Effects of Anthropogenic Activities on Sardinella maderensis (Lowe, 1838) Fisheries in Coastal Communities of Ibeju-Lekki, Lagos, Nigeria
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Description of the Study Area
3.2. Field Surveys
3.3. Fish Species Identification
3.4. Land-Use and Land-Cover Change Analysis
3.5. Water Quality Analyses
3.6. Trends Analysis of S. maderensis Abundance
3.7. Percieved Anthropogenic Effects on S. maderensis Abundance
4. Results
4.1. Fish Species Identification
4.2. Land Use and Land Cover Change
4.3. Water Quality Analyses
4.4. Trends in S. maderensis Abundance
4.5. Anthropogenic Factors Predicting S. maderensis Abundance
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blasiak, R.; Wabnitz, C.C.C. Aligning Fisheries Aid with International Development Targets and Goals. Mar. Policy 2018, 88, 86–92. [Google Scholar] [CrossRef]
- FAO. World Fisheries and Aquaculture; FAO: Rome, Italy, 2022; ISBN 9789251072257. [Google Scholar]
- Olaoye, O.J.; Ojebiyi, W.G. Marine Fisheries in Nigeria: A Review. In Marine Ecology—Biotic and Abiotic Interactions; IntechOpen: London, UK, 2018; pp. 155–173. [Google Scholar]
- FAO. FAO Fisheries & Aquaculture: Fishery and Aquaculture Profiles—The Federal Republic of Nigeria; FAO: Rome, Italy, 2017. [Google Scholar]
- Adeosun, A. Draft of Socio-Economic/SIA Baseline Report for the Proposed Pipeline Route for The Dangote Fertilizer Plant Project; Ibeju-Lekki Local Government Area of Lagos State: Lagos, Nigeria, 2017.
- Anetekhai, M.A.; Whenu, O.O.; Osodein, O.A.; Fasasi, A.O. Beach Seine Fisheries in Badagry, Lagos State, South West, Nigeria. Braz. J. Biol. Sci. 2018, 5, 815–835. [Google Scholar] [CrossRef]
- Jim-Saiki, L.O.; Aihaji, T.A.; Giwa, J.E.; Oyerinde, M.; Adedeji, A.K. Factors Constraining Artisanal Fish Production in the Fishing Communities of Ibeju-Lekki Local Government Area of Lagos State Abstract. Int. J. Innov. Res. Dev. 2014, 3, 97–101. [Google Scholar]
- Omenai, J.; Ayodele, D. The Vulnerability of Eti-Osa and Ibeju-Lekki Coastal Communities in Lagos State Nigeria to Climate Change Hazards. Res. Hum. Soc. Sci. 2014, 4, 132–143. [Google Scholar]
- Whitehead, P.J.P. FAO Species Catalogue. Vol. 7. Clupeoid Fishes of the World (Suborder Clupeoidei). An Annotated and Illustrated Catalogue of the Herrings, Sardines, Pilchards, Sprats, Shads, Anchovies and Wolf-Herrings. FAO Fish. Synop. 1985, 125, 1–303. [Google Scholar]
- FAO. Fishery and Aquaculture Statistics 2017; Food and Agriculture Organisation: Rome, Italy, 2019; ISBN 9789251316696. [Google Scholar]
- Solarin, B.; Kusemiju, K.; Akande, G. Species Composition and Abundance of Finfish and Shellfish Resources of the Coastal and Brackish Water Areas of Nigeria; Ibeju-Lekki Local Government: Lagos, Nigeria, 2008.
- Tous, P.; Sidibe, A.; Mbye, E.; De Morais, L.; Camara, K.; Munroe, T.; Adeofe, T.; Camara, Y.H.; Djiman, R.; Sagna, A.; et al. Sardinella maderensis. In The IUCN Red List of Threatened Species 2015; IUCN: Gland, Switzerland, 2015. [Google Scholar]
- Adeleke, M.L.; Al-Kenawy, D.; Nasr-Allah, A.M.; Murphy, S.; El-Naggar, G.O.; Dickson, M. Fish Farmers’ Perceptions, Impacts and Adaptation on/of/to Climate Change in Africa (the Case of Egypt and Nigeria). In Theory and Practice of Climate Adaptation; Alves, F., Leal Filho, W., Azeiteiro, U., Eds.; Springer: Cairo, Egypt, 2018; pp. 269–295. ISBN 9783319728742. [Google Scholar]
- Akintola, S.L.; Fakoya, K.A. Small-Scale Fisheries in the Context of Traditional Post-Harvest Practice and the Quest for Food and Nutritional Security in Nigeria. Agric. Food Secur. 2017, 6, 34. [Google Scholar] [CrossRef]
- Akiode, O.S.; Falayi, E.O.; Amoo, I.A. Anthropogenic-Induced Changes in Vegetation Trends in Lekki Conservation Centre Wetland Area, Lagos State Nigeria. J. Ecol. Nat. Environ. 2011, 3, 1–10. [Google Scholar]
- Adeshokan, O. “What Will Be Left of Us?” Lagos Fishermen Lament the Oil Refinery. Guardian 2019, 1–7. [Google Scholar]
- Jones, D.L.; Rowe, E.C. Land Reclamation and Remediation, Principles and Practice. Ref. Modul. Life Sci. Encycl. Appl. Plant Sci. 2017, 3, 304–310. [Google Scholar]
- Bali, A.S.; Sidhu, G.P.; Kumar, V. Chapter 29—Plant Enzymes in Metabolism of Organic Pollutants. In Handbook of Bioremediation: Physiological, Molecular and Biotechnological Interventions; Academic Press: Cambridge, MA, USA, 2021; pp. 465–474. [Google Scholar]
- Hiralal, S.; Sagar, A.; Ashish, B.; Akanksha, J. Targeted Genetic Modification Technologies: Potential Benefits of Their Future Use in Phytoremediation. In Phytoremediation: Biotechnological Strategies for Promoting Invigorating Environs; Academic Press: Cambridge, MA, USA, 2022; pp. 203–226. [Google Scholar]
- Chikelu, G.C. Regulating IUU Fishing in Nigeria: A Step towards Discovering the Untapped Potentials of Fisheries in Nigeria. Master’s Thesis, World Maritime University, Malmö, Sweden, 2021. [Google Scholar]
- Abiodun, S. Illegal Fishing (IUU) Activities in Nigeria Territorial Waters and Its Economic Impacts. Int. J. Res. Publ. Rev. 2021, 2, 728–735. [Google Scholar]
- Oluwatobi, A.O.J. Impacts of Climate Change on the Coastal Areas of Nigeria. J. Geogr. Reg. Plan. 2017, 10, 533–541. [Google Scholar]
- Udoh, J.P.; Ukpong, I.G. An Assessment of Anthropogenic Drivers of Ecosystem Change in the Calabar River Catchment, Cross River State, Nigeria. Environ. Dev. Sustain. 2013, 15, 885–903. [Google Scholar]
- FAO. The State of World Fisheries and Aquaculture—Meeting the Sustainable Development Goals; Food and Agriculture Organisation: Rome, Italy, 2018. [Google Scholar]
- Jouffray, J.; Blasiak, R.; Norstrom, A.; Osterblom, H.; Nystrom, M. The Blue Acceleration: The Trajectory of Human Expansion into the Ocean. One Earth 2020, 2, 43–54. [Google Scholar] [CrossRef]
- Chuenpagdee, R.; Salas, S.; Barragán-Paladines, M.J. Big Questions About Sustainability and Viability in Small-Scale Fisheries. In Viability and Sustainability of Small-Scale Fisheries in Latin America and The Caribbean; Salas, S., Barragán-Paladines, M.J., Chuenpagdee, R., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 3–13. [Google Scholar]
- Cisneros-Montemayor, A.M.; Sanjurjo, E.; Munro, G.R.; Hernández-Trejo, V.; Rashid Sumaila, U. Strategies and Rationale for Fishery Subsidy Reform. Mar. Policy 2016, 69, 229–236. [Google Scholar] [CrossRef]
- Halpern, B.S.; Walbridge, S.; Selkoe, K.A.; Kappel, C.V.; Micheli, F.; D’Agrosa, C.; Bruno, J.F.; Casey, K.S.; Ebert, C.; Fox, H.E.; et al. A Global Map of Human Impact on Marine Ecosystems. Science 2008, 319, 948–952. [Google Scholar] [CrossRef]
- Zamora-Ledezma, C.; Negrete-Bolagay, D.; Figueroa, F.; Zamora-Ledezma, E.; Ni, M.; Alexis, F.; Guerrero, V.H. Heavy Metal Water Pollution: A Fresh Look about Hazards, Novel and Conventional Remediation Methods. Environ. Technol. Innov. 2021, 22, 101504. [Google Scholar] [CrossRef]
- Belhabib, D.; Sumaila, U.R.; Pauly, D. Feeding the Poor: Contribution of West African Fisheries Toemployment and Food Security. Ocean Coast. Manag. 2015, 111, 72–81. [Google Scholar] [CrossRef]
- Cheung, W.W.L.; Watson, R.; Pauly, D. Signature of Ocean Warming in Global Fisheries Catch. Nature 2013, 497, 365–368. [Google Scholar] [CrossRef]
- Lotze, H.K.; Tittensor, D.P.; Bryndum-Buchholz, A.; Eddy, T.D.; Cheung, W.W.L.; Galbraith, E.D.; Barange, M.; Barrier, N.; Bianchi, D.; Blanchard, J.L.; et al. Global Ensemble Projections Reveal Trophic Amplification of Ocean Biomass Declines with Climate Change. Proc. Natl. Acad. Sci. USA 2019, 116, 12907–12912. [Google Scholar] [CrossRef]
- Mendelssohn, R.; Philippe, C. Temporal and Spatial Dynamics of a Coastal Pelagic Species, Sardinella Maderensis off the Ivory Coast. Can. J. Fish. Aquat. Sci. 1989, 46, 1686–1697. [Google Scholar] [CrossRef]
- Gabche, C.E.; Hockey, H.U.P. Growth, Mortality and Reproduction of Sardinella Maderensis (Lowe, 1841) in the Artisanal Fisheries off Kribi, Cameroon. Fish. Res. 1995, 24, 331–344. [Google Scholar] [CrossRef]
- Sossoukpe, E.; Djidohokpin, G.; Fiogbe, E.D. Demographic Parameters and Exploitation Rate of Sardinella Maderensis (Pisces: Lowe 1838) in the Nearshore Waters of Benin (West Africa) and Their Implication for Management and Conservation. Int. J. Fish. Aquat. Stud. 2016, 4, 165–171. [Google Scholar]
- Wehye, A.S.; Amponsah, S.K.K.; Jueseah, A.S. Growth, Mortality and Exploitation of Sardinella Maderensis (Lowe, 1838) in the Liberian Coastal Waters. Fish. Aquac. J. 2017, 8, 1–5. [Google Scholar] [CrossRef]
- Amponsah, S.K.K.; Ofori-Danson, P.K.; Nunoo, F.K.E.; Ameyaw, G.A. Estimates of Population Parameters for Sardinella Maderensis (Lowe, 1838) in the Coastal Waters of Ghana. Greener J. Agric. Sci. 2019, 9, 23–31. [Google Scholar] [CrossRef]
- Pauly, D.; Christensen, V.V.; Dalsgaard, J.; Froese, R.; Torres, F.J. Fishing down Marine Food Webs. Science 1998, 279, 860–863. [Google Scholar] [CrossRef]
- Worm, B.; Hilborn, R.; Baum, J.K.; Branch, T.A.; Collie, J.S.; Costello, C.; Fogarty, M.J.; Fulton, E.A.; Hutchings, J.A.; Jennings, S.; et al. Rebuilding Global Fisheries. Science 2009, 325, 578–585. [Google Scholar] [CrossRef]
- Roberts, C.M.; McClean, C.J.; Veron, J.E.N.; Hawkins, J.P.; Allen, G.R.; McAllister, D.E.; Mittermeier, C.G.; Schueler, F.W.; Spalding, M.; Wells, F.; et al. Marine Biodiversity Hotspots and Conservation Priorities for Tropical Reefs. Science 2002, 295, 1280–1284. [Google Scholar] [CrossRef]
- Begg, G.A.; Friedland, K.D.; Pearce, J.B. Stock Identification and Its Role in Stock Assessment and Fisheries Management: An Overview. Fish. Res. 1999, 43, 1–8. [Google Scholar] [CrossRef]
- Zemlak, T.S.; Ward, R.D.; Connell, A.D.; Holmes, B.H.; Hebert, P.D.N. DNA Barcoding Reveals Overlooked Marine Fishes. Mol. Ecol. Resour. 2009, 9, 237–242. [Google Scholar] [CrossRef]
- Fujita, R. The Assessment and Management of Data Limited Fisheries: Future Directions. Mar. Policy 2021, 133, 104730. [Google Scholar] [CrossRef]
- FAO. Report of the FAO/CECAF Working Group on the Assessment of Small Pelagic Fish; CECAF/ECAF SERIES; FAO: Accra, Ghana, 2009. [Google Scholar]
- Iyalomhe, F.; Rizzi, J.; Torresan, S.; Gallina, V.; Critto, A.; Marcomini, A. Inventory of GIS-Based Decision Support Systems Addressing Climate Change Impacts on Coastal Waters and Related Inland Watersheds. In Climate Change—Realities, Impacts Over Ice Cap, Sea Level and Risks; IntechOpen: London, UK, 2013. [Google Scholar] [CrossRef]
- Balde, B.S.; Sow, F.N.; Ba, K.; Ekau, W.; Kantoussan, J.; Fall, M.; Diouf, M. Variability of Key Biological Parameters of Round Sardinella Sardinella Aurita and the Effects of Environmental Changes To Cite This Version: HAL Id: Hal-02749018 Archimer Variability of Key Biological Parameters of Round Sardinella Sardinella Aurita An. J. Fish Biol. 2020, 94, 391–401. [Google Scholar] [CrossRef]
- Ayodele, O.S.; Adelodun, A.A.; Oluwagbohunmi, A. Trace Metal Concentration in Common Fishes from the Lagos Lagoon, Southwestern Nigeria. Reg. Stud. Mar. Sci. 2023, 60, 102844. [Google Scholar] [CrossRef]
- Iyiola, A.O.; Akinrinade, A.J.; Ajayi, F.O. Effects of Water Pollution on Biodiversity Along the Coastal Regions. In Biodiversity in Africa: Potentials, Threats and Conservation; Chibueze Izah, S., Ed.; Springer Nature Singapore: Singapore, 2022; pp. 345–367. ISBN 978-981-19-3326-4. [Google Scholar]
- Jinadu, O.O. Small-Scale Fisheries In Lagos State, Nigeria: Economic Sustainable Yield Determination. In Microbehavior and Macroresults, Proceedings of the Tenth Biennial Conference of the International Institute ofFisheries Economics and Trade, Corvallis, OR, USA, 10–14 July 2000; InternationalInstitute of Fisheries Economics and Trade (IIFET): Corvallis, OR, USA, 2000; pp. 1–11. [Google Scholar]
- Dekolo, S.; Oduwaye, A. Managing the Lagos Megacity and Its Geospacial Imperative. In Proceedings of the International Archives of the Photogrammetry, Remote sensing and Spatial Information Sciences, Munich, Germany, 5–7 October 2011; Volume XXXVIII, pp. 121–128. [Google Scholar]
- Hennink, M.; Kaiser, B.; Weber, M. What Influences Saturation? Estimating Sample Sizes in Focus Group Research. Qual. Health Res. 2019, 29, 1483–1496. [Google Scholar] [CrossRef] [PubMed]
- Froese, R.; Pauly, D. FishBase, Worldwide Electronic Publication; ScienceOpen: Lexington, MA, USA, 2014. [Google Scholar]
- FAO. Food and Agricultural Organization. Field Guide to Commercial Marine Resources of the Gulf of Guinea; FAO/Unnited Nations: Rome, Italy, 1990. [Google Scholar]
- Ward, R.D.; Zemlak, T.S.; Innes, B.H.; Last, P.R.; Hebert, P.D.N. DNA Barcoding Australia’s Fish Species. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 1847–1857. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, N.V.; Zemlak, T.S.; Hanner, R.H.; Hebert, P.D.N. Universal Primer Cocktails for Fish DNA Barcoding. Mol. Ecol. Notes 2007, 7, 544–548. [Google Scholar] [CrossRef]
- Kim, M.S.; Kim, J.; Kang, T.W.; Jeong, U.; Kim, K.R.; Bang, I.C. The Complete Mitochondrial Genome of Sardinella Zunasi (Clupeiformes: Clupeidae). Mitochondrial DNA Part B Resour. 2021, 6, 1178–1180. [Google Scholar] [CrossRef] [PubMed]
- Takyi, E. Population Genetic Structure of Sardinella Aurita and Sardinella Madurensis in the Eastern Central Atlantic Region (Cecaf) in West Africa. Master’s Thesis, University of Rhode Island, Kingston, RI, USA, 2019. [Google Scholar]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective; Prentice-Hall Inc.: Hoboken, NJ, USA, 1996. [Google Scholar]
- APHA (American Public Health Association—Apha). Standard Methods for the Examination of Water and Wastewater; APHA: Washington, DC, USA, 2005. [Google Scholar]
- UNEP/IOC Guidelines on Survey and Monitoring of Marine Litter; UNEP: New York, NY, USA, 2015.
- Arizi, E.K.; Collie, J.S.; Castro, K.; Humphries, A.T. Fishing Characteristics and Catch Composition of the Sardinella Fishery in Ghana Indicate Urgent Management Is Needed. Reg. Stud. Mar. Sci. 2022, 52, 102348. [Google Scholar] [CrossRef]
- Stobart, B.; Alvarez-Barastegui, D.; Goñi, R. Effect of Habitat Patchiness on the Catch Rates of a Mediterranean Coastal Bottom Long-Line Fishery. Fish. Res. 2012, 129–130, 110–118. [Google Scholar] [CrossRef]
- Thompson, W.L.; White, G.C.; Gowan, C. Fish. In Monitoring Vertebrate Populations; Thompson, W.L., White, G.C., Gowan, C.B.T.-M.V.P., Eds.; Academic Press: San Diego, CA, USA, 1998; pp. 191–232. ISBN 978-0-12-688960-4. [Google Scholar]
- Harley, S.J.; Ransom, A.M.; Alistair, D. Is Catch-per-Unit-Effort Proportional to Abundance. Can. J. Fish. Aquat. Sci. 2001, 58, 1760–1772. [Google Scholar] [CrossRef]
- McGoodwin, J.R. Understanding the Cultures of Fishing Communities: A Key to Fisheries Management and Food Security; FAO: Rome, Italy, 2001. [Google Scholar]
- Farr, E.R.; Stoll, J.S.; Beitl, C.M. Effects of Fisheries Management on Local Ecological Knowledge. Ecol. Soc. 2018, 23, 15. [Google Scholar] [CrossRef]
- Berkström, C.; Papadopoulos, M.; Jiddawi, N.S.; Nordlund, L.M. Fishers’ Local Ecological Knowledge (LEK) on Connectivity and Seascape Management. Front. Mar. Sci. 2019, 6, 00130. [Google Scholar] [CrossRef]
- de Morais Cardoso da Silva, L.; Machado, I.C.; dos Santos Tutui, S.L.; Tomás, A.R.G. Local Ecological Knowledge (LEK) Concerning Snook Fishers on Estuarine Waters: Insights into Scientific Knowledge and Fisheries Management. Ocean Coast. Manag. 2020, 186, 105088. [Google Scholar] [CrossRef]
- Garmendia, V.; Subida, M.D.; Aguilar, A.; Fernández, M. The Use of Fishers’ Knowledge to Assess Benthic Resource Abundance across Management Regimes in Chilean Artisanal Fisheries. Mar. Policy 2021, 127, 104425. [Google Scholar] [CrossRef]
- Boubekri, I.; Mazurek, H.; Djebar, A.B.; Amara, R. Social-Ecological Dimensions of Marine Protected Areas and Coastal Fishing: How Fishermen’s Local Ecological Knowledge Can Inform Fisheries Management at the Future “Taza” MPA (Algeria, SW Mediterranean). Ocean Coast. Manag. 2022, 221, 106121. [Google Scholar] [CrossRef]
- Silas, M.O.; Semba, M.L.; Mgeleka, S.S.; Van Well, L.; Linderholm, H.W.; Gullström, M. Using Fishers’ Local Ecological Knowledge for Management of Small-Scale Fisheries in Data-Poor Regions: Comparing Seasonal Interview and Field Observation Records in East Africa. Fish. Res. 2023, 264, 106721. [Google Scholar] [CrossRef]
- Gourène, G.; Teugels, G.G. Clupeidae. In The fresh and Brackish Water Fishes of West Africa; Paugy, D., Lévêque, C., Teugels, G., Eds.; Coll. faune et flore tropicales 40; Institut de Recherche de Développement, Muséum National D’histoire Naturelle, Paris, France and Musée Royal de l’Afrique Central, Tervuren, Belgium: Paris, France, 2003; pp. 125–142. [Google Scholar]
- Fischer, W.; Bianchi, G.; Scott, W.B. (Eds.) FAO Species Identification Sheets for Fishery Purposes. Eastern Central Atlantic; Fishing Areas 34, 47 (in Part); Canada Funds-in-Trust: Ottawa, ON, Canada; Department of Fisheries and Oceans Canada, by Arrangement with the Food and Agriculture Organization of the United Nations: Ottawa, ON, Canada, 1981; Volumes 1–7. [Google Scholar]
- Ngah, A.S.; Braide, S.; Dike, C.C. Physico-Chemistry of Elechi Creek in the Upper Bonny Estuary, Rivers State, Nigeria. J. Geosci. Environ. Prot. 2017, 5, 181–197. [Google Scholar] [CrossRef]
- FAO. Major Exploited Fish Species. In Marine FIishery Resources of Nigeria: A Review of Exploited Fish Stocks; Food and Agriculture Organisation: Rome, Italy, 2021; pp. 1–7. [Google Scholar]
- USEPA. United States Office of Water Environmental Protection Regulations and Standards Agency Criteria and Standards Division. Water Ambient Water Quality Criteria for EPA 440/5-84-027 Lead—1984; USEPA: Wahington, DC, USA, 1985. [Google Scholar]
- FEPA. Guidelines and Standards for Environmental Pollution Control in Nigeria; Federal Environmental Projection Agency: Abuja, Nigeria, 2003.
- USEPA. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories, Volume 1: Fish Sampling and Analysis, 3rd ed.; United States Environmental Protection Agency (USEPA) 823-B-00-007, Office of Water (4305): Washington, DC, USA, 2000.
- Hynes, H.B.N. The Biology of Polluted Waters; Liverpool University Press: Liverpool, UK, 1960. [Google Scholar]
- Camargo, J.A.; Alonso, A.; Salamanca, A. Nitrate Toxicity to Aquatic Animals: A Review with New Data for Freshwater Invertebrates. Chemosphere 2005, 58, 1255–1267. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 18th ed.; American Public Health Association (APHA): Washington, DC, USA; American Water Works Association (AWWA): Washington, DC, USA; Water Pollution Control Federation (WPCF): Washington, DC, USA, 1992. [Google Scholar]
- Antoine, D.; Andre, J.M.; More, A. Oceanic Primary Production 2. Estimation of Global Scale from Satellite (Coastal Zone Color Scanner) Chlorophyll. Glob. Biogeochem. Cycles 1996, 10, 57–69. [Google Scholar] [CrossRef]
- USEPA. Fact Sheet: Aquatic Life Ambient Water Quality Criteria Update for Cadmium EPA-822-F-16-003; USEPA: Washington, DC, USA, 2016; Volume 304.
- USEPA. Water Quality Standards Criteria Summaries: A Compilation of State/Federal Criteria-Iron; USEPA: Washington, DC, USA, 1988.
- USEPA. United States. Environmental Protection Agency 1995 Full View More Editions PB95-187266REB PC A22/MF A04 Water Quality Guidance for the Great Lakes System: Supplementary Information… Zinc, Selenium, Nickel, Mercury (Metal) Great Lak; USEPA: Washington, DC, USA, 1995.
- USEPA. Ambient Water Quality Criteria for Chromium; USEPA: Washington, DC, USA, 1980.
- Myers, R.A.; Worm, B. Rapid Worldwide Depletion of Predatory Fish Communities. Nature 2003, 423, 280–283. [Google Scholar] [CrossRef]
- Hutchings, J.A. Collapse and Recovery of Marine Fishes. Nature 2000, 406, 882–885. [Google Scholar] [CrossRef]
- Sheaves, M.; Brookes, J.D.; Coles, R.; Freckelton, M.L.; Groves, P.; Johnston, R.D.; Winberg, P.C. Repair and Revitalisation of Australia’s Tropical Estuaries and Coastal Wetlands: Opportunities and Constraints for the Reinstatement of Lost Function and Productivity. Mar. Policy 2014, 47, 23–38. [Google Scholar] [CrossRef]
- Waltham, N.J.; Sheaves, M. Expanding Coastal Urban and Industrial Seascape in the Great Barrier Reef World Heritage Area: Critical Need for Coordinated Planning and Policy. Mar. Policy 2015, 57, 78–84. [Google Scholar] [CrossRef]
- de Mitcheson, Y.S.; Linardich, C.; Barreiros, J.P.; Ralph, G.M.; Aguilar-Perera, A.; Afonso, P.; Erisman, B.E.; Pollard, D.A.; Fennessy, S.T.; Bertoncini, Á.A.; et al. Valuable but Vulnerable: Over-Fishing and under-Management Continue to Threaten Groupers so What Now? Mar. Policy 2020, 116, 103909. [Google Scholar] [CrossRef]
- Neumann, B.; Ott, K.; Kenchington, R. Strong Sustainability in Coastal Areas: A Conceptual Interpretation of SDG 14. Sustain. Sci. 2017, 12, 1019–1035. [Google Scholar] [CrossRef] [PubMed]
- Donkor, F.K.; Mearns, K. Conserving Coastal and Marine Areas for Sustainable Development: Opportunities and Constraints. In Life Below Water; Leal Filho, W., Azul, A.M., Brandli, L., Lange Salvia, A., Wall, T., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 230–241. ISBN 978-3-319-98536-7. [Google Scholar]
- Ayyam, V.; Palanivel, S.; Chandrakasan, S. Balancing Development and Environmental Impact in the Coastal Regions. In Coastal Ecosystems of the Tropics—Adaptive Management; Springer: Singapore, 2019; pp. 579–595. ISBN 978-981-13-8926-9. [Google Scholar]
- Wei, C.; Padgham, M.; Barona, P.C.; Blaschke, T. Scale-Free Relationships between Social and Landscape Factors in Urban Systems. Sustainability 2017, 9, 84. [Google Scholar] [CrossRef]
- Ma, J.; Wu, Z.; Guo, M.; Hu, Q. Dynamic Relationship between Marine Fisheries Economic Development, Environmental Protection and Fisheries Technological Progress—A Case of Coastal Provinces in China. Ocean Coast. Manag. 2024, 247, 106885. [Google Scholar] [CrossRef]
- Bi, M.; Wei, G.; Zhang, Z. The Impact of Economics and Urbanization on Marine Fisheries Sustainability in Atlantic Coastal Africa. Ocean Coast. Manag. 2023, 239, 106596. [Google Scholar] [CrossRef]
- Murshed-E-Jahan, K.; Pemsl, D. The Impact of Integrated Aquaculture-Agriculture on Small-Scale Farm Sustainability and Farmers’ Livelihoods: Experience from Bangladesh. Agric. Syst. 2011, 104, 392–402. [Google Scholar] [CrossRef]
- Sievanen, L. How Do Small-Scale Fishers Adapt to Environmental Variability? Lessons from Baja California, Sur, Mexico. Marit. Stud. 2014, 13, 9. [Google Scholar] [CrossRef]
- Andrews, N.; Bennett, N.J.; Le Billon, P.; Green, S.J.; Cisneros-Montemayor, A.M.; Amongin, S.; Gray, N.J.; Sumaila, U.R. Oil, Fisheries and Coastal Communities: A Review of Impacts on the Environment, Livelihoods, Space and Governance. Energy Res. Soc. Sci. 2021, 75, 102009. [Google Scholar] [CrossRef]
- Nordlund, L.M.; Unsworth, R.K.F.; Gullström, M.; Cullen-Unsworth, L.C. Global Significance of Seagrass Fishery Activity. Fish Fish. 2018, 19, 399–412. [Google Scholar] [CrossRef]
- Unsworth, R.K.F.; Nordlund, L.M.; Cullen-Unsworth, L.C. Seagrass Meadows Support Global Fisheries Production. Conserv. Lett. 2019, 12, e12566. [Google Scholar] [CrossRef]
- Huang, J.; Huang, L.; Wu, Z.; Mo, Y.; Zou, Q.; Wu, N.; Chen, Z. Correlation of Fish Assemblages with Habitat and Environmental Variables in a Headwater Stream Section of Lijiang River, China. Sustainability 2019, 11, 1135. [Google Scholar] [CrossRef]
- Yan, H.F.; Kyne, P.M.; Jabado, R.W.; Leeney, R.H.; Davidson, L.N.K.; Derrick, D.H.; Finucci, B.; Freckleton, R.P.; Fordham, S.V.; Dulvy, N.K. Overfishing and Habitat Loss Drive Range Contraction of Iconic Marine Fishes to near Extinction. Sci. Adv. 2021, 7, eabb6026. [Google Scholar] [CrossRef]
- van der Lee, A.S.; Koops, M.A. Are Small Fishes More Sensitive to Habitat Loss? A Generic Size-Based Model. Can. J. Fish. Aquat. Sci. 2016, 73, 716–726. [Google Scholar] [CrossRef]
- Meulenbroek, P.; Stranzl, S.; Oueda, A.; Sendzimir, J.; Mano, K.; Kabore, I.; Ouedraogo, R.; Melcher, A. Fish Communities, Habitat Use, and Human Pressures in the Upper Volta Basin, Burkina Faso, West Africa. Sustainability 2019, 11, 5444. [Google Scholar] [CrossRef]
- Shahidul Islam, M.; Tanaka, M. Impacts of Pollution on Coastal and Marine Ecosystems Including Coastal and Marine Fisheries and Approach for Management: A Review and Synthesis. Mar. Pollut. Bull. 2004, 48, 624–649. [Google Scholar] [CrossRef] [PubMed]
- Froese, R.; Pauly, D. Sardinella maderensis (Lowe, 1838). FishBase Publ. World Wide Web Electron. 2021, 1–3. [Google Scholar]
- Mahboob, S.; Ahmed, Z.; Farooq Khan, M.; Virik, P.; Al-Mulhm, N.; Baabbad, A.A.A. Assessment of Heavy Metals Pollution in Seawater and Sediments in the Arabian Gulf, near Dammam, Saudi Arabia. J. King Saud Univ.—Sci. 2022, 34, 101677. [Google Scholar] [CrossRef]
- Abdellaoui, B.; Berraho, A.; Falcini, F.; Santoleri, J.R.; Sammartino, M.; Pisano, A.; Mh, I.; Hilm, K. Assessing the Impact of Temperature and Chlorophyll Variations on the Fluctuations of Sardine Abundance in Al-Hoceima (South Alboran Sea). J. Mar. Sci. Res. Dev. 2017, 7, 239. [Google Scholar] [CrossRef]
- Dutkiewicz, S.; Hickman, A.E.; Jahn, O.; Henson, S.; Beaulieu, C.; Monier, E. Ocean Colour Signature of Climate Change. Nat. Commun. 2019, 10, 578. [Google Scholar] [CrossRef] [PubMed]
- Fingas, M. Remote Sensing for Marine Management, 2nd ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2018; ISBN 9780128050521. [Google Scholar]
- Alharbi, T.; El-Sorogy, A. Assessment of Metal Contamination in Coastal Sediments of Al-Khobar Area, Arabian Gulf, Saudi Arabia. J. Afr. Earth Sci. 2017, 129, 458–468. [Google Scholar] [CrossRef]
- Mansour, A.; Nawar, A.; Madkour, H. Metal Pollution in Marine Sediments of Selected Harbours and Industrial Areas along the Red Sea Coast of Egypt. Ann. Naturhist Mus. Wien Ser. 2011, A113, 225–244. [Google Scholar]
- Daniel, I.; Nna, P. Total Petroleum Hydrocarbon Concentration in Surface Water of Cross River Estuary, Niger Delta, Nigeria. Asian J. Environ. Ecol. 2016, 1, 1–7. [Google Scholar] [CrossRef]
- Solomon, S.G.; Ayuba, V.O.; Tahir, M.A.; Okomoda, V.T. Catch per Unit Effort and Some Water Quality Parameters of Lake Kalgwai Jigawa State, Nigeria. J. Food Sci. Nutr. 2018, 6, 450–456. [Google Scholar] [CrossRef]
- Pauly, D.; Zeller, D. Catch Reconstructions Reveal That Global Marine Fisheries Catches Are Higher than Reported and Declining. Nat. Commun. 2016, 7, 10244. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Brosse, S.; Qu, X.; Xia, W.; Li, X.; Chen, Y. Land Use Outweighs Other Stressors in Declining Fish Biodiversity in Lakes of Eastern China during the 1980s-2010s. Ecol. Indic. 2023, 152, 110390. [Google Scholar] [CrossRef]
- Giacomazzo, M.; Bertolo, A.; Brodeur, P.; Massicotte, P.; Goyette, J.-O.; Magnan, P. Linking Fisheries to Land Use: How Anthropogenic Inputs from the Watershed Shape Fish Habitat Quality. Sci. Total Environ. 2020, 717, 135377. [Google Scholar] [CrossRef]
- Warren, C.; Steenbergen, D.J. Fisheries Decline, Local Livelihoods and Conflicted Governance: An Indonesian Case. Ocean Coast. Manag. 2021, 202, 105498. [Google Scholar] [CrossRef]
- Standal, D.; Hersoug, B. Illegal Fishing: A Challenge to Fisheries Management in Norway. Mar. Policy 2023, 155, 105750. [Google Scholar] [CrossRef]
- Macusi, E.D.; Liguez, C.G.O.; Macusi, E.S.; Liguez, A.K.O.; Digal, L.N. Factors That Influence Small-Scale Fishers’ Readiness to Exit a Declining Fishery in Davao Gulf, Philippines. Ocean Coast. Manag. 2022, 230, 106378. [Google Scholar] [CrossRef]
- Duque, G.; Gamboa-García, D.E.; Molina, A.; Cogua, P. Effect of Water Quality Variation on Fish Assemblages in an Anthropogenically Impacted Tropical Estuary, Colombian Pacific. Environ. Sci. Pollut. Res. 2020, 27, 25740–25753. [Google Scholar] [CrossRef]
- Pereira, D.V.; Arantes, C.C.; Sousa, K.N.S.; de Freitas, C.E. Relationships between Fishery Catch Rates and Land Cover along a Longitudinal Gradient in Floodplains of the Amazon River. Fish. Res. 2023, 258, 106521. [Google Scholar] [CrossRef]
- Parker, D.C.; Berger, T.; Manson, S.M.; Mcconnell, W.J.; Brown, D.G.; Goodchild, M.F.; Gotts, N.M.; Gumerman, G.J.; Hoffmann, M.J.; Huigen, M.G.; et al. Agent-Based Models Of Land-Use and Land-Cover Change. In Proceedings of the International Workshop, Irvine, CA, USA, 4–7 October 2001; Volume 145. [Google Scholar]
- Chapman, P.M. Assessing and Managing Stressors in a Changing Marine Environment. Mar. Pollut. Bull. 2017, 124, 587–590. [Google Scholar] [CrossRef] [PubMed]
- Makwinja, R.; Mengistou, S.; Kaunda, E.; Alemiew, T.; Phiri, T.B.; Kosamu, I.B.M.; Kaonga, C.C. Modeling of Lake Malombe Annual Fish Landings and Catch per Unit Effort (CPUE). Forecasting 2021, 3, 39–55. [Google Scholar] [CrossRef]
- Kao, Y.-C.; Rogers, M.W.; Bunnell, D.B.; Cowx, I.G.; Qian, S.S.; Anneville, O.; Beard, T.D.; Brinker, A.; Britton, J.R.; Chura-Cruz, R.; et al. Effects of Climate and Land-Use Changes on Fish Catches across Lakes at a Global Scale. Nat. Commun. 2020, 11, 2526. [Google Scholar] [CrossRef] [PubMed]
- Bene, C. Small-Scale Fisheries: Assessing Their Contribution to Rural Livelihoods in Developing Countries; FAO: Rome, Italy, 2006. [Google Scholar]
- Béné, C.; Friend, R.M. Poverty in Small-Scale Fisheries: Old Issue, New Analysis. Prog. Dev. Stud. 2011, 11, 119–144. [Google Scholar] [CrossRef]
- Bavinck, M.; Jentoft, S.; Scholtens, J. Fisheries as Social Struggle: A Reinvigorated Social Science Research Agenda. Mar. Policy 2018, 94, 46–52. [Google Scholar] [CrossRef]
- Purcell, S.W.; Pomeroy, R.S. Driving Small-Scale Fisheries in Developing Countries. Front. Mar. Sci. 2015, 2, 1–7. [Google Scholar] [CrossRef]
- Patrick, W.S.; Link, J.S. Myths That Continue to Impede Progress in Ecosystem-Based Fisheries Management. Fisheries 2015, 40, 155–160. [Google Scholar] [CrossRef]
- Pikitch, E.K.; Santora, C.; Babcock, E.A.; Bakun, A.; Bonfil, R.; Conover, D.O.; Dayton, P.; Doukakis, P.; Fluharty, D.; Heneman, B.; et al. Ecosystem-Based Fishery Management. Science 2004, 305, 346–347. [Google Scholar] [CrossRef] [PubMed]
- Gelcich, S.; Hughes, T.P.; Olsson, P.; Folke, C.; Defeo, O.; Fernández, M.; Foale, S.; Gunderson, L.H.; Rodríguez-Sickert, C.; Scheffer, M.; et al. Navigating Transformations in Governance of Chilean Marine Coastal Resources. Proc. Natl. Acad. Sci. USA 2010, 107, 16794–16799. [Google Scholar] [CrossRef] [PubMed]
- Jentoft, S.; Chuenpagdee, R. Assessing Governability of Small-Scale Fisheries. In Interactive Governance for Small-Scale Fisheries: Global Reflections; Jentoft, S., Chuenpagdee, R., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 17–35. ISBN 978-3-319-17034-3. [Google Scholar]
OID | Name of Community | X_Coord | Y_Coord | No. of Fishers | Respondents |
---|---|---|---|---|---|
1 | Mopo Onibeju | 570649.904 | 710203.215 | 26 | 7 |
2 | Mosirikogo | 576039.373 | 710332.186 | 20 | 2 |
3 | Iwerekun | 580971.087 | 710695.66 | 22 | 5 |
4 | Igando Orudu | 588118.119 | 711854.276 | 20 | 4 |
5 | Debojo/Idado | 590680.321 | 712122.65 | 10 | 2 |
6 | Badore/Eleko | 592815.844 | 711999.131 | 6 | 1 |
7 | Magbon Alade | 598409.745 | 711667.942 | 290 | 52 |
8 | Orimedu | 600708.216 | 711570.328 | 315 | 57 |
9 | Orofun | 602640.31 | 711634.803 | 40 | 9 |
10 | Akodo | 603698.202 | 711494.404 | 185 | 34 |
11 | Tiye | 605610.807 | 711111.619 | 32 | 6 |
12 | Imobido | 606933.329 | 710870.107 | 12 | 1 |
13 | Idaso | 609293.271 | 710589.953 | 40 | 6 |
14 | Idotun/Magbon Segun | 613545.895 | 709805.322 | 40 | 8 |
15 | Okunraye | 616821.825 | 709262.975 | 20 | 5 |
16 | Olomowewe | 617879.415 | 709326.165 | 30 | 6 |
17 | Origanrigan | 618917.048 | 709206.33 | 15 | 3 |
18 | Oshoroko | 620422.918 | 708904.5 | 15 | 2 |
19 | Lekki | 621501.646 | 708601.792 | 60 | 7 |
20 | Apakin | 624818.66 | 707978.634 | 40 | 7 |
21 | Ita-Marun | 625958.063 | 707859.144 | 100 | 19 |
22 | Oriyanrin | 627240.777 | 707333.312 | 74 | 15 |
23 | Otolu | 628868.325 | 707255.64 | 80 | 15 |
24 | Okegelu | 630435.325 | 706974.531 | 40 | 14 |
25 | Lepia | 630924.571 | 706528.296 | 60 | 13 |
26 | Ikegun | 631900.825 | 706611.888 | 20 | 4 |
27 | Folu | 632633.442 | 706491.583 | 200 | 40 |
28 | OkunIse | 634138.993 | 706413.772 | 42 | 10 |
29 | AkodoIse | 634932.844 | 706212.301 | 15 | 6 |
30 | Imedu | 636683.217 | 705850.448 | 10 | 0 |
Total | 1879 | 360 |
Acquisition Date | Satellite Number | Sensor Type | WRS Path/Row | UTM Zone | Datum | Spatial Resolution (M) | Source and Year |
---|---|---|---|---|---|---|---|
4 January 2020 | Landsat 8 | OLI_TIRS | 191/55 | 31 N | WGS84 | 30 | USGS, 2020 |
28 December 2002 | Landsat 7 | ETM+ | 191/55 | 31 N | WGS84 | 30 | USGS, 2006 |
18 December 1984 | Landsat 5 | TM | 191/55 | 31 N | WGS84 | 30 | USGS, 1984 |
Variable | Description | Values | Measurement |
---|---|---|---|
V49 | Hours of fishing trip | {1–6 h, 7–12 h} … | Ordinal |
V53a | Market/individual consumers | {No, Yes} | Nominal |
V53b | Market/companies | {No, Yes} | Nominal |
V53c | Market/middle women | {No, Yes} | Nominal |
V54 | Average weight/quantity of each catch | {1–100 kg, 101–200 kg} … | Nominal |
V61a | Land use effect/industrial dev. | {No, Yes} | Nominal |
V61b | Land use effect/residential dev. | {No, Yes} | Nominal |
V61c | Land use effect/recreational dev. | {No, Yes} | Nominal |
V61d | Land use effect/commercial dev. | {No, Yes} | Nominal |
V61e | Land use effect/transportation dev. | {No, Yes} | Nominal |
V62a | Scale of effect/industrial dev. | {None, Least effect} … | Ordinal |
V62b | Scale of effect/residential dev. | {None, Least effect} … | Ordinal |
V62c | Scale of effect/recreational dev. | {None, Least effect} … | Ordinal |
V62d | Scale of effect/commercial dev. | {None, Least effect} … | Ordinal |
V62e | Scale of effect/transportation dev. | {None, Least effect} … | Ordinal |
V67a | Needed amenities/good roads | {Not needed, Least needed} … | Ordinal |
V67b | Needed amenities/hospitals | {Not needed, Least needed} … | Ordinal |
V67c | Needed amenities/electricity | {Not needed, Least needed} … | Ordinal |
V67d | Needed amenities/schools | {Not needed, Least needed} … | Ordinal |
V67e | Needed amenities/telecom. facilities | {Not needed, Least needed} … | Ordinal |
V67f | Needed amenities/pipe-borne water | {Not needed, Least needed} … | Ordinal |
V67g | Needed amenities/financial incentives | {Not needed, Least needed} … | Ordinal |
V67h | Needed amenities/extension services | {Not needed, Least needed} … | Ordinal |
V61_LUE | Perceived land use anthrop. effect | {SUM: V61a, …, V61e} | Scale |
V62_LUS | Scale of land-use anthrop. effect | {SUM: V62a, …, V62e} | Scale |
V_LANDUSE | Perceived land use effects | {PRODUCT: V61_LUE, V62_LUS} | Scale |
V_CATCHTRIP | Catch per trip (kg) | {V54) | Scale |
V_FISH_EFFORT | Fishing effort (hours) | {V49} | Scale |
CPUE | Catch per unit effort (kg/h) | {V54/V49} | Scale |
V53_MKT | Access to market | {SUM: V53a, V53b, V53c} | Scale |
V_AMENITY | Amenities (needed) | {SUM: V67a, …, V67h} | Scale |
S/N | Name of Sample | Percentage ID | GenBank Accession No. | BLAST Prediction |
---|---|---|---|---|
1. | OR1 | 99.84 | MT272815.1 | S. maderensis |
2. | OR2 | 99.69 | MT272814.1 | S. maderensis |
3. | OR3 | 93.91 | MT272807.1 | S. maderensis |
4 | OR4 | 98.89 | AP009143.1 | S. maderensis |
5. | OR5 | 99.21 | AP009143.1 | S. maderensis |
6. | OR6 | 99.01 | AP009143.1 | S. maderensis |
7. | LE1 | 89.38 | MT272815.1 | S. maderensis |
8. | LE2 | 100.0 | MT272815.1 | S. maderensis |
9. | LE3 | 99.31 | MT272816.1 | S. maderensis |
10. | LE4 | 99.62 | MT272816.1 | S. maderensis |
11. | LE5 | 99.83 | MT272811.1 | S. maderensis |
12. | LE6 | 99.83 | MT272816.1 | S. maderensis |
Categories | 1984 (Sq. Km) | % | 2002 (Sq. Km) | % | 2020 (Sq. Km) | % | 1984–2020 Change (Sq. Km) | Change % |
---|---|---|---|---|---|---|---|---|
Water Bodies | 268.379 | 45.07 | 268.740 | 45.13 | 267.046 | 44.84 | −1.333 | −0.5 |
Forested Areas | 136.713 | 22.96 | 187.481 | 31.48 | 118.089 | 19.83 | −18.624 | −13.62 |
Cultivated Lands | 102.222 | 17.16 | 35.267 | 5.92 | 38.913 | 6.53 | −63.309 | −61.93 |
Minor Urban | 56.355 | 9.46 | 54.482 | 9.15 | 83.903 | 14.09 | 27.549 | 48.88 |
Major Urban | 31.868 | 5.35 | 49.568 | 8.32 | 87.585 | 14.71 | 55.717 | 174.84 |
Total | 595.538 | 100 | 595.538 | 100 | 595.538 | 100 |
Physicochemical Parameters | Min | Max | Mean | Permissible Limits | Remark |
---|---|---|---|---|---|
Water Temp. (°C) | 23 | 27 | 25.39 | 24 °C [75] | Within required range |
pH | 7.32 | 8.06 | 7.88 | 6.5–8.5 [76]; 9.0 [77] | Within required range |
Salinity (ppt) | 24.86 | 32.17 | 29.37 | Tolerates low salinities [9,12] | Within required range |
TDS (mg/L) | 11,500 | 30,000 | 24,971.1 | 2000 mg/L [77] | Higher than acceptable level |
DO (mg/L) | 4.8 | 15.8 | 7.97 | 4.8 mg/L [78] | Within acceptable limit |
BOD (mg/L) | 0.4 | 11 | 3.37 | 3–6 mg/L—tolerable; 8 mg/L—lethal [79] | Within range/sometimes above the lethal limit |
NO3 (mg/L) | 0.01 | 2.11 | 0.31 | 20 mg/L [77,80] 10 mg/L [78,81] | Within acceptable limit |
PO4 (mg/L) | 0.01 | 0.7 | 0.15 | 5 mg/L [77] | Within acceptable limit |
Chlorophyll-a (µg/L) | 0 | 0.04 | 0.01 | 0.1–8 µg/L [82] | Not up to the required level |
Heavy Metals | Min | Max | Mean ± SD | Permissible Limits (USEPA) | Permissible Limits (FEPA, 2003) | Remarks |
---|---|---|---|---|---|---|
Lead (Pb) | 0.00 | 0.93 | 0.20 ± 0.17 | 0.14 [76] | <1.00 | Within acceptable limits nationally but above the international limit |
Cadmium (Cd) | 0.00 | 0.20 | 0.06 ± 0.06 | 0.03 [83] | <1.00 | |
Iron (Fe) | 0.31 | 3.16 | 2.62 ± 0.51 | 1.00 [84] | - | |
Manganese (Mn) | 0.07 | 0.38 | 0.19 ± 0.11 | 0.10 [84] | 5.00 | |
Nickel (Ni) | 0.21 | 0.93 | 0.64 ± 0.19 | 0.07 [85] | <1.00 | |
Chromium (Cr) | 0.00 | 7.00 | 1.73 ± 2.09 | 0.18 [86] | <1.00 | Above acceptable limits |
Variable | B | SE | 95.00% CI | β | t | p |
---|---|---|---|---|---|---|
(Intercept) | 140.99 | 25.79 | [90.28, 191.71] | 0.00 | 5.47 | <0.001 |
V_FISH_EFFORT | −7.45 | 0.64 | [−8.72, −6.18] | −0.54 | −11.58 | <0.001 |
V_AMENITY | −3.23 | 0.55 | [−4.32, −2.15] | −0.27 | −5.85 | <0.001 |
V_LANDUSE | −0.85 | 0.27 | [−1.39, −0.32] | −0.15 | −3.16 | 0.002 |
V_MKT | 41.48 | 8.12 | [25.51, 57.45] | 0.22 | 5.11 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adewale, T.; Aheto, D.; Okyere, I.; Soyinka, O.; Dekolo, S. Effects of Anthropogenic Activities on Sardinella maderensis (Lowe, 1838) Fisheries in Coastal Communities of Ibeju-Lekki, Lagos, Nigeria. Sustainability 2024, 16, 2848. https://doi.org/10.3390/su16072848
Adewale T, Aheto D, Okyere I, Soyinka O, Dekolo S. Effects of Anthropogenic Activities on Sardinella maderensis (Lowe, 1838) Fisheries in Coastal Communities of Ibeju-Lekki, Lagos, Nigeria. Sustainability. 2024; 16(7):2848. https://doi.org/10.3390/su16072848
Chicago/Turabian StyleAdewale, Temitope, Denis Aheto, Isaac Okyere, Olufemi Soyinka, and Samuel Dekolo. 2024. "Effects of Anthropogenic Activities on Sardinella maderensis (Lowe, 1838) Fisheries in Coastal Communities of Ibeju-Lekki, Lagos, Nigeria" Sustainability 16, no. 7: 2848. https://doi.org/10.3390/su16072848
APA StyleAdewale, T., Aheto, D., Okyere, I., Soyinka, O., & Dekolo, S. (2024). Effects of Anthropogenic Activities on Sardinella maderensis (Lowe, 1838) Fisheries in Coastal Communities of Ibeju-Lekki, Lagos, Nigeria. Sustainability, 16(7), 2848. https://doi.org/10.3390/su16072848