieties. J. Agric. Food Chem. 2008, 56, 6520–6530. [Google Scholar] [CrossRef] [PubMed]
- Bhushan, S.; Kalia, K.; Sharma, M.; Singh, B.; Ahuja, P.S. Processing of apple pomace for bioactive molecules. Crit. Rev. Biotechnol. 2008, 28, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Waldbauer, K.; McKinnon, R.; Kopp, B. Apple pomace as potential source of natural active compounds. Planta Medica 2017, 83, 994–1010. [Google Scholar] [CrossRef]
- Sobczak, P.; Nadulski, R.; Kobus, Z.; Zawiślak, K. Technology for apple pomace utilization within a sustainable development policy framework. Sustainability 2022, 14, 5470. [Google Scholar] [CrossRef]
- Hansu, P. Available online: https://hansupuukool.ee/index.php?route=common/home (accessed on 18 February 2024).
- Neeva, A. Available online: https://www.neevaaed.ee/ (accessed on 18 February 2024).
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; Association of Official Analytical Chemists International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- ISO 6865:2000; Animal Feeding Stuffs—Determination of Crude Fibre Content—Method with Intermediate Filtration. CEN-CENELEC Management Centre: Brussels, Belgium, 2000.
- Oll, Ü.; Tölp, S.; Tölp, J.; Pärn, H. Meeting the protein requirement of dairy cows in a long-term feeding experiment. J. Agric. Sci. 1997, 3, 259–267. [Google Scholar]
- Kärt, O.; Kaldmäe, H.; Karis, V. Metabolizable protein as a basis for protein evaluation of silages. In Proceedings of the Animal Nutrition Conference, Tartu, Estonia, 30–31 May 2002; Estonian Agricultural University: Tartu, Estonia, 2002; pp. 35–45. [Google Scholar]
- Sukhija, P.S.; Palmquist, D. Dissociation of calcium soaps of long-chain fatty acids in rumen fluid. J. Dairy Sci. 1990, 73, 1784–1787. [Google Scholar] [CrossRef] [PubMed]
- EVS-EN ISO 6869:2001; Animal Feeding Stuffs—Determination of the Contents of Calcium, Copper, Iron, Magnesium, Manganese, Potassium, Sodium and Zinc—Method Using Atomic Absorption Spectrometry. CEN-CENELEC Management Centre: Brussels, Belgium, 2001.
- EVS-EN 12821:2009; Foodstuffs—Determination of Vitamin D by High Performance Liquid Chromatography—Measurement of Cholecalciferol (D3) and Ergocalciferol (D2). CEN-CENELEC Management Centre: Brussels, Belgium, 2009.
- EVS-EN 12822:2014; Foodstuffs—Determination of Vitamin E by High Performance Liquid Chromatography—Measurement of α-, β-, γ- and δ-Tocopherol. CEN-CENELEC Management Centre: Brussels, Belgium, 2014.
- EVS-EN 12823-1:2014; Foodstuffs—Determination of Vitamin A by High Performance Liquid Chromatography—Part 1: Measurement of All-Trans-Retinol and 13-Cis-Retinol. CEN-CENELEC Management Centre: Brussels, Belgium, 2014.
- EVS-EN 14152:2014; Foodstuffs—Determination of Vitamin B2 by HPLC. CEN-CENELEC Management Centre: Brussels, Belgium, 2014.
- EVS-EN 14122:2014; Foodstuffs—Determination of Vitamin B1 by High Performance Liquid Chromatography. CEN-CENELEC Management Centre: Brussels, Belgium, 2014.
- EVS-EN 14663:2006; Foodstuffs—Determination of Vitamin B6 (Including Its Glycosylated Forms) by HPLC. CEN-CENELEC Management Centre: Brussels, Belgium, 2006.
- Ben-Othman, S.; Bleive, U.; Kaldmäe, H.; Aluvee, A.; Rätsep, R.; Karp, K.; Maciel, L.S.; Herodes, K.; Rinken, T. Phytochemical characterization of oil and protein fractions isolated from Japanese quince (Chaenomeles japonica) wine by-product. LWT 2023, 178, 114632. [Google Scholar] [CrossRef] [PubMed]
- Lohvina, H.; Sándor, M.; Wink, M. Effect of Ethanol Solvents on Total Phenolic Content and Antioxidant Properties of Seed Extracts of Fenugreek (Trigonella foenum-graecum L.) varieties and determination of phenolic Composition by HPLC-ESI-MS. Diversity 2021, 14, 7. [Google Scholar] [CrossRef]
- Jung, J.Y.; Park, H.-M.; Yang, J.-K. Optimization of ethanol extraction of antioxidative phenolic compounds from torrefied oak wood (Quercus serrata) using response surface methodology. Wood Sci. Technol. 2016, 50, 1037–1055. [Google Scholar] [CrossRef]
- Cheok, C.; Chin, N.; Yusof, Y.; Talib, R.; Law, C. Optimization of total monomeric anthocyanin (TMA) and total phenolic content (TPC) extractions from mangosteen (Garcinia mangostana Linn.) hull using ultrasonic treatments. Ind. Crop. Prod. 2013, 50, 1–7. [Google Scholar] [CrossRef]
- Song, F.-L.; Gan, R.-Y.; Zhang, Y.; Xiao, Q.; Kuang, L.; Li, H.-B. Total phenolic contents and antioxidant capacities of selected Chinese medicinal plants. Int. J. Mol. Sci. 2010, 11, 2362–2372. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Beigh, Y.A.; Ganai, A.; Ahmad, H. Utilisation of apple pomace as livetock feed: A review. Indian J. Small Rumin. 2015, 21, 165–179. [Google Scholar] [CrossRef]
- Givens, D.; Barber, W. Nutritive value of apple pomace for ruminants. Anim. Feed. Sci. Technol. 1987, 16, 311–315. [Google Scholar] [CrossRef]
- Queji, M.D.; Wosiacki, G.; Cordeiro, G.A.; Peralta-Zamora, P.G.; Nagata, N. Determination of simple sugars, malic acid and total phenolic compounds in apple pomace by infrared spectroscopy and PLSR. Int. J. Food Sci. Technol. 2010, 45, 602–609. [Google Scholar] [CrossRef]
- Singh, B.; Narang, M. Studies on the rumen degradation kinetics and utilization of apple pomace. Bioresour. Technol. 1992, 39, 233–240. [Google Scholar] [CrossRef]
- Pirmohammadi, R.; Rouzbehan, Y.; Rezayazdi, K.; Zahedifar, M. Chemical composition, digestibility and in situ degradability of dried and ensiled apple pomace and maize silage. Small Rumin. Res. 2006, 66, 150–155. [Google Scholar] [CrossRef]
- Sudha, M.; Baskaran, V.; Leelavathi, K. Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making. Food Chem. 2007, 104, 686–692. [Google Scholar] [CrossRef]
- Pirmohammadi, R.; Abdollahzadeh, F.; Farhoomand, P.; Fatehi, F.; Pazhoh, F.F. The effect of ensiled mixed tomato and apple pomace on Holstein dairy cow. Ital. J. Anim. Sci. 2010, 9, e41. [Google Scholar] [CrossRef]
- Heuzé, V.; Tran, G.; Hassoun, P.; Lebas, F. 2020. Apple Pomace and Culled Apples. Feedipedia, a Programme by INRAE, CIRAD, AFZ and FAO. Available online: https://www.feedipedia.org/node/20703 (accessed on 20 January 2024).
- Maslovarić, M.; Jovanović, R.; Tolimir, N.; Banjac, V.; Popović, N.; Beskorovajni, R. Nutritive value and the possibility of using apple pomace in the nutrition of dairy cows. In Proceedings of the XIII International Scientific Agricultural Symposium “Agrosym 2022”, Jahorina, Serbia, 6–9 October 2022. [Google Scholar]
- Gippert, T.; Hullar, I.; Szabo, S. Nutritive value of agricultural by-products in rabbit. In Proceedings of the Fourth Congress of World Rabbit Science Association, Budapest, Hungary, 10–14 October 1988; Volume 3, pp. 154–162. [Google Scholar]
- Hindrichsen, I.K.; Wettstein, H.-R.; Machmüller, A.; Soliva, C.R.; Knudsen, K.E.B.; Madsen, J.; Kreuzer, M. Effects of feed carbohydrates with contrasting properties on rumen fermentation and methane release in vitro. Can. J. Anim. Sci. 2004, 84, 265–276. [Google Scholar] [CrossRef]
- Narang, M.; Lal, R. Evaluation of some agro-industrial wastes in the feed of jersey calves. Agric. Wastes 1985, 13, 15–21. [Google Scholar] [CrossRef]
- Pascual, J.M.; Carmona, J.F. Composition of citrus pulp. Anim. Feed Sci. Technol. 1980, 5, 1–10. [Google Scholar] [CrossRef]
- Arthington, J.D.; Kunkle, W.E.; Martin, A.M. Citrus pulp for cattle. Vet. Clin. Food Anim. Pract. 2020, 18, 317–326. [Google Scholar] [CrossRef]
- Fegeros, K.; Zervas, G.; Stamouli, S.; Apostolaki, E. Nutritive value of dried citrus pulp and its effect on milk yield and milk composition of lactating ewes. J. Dairy Sci. 1995, 78, 1116–1121. [Google Scholar] [CrossRef]
- Bakr, M. Citrus pulp as an innovative feed ingredient in ruminant nutrition. A review. Egypt. J. Anim. Prod. 2020, 57, 73–80. [Google Scholar]
- Adebayo, O.R.; Farombi, A.G.; Oyekanmi, A.M. Proximate, mineral and anti-nutrient evaluation of pumpkin pulp (Cucurbita pepo). J. Appl. Chem. 2013, 4, 25–28. [Google Scholar]
- Essien, A.; Ebana, R.; Udo, H. Chemical evaluation of the pod and pulp of the fluted pumpkin (Telfairia occidentalis) fruit. Food Chem. 1992, 45, 175–178. [Google Scholar] [CrossRef]
- Radenkovs, V.; Kviesis, J.; Juhnevica-Radenkova, K.; Valdovska, A.; Püssa, T.; Klavins, M.; Drudze, I. Valorization of wild apple (Malus spp.) by-products as a source of essential fatty acids, tocopherols and phytosterols with antimicrobial activity. Plants 2018, 7, 90. [Google Scholar] [CrossRef] [PubMed]
- Walia, M.; Rawat, K.; Bhushan, S.; Padwad, Y.S.; Singh, B. Fatty acid composition, physicochemical properties, antioxidant and cytotoxic activity of apple seed oil obtained from apple pomace. J. Sci. Food Agric. 2013, 94, 929–934. [Google Scholar] [CrossRef] [PubMed]
- McDonald, P.; Edwards, R.A.; Greenhalgh, J.F.D.; Morgan, C.A.; Sinclair, L.A.; Wilkinson, R.G. Animal Nutrition; Pearson Education Limited: Essex, UK, 2020. [Google Scholar]
- Asma, U.; Morozova, K.; Ferrentino, G.; Scampicchio, M. Apples and Apple by-Products: Antioxidant Properties and Food Applications. Antioxidants 2023, 12, 1456. [Google Scholar] [CrossRef] [PubMed]
- Allison, R.D.; Laven, R. Effect of vitamin E supplementation on the health and fertility of dairy cows: A review. Vet. Rec. 2000, 147, 703–708. [Google Scholar] [PubMed]
- Catană, M.; Catană, L.; Iorga, E.; Lazăr, M.A.; Lazăr, A.G.; Teodorescu, R.I.; Asănică, T.L.; Nastasia, B.E.L.C. Achieving of functional ingredient from apple wastes resulting from the apple juice industry. AgroLife Sci. J. 2018, 7, 9–17. [Google Scholar]
- Meijer, G.A.; van der Meulen, J.; van Vuuren, A.M. Glutamine is a potentially limiting amino acid for milk production in dairy cows: A hypothesis. Metabolism 1993, 42, 358–364. [Google Scholar] [CrossRef]
- Kruczek, M.; Gumul, D.; IvaniÅ, E.; GambuÅ, H. Industrial apple pomace by-products as a potential source of pro-health compounds in functional food. J. Microbiol. Biotechnol. Food Sci. 2017, 7, 22–26. [Google Scholar] [CrossRef]
- Fărcaș, A.C.; Socaci, S.A.; Chiș, M.S.; Dulf, F.V.; Podea, P.; Tofană, M. Analysis of fatty acids, amino acids and volatile profile of apple by-products by gas chromatography-mass spectrometry. Molecules 2022, 27, 1987. [Google Scholar] [CrossRef]
- Tobiszewski, M.; Namieśnik, J.; Pena-Pereira, F. Environmental risk-based ranking of solvents using the combination of a multimedia model and multi-criteria decision analysis. Green Chem. 2017, 19, 1034–1042. [Google Scholar] [CrossRef]
- Silva, E.; Rogez, H.; Larondelle, Y. Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Sep. Purif. Technol. 2007, 55, 381–387. [Google Scholar] [CrossRef]
- Yim, H.S.; Chye, F.Y.; Rao, V.; Low, J.Y.; Matanjun, P.; How, S.E.; Ho, C.W. Optimization of extraction time and temperature on antioxidant activity of Schizophyllum commune aqueous extract using response surface methodology. J. Food Sci. Technol. 2011, 50, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef] [PubMed]
- Antony, A.; Farid, M. Effect of temperatures on polyphenols during extraction. Appl. Sci. 2022, 12, 2107. [Google Scholar] [CrossRef]
- Oancea, S. A review of the current knowledge of thermal stability of anthocyanins and approaches to their stabilization to heat. Antioxidants 2021, 10, 1337. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, I.; Chekir, L.; Ghoul, M. Effect of heat treatment and light exposure on the antioxidant activity of flavonoids. Processes 2020, 8, 1078. [Google Scholar] [CrossRef]
- Lohani, U.C.; Muthukumarappan, K. Effect of drying methods and ultrasonication in improving the antioxidant activity and total phenolic content of apple pomace powder. J. Food Res. 2014, 4, 68. [Google Scholar] [CrossRef]
- Li, W.; Yang, R.; Ying, D.; Yu, J.; Sanguansri, L.; Augustin, M.A. Analysis of polyphenols in apple pomace: A comparative study of different extraction and hydrolysis procedures. Ind. Crop. Prod. 2020, 147, 112250. [Google Scholar] [CrossRef]
- Zhang, Z.; Poojary, M.M.; Choudhary, A.; Rai, D.K.; Tiwari, B.K. Comparison of selected clean and green extraction technologies for biomolecules from apple pomace. Electrophoresis 2018, 39, 1934–1945. [Google Scholar] [CrossRef] [PubMed]
- Bars-Cortina, D.; Macià, A.; Iglesias, I.; Garanto, X.; Badiella, L.; Motilva, M.J. Seasonal variability of the phytochemical composition of new red-fleshed apple varieties compared with traditional and new white-fleshed varieties. J. Agric. Food Chem. 2018, 66, 10011–10025. [Google Scholar] [CrossRef] [PubMed]
- Floegel, A.; Kim, D.-O.; Chung, S.-J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Rumpf, J.; Burger, R.; Schulze, M. Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins. Int. J. Biol. Macromol. 2023, 233, 123470. [Google Scholar]
- Mfotie Njoya, E. Chapter 31-Medicinal plants, antioxidant potential, and cancer. In Cancer, 2nd ed.; Academic Press: San Diego, CA, USA, 2021; pp. 349–357. [Google Scholar]
- Schaich, K.M.; Tian, X.; Xie, J. Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays. J. Funct. Foods 2015, 14, 111–125. [Google Scholar] [CrossRef]
- Kut, K.; Cieniek, B.; Stefaniuk, I.; Bartosz, G.; Sadowska-Bartosz, I. A modification of the ABTS• decolorization method and an insight into its mechanism. Processes 2022, 10, 1288. [Google Scholar] [CrossRef]
- Mareček, V.; Mikyška, A.; Hampel, D.; Čejka, P.; Neuwirthová, J.; Malachová, A.; Cerkal, R. ABTS and DPPH methods as a tool for studying antioxidant capacity of spring barley and malt. J. Cereal Sci. 2017, 73, 40–45. [Google Scholar] [CrossRef]
- Sadeer, N.B.; Montesano, D.; Albrizio, S.; Zengin, G.; Mahomoodally, M.F. The versatility of antioxidant assays in food science and safety-chemistry, applications, strengths, and limitations. Antioxidants 2020, 9, 709. [Google Scholar] [CrossRef]
- AlNeyadi, S.S.; Amer, N.; Thomas, T.G.; Al Ajeil, R.; Breitener, P.; Munawar, N. Synthesis, characterization, and antioxidant activity of some 2-methoxyphenols derivatives. Heterocycl. Commun. 2020, 26, 112–122. [Google Scholar] [CrossRef]
- Qin, W.; Wang, Y.; Mouhamed, F.; Hamaker, B.; Zhang, G. Impact of the solubility of phenolic compounds from highland barley (Hordeum vulgare L.) on their antioxidant property and protein binding affinity. LWT 2023, 186, 115251. [Google Scholar] [CrossRef]
Response | Name | Units |
---|---|---|
R1 | TPC | mg GAE eq./g DW |
R2 | DPPH• | µM TE eq./g DW |
R3 | ABTS•+ | µM TE eq./g DW |
Name | Units | Type | Min | Max | Coded Low | Coded High | Mean |
---|---|---|---|---|---|---|---|
Time | Min | Numeric Continuous | 5.00 | 30.00 | −1↔5.00 | +1↔30.00 | 17.50 |
Amplitude | % | Numeric Continuous | 20.00 | 50.00 | −1↔20.00 | +1↔50.00 | 35.00 |
Run | Time (min) | Amplitude (%) |
---|---|---|
1 | 30 (+1) | 35 (0) |
2 | 5 (−1) | 35 (0) |
3 | 5 (−1) | 20 (−1) |
4 | 30 (+1) | 20 (−1) |
5 | 5 (−1) | 50 (+1) |
6 | 30 (+1) | 50 (+1) |
7 | 17.5 (0) | 20 (−1) |
8 | 17.5 (0) | 35 (0) |
9 | 17.5 (0) | 50 (+1) |
Traits | Vitamin Content | Fatty Acid Profile | Mineral Content | ||||
---|---|---|---|---|---|---|---|
Dry matter, % | 89.4 ± 0.28 | Vitamin A, Retinol µg/100 g | <2 | C14:0 | 0.32 ± 0.03 | Ca, g/kg | 1.1 ± 0.08 |
Crude protein, % | 3.0 ± 0.15 | Vitamin A, Beta carotene µg/100 g | <20 | C16:0 | 14.6 ± 0.95 | P, g/kg | 1.5 ± 0.2 |
Crude fiber, % | 14.6 ± 0.25 | Vitamin E mg/100 g | 2.42 | C16:1 | 0.2 ± 0.04 | Na, g/kg | 0.04 ± 0 |
Crude fat, % | 3.1 ± 0.2 | Vitamin D µg/100 g | <1 | C18:0 | 4.15 ± 0.25 | K, g/kg | 10.6 ± 0.2 |
Content of NFE in feed, % | 76.2 ± 1.3 | B1 vitamin mg/100 g | <0.01 | C18:1 | 17.1 ± 0.95 | Mg, g/kg | 0.6 ± 0.07 |
ME, MJ/kg | 9.8 ± 0.55 | B2 vitamin mg/100 g | 0.29 | C18:2 | 55.1 ± 1.4 | Zn, mg/kg | 10.1 ± 0.5 |
MP, g/kg | 73 ± 0.8 | B3 vitamin mg/100 g | 0.6 | C18:3 | 3.94 ± 0.3 | Copper, mg/kg | 6.7 ± 0.2 |
B5 Vitamin mg/100 g | 0 | C18:4 | 0.09 ± 0 | Manganese, mg/kg | 5.6 ± 0.1 | ||
B6 Vitamin mg/100 g | 0.23 | C20:0 | 2.12 ± 0.2 | Fe, mg/kg | 11.2 ± 0.28 | ||
C20:1 | 0.34 ± 0.03 | ||||||
C20:2 | 0.35 ± 0.08 | ||||||
C22:0 | 0.61 ± 0.02 | ||||||
C22:1 | 0 ± 0 | ||||||
C24:0 | 0 ± 0 |
TPC | DPPH• | ABTS•+ | |
---|---|---|---|
APC96 | 2.9 ± 0.2 | 31.34 ± 1.7 | 84.86 ± 1.6 |
APC70 | 4.36 ± 0.1 | 43 ± 1.8 | 95.81 ± 1.18 |
APCW | 3.15 ±0.3 | 36 ± 2.2 | 90.7 ± 2.83 |
Run Order | Time (min) | Amplitude (%) | TPC | DPPH• | ABTS•+ | |||
---|---|---|---|---|---|---|---|---|
Actual Value | Predicted Value | Actual Value | Predicted Value | Actual Value | Predicted Value | |||
1 | 30 | 35 | 3.65 | 3.66 | 26.3 | 24.7 | 96.0 | 96.2 |
2 | 5 | 35 | 2.55 | 2.68 | 17.5 | 17.9 | 95.7 | 94.2 |
3 | 5 | 20 | 3.65 | 3.50 | 35.2 | 34.4 | 100.7 | 101.8 |
4 | 30 | 20 | 4.24 | 4.15 | 43.6 | 43.9 | 98.4 | 98.7 |
5 | 5 | 50 | 1.50 | 1.52 | 20.0 | 20.3 | 88.0 | 88.4 |
6 | 30 | 50 | 2.75 | 2.83 | 23.2 | 24.5 | 95.9 | 95.4 |
7 | 17.5 | 20 | 4.26 | 4.45 | 44.4 | 45.0 | 98.0 | 96.6 |
8 | 17.5 | 35 | 3.95 | 3.80 | 26.0 | 27.1 | 90.2 | 91.5 |
9 | 17.5 | 50 | 2.90 | 2.80 | 30.0 | 28.2 | 88.0 | 88.2 |
Model and Model Terms | Response 1: TPC | Response 2: DPPH• | Response 3: ABTS•+ |
---|---|---|---|
p-Value | p-Value | p-Value | |
Model | 0.011 * | 0.005 * | 0.031 * |
A-Time | 0.013 * | 0.019 * | 0.236 |
B-Amplitude | 0.003 * | 0.002 * | 0.008 * |
AB | 0.235 | 0.247 | 0.051 |
A2 | 0.028 * | 0.020 * | 0.048 * |
B2 | 0.345 | 0.005 * | 0.505 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malenica, D.; Maciel, L.S.; Herodes, K.; Kass, M.; Bhat, R. Optimization of Ultrasonic-Assisted Extraction of Antioxidants in Apple Pomace (var. Belorusskoje malinovoje) Using Response Surface Methodology: Scope and Opportunity to Develop as a Potential Feed Supplement or Feed Ingredient. Sustainability 2024, 16, 2765. https://doi.org/10.3390/su16072765
Malenica D, Maciel LS, Herodes K, Kass M, Bhat R. Optimization of Ultrasonic-Assisted Extraction of Antioxidants in Apple Pomace (var. Belorusskoje malinovoje) Using Response Surface Methodology: Scope and Opportunity to Develop as a Potential Feed Supplement or Feed Ingredient. Sustainability. 2024; 16(7):2765. https://doi.org/10.3390/su16072765
Chicago/Turabian StyleMalenica, Dunja, Larissa Silva Maciel, Koit Herodes, Marko Kass, and Rajeev Bhat. 2024. "Optimization of Ultrasonic-Assisted Extraction of Antioxidants in Apple Pomace (var. Belorusskoje malinovoje) Using Response Surface Methodology: Scope and Opportunity to Develop as a Potential Feed Supplement or Feed Ingredient" Sustainability 16, no. 7: 2765. https://doi.org/10.3390/su16072765
APA StyleMalenica, D., Maciel, L. S., Herodes, K., Kass, M., & Bhat, R. (2024). Optimization of Ultrasonic-Assisted Extraction of Antioxidants in Apple Pomace (var. Belorusskoje malinovoje) Using Response Surface Methodology: Scope and Opportunity to Develop as a Potential Feed Supplement or Feed Ingredient. Sustainability, 16(7), 2765. https://doi.org/10.3390/su16072765