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Abstract: Superabsorbent materials (SAPs) are crosslinked polymer networks composed of ionic
and non-ionic monomers. SAPs can absorb and retain water solutions up to several hundred times
their own weight. As a result of swelling, they form a gel that is insoluble in water, considered
safe and decomposes over time. This review focuses on the synthesis, degradation and chemical
composition of SAP materials, with particular emphasis on chemical substances that are soluble
in water and can migrate into the environment. Numerous applications of natural and synthetic
hydrogels in agriculture and the reclamation of degraded areas in preventing erosion, retention water,
reducing leaching of colloidal soil components and plant protection products, fertilisers and mineral
salts into surface waters have been described. The influence of SAPs on the microbial activity of
soils is described. New trends in the search for environmentally friendly SAPs made of modified
biopolymers and waste materials are presented, which not only increase yields, but also ensure
sustainable agro-environmental development.

Keywords: superabsorbent; hydrogel; swelling; polyacrylates; water retention; soil amendment;
nutrient release; agriculture

1. Introduction

The escalation of extreme meteorological events, significant water shortages and flash
floods are all factors associated with climate change. An increase in the Earth’s warming
of up to 4.8 °C over the coming decades will, depending on the climate zone, result in
an increase in heavy rainfall and storms contributing to an increase in the frequency and
magnitude of flood incidents, but the increase in global temperature will also cause heat
waves and droughts. These phenomena are already influencing the occurrence of nutrient
deficiencies in plants, which may reduce crop yields and in the future may have significant
impact on the economy, social development, geopolitics, local and national politics, law
and health care [1,2]. Adverse phenomena are expected to worsen in the coming decades
with increased variability and frequency of extreme droughts and uncertainty in rainfall
distribution [3].

Currently, arid and semi-arid regions cover almost a third of the Earth’s surface [4],
and one of the observed effects of climate change is prolonged periods of drought. Drought
is defined as a climatic condition with below-average or no rainfall for a long period of time.
It leads to serious environmental, and also socio-economic, problems such as crop failure,
water scarcity and food insecurity in a given area [2]. When drought occurs in a region that
has previously received a lot of rainfall, plants become more sensitive to changes in water
availability than species growing in arid or semi-arid regions. Therefore, drought can be
described as a situation in which plants are unable to absorb water from the soil and are
under water stress.
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Long-term drought can cause desertification, degradation and soil salinisation, which
significantly affect the soil ecosystem [5,6]; therefore it is necessary to look for solutions
that increase the efficiency of water use, e.g., in agriculture [7]. Organic mulching, water
fertilisation and the use of synthetic polymers are just some of the methods suggested in
the literature for effective moisture management [7,8].

Superabsorbent polymers are very high molecular mass, crosslinked polyelectrolytes
that can absorb more than 10 times their mass of water or aqueous solutions [9]. They are
produced in the form of xerogel, i.e., a polymer with low moisture content in the form of
granules [8] or fibres [10]. When added to water, these materials swell strongly, absorbing
anywhere from several dozen grams to 1 kg of water per 1 g of starting polymer [11].

These materials have numerous practical applications [12] and are used to produce
hygiene materials [13], such as disposable diapers, sanitary pads, dressings [14], slow-
release drugs [15], and products for the immobilisation of microorganisms [16,17]; sealing
telecommunications cables [9]; and in agriculture, horticulture, forestry and recultivation
of degraded areas, substances increasing the water capacity of soil substrates, carriers
of slow-release fertilisers or plant protection products [8,18,19]. SAP materials can be
added directly to the soil, injected as a hydrated gel or dosed along with seeds during
hydroseeding [20].

SAP materials have been continuously developed and refined for several decades. Clas-
sical polymers based on crosslinked acrylic copolymers [3], which are produced through
petroleum processing, are increasingly being replaced by raw materials of natural ori-
gin [21-24].

SAPs are materials considered non-toxic and environmentally safe, but are produced
mainly from vinyl monomers obtained from crude oil, natural gas and coal. Growing
ecological awareness and taking actions to reduce the consumption of fossil fuels have
significantly changed the perception of these materials and influenced new directions
of research in this area. Numerous works are devoted to the chemical modification of
biopolymers in order to increase their water absorption capacity. In many cases, these
materials are cheap and easily available (cellulose, starch, chitin) and enable the use of
waste products. Another strategy is the possibility of producing ecological, “green”, acrylic
monomers, mainly acrylic acid, from waste raw materials containing glycerol (byproduct
obtained during the synthesis of biodiesel from vegetable oils), carbohydrates or organic
acids. This solution opens a new path in the synthesis of very well-researched acrylic
polymers from renewable raw materials. In this paper, databases are reviewed with regard
to the structure, classification and methods of obtaining superabsorbent polymers, their use
in agriculture and the remediation of degraded land, their effect on the microbial activity
of soils and the factors affecting their degradation in soils. Particular focus is given to
polymers based on acrylic acid acrylamide and their copolymers and their impact on the
soil environment.

2. Polymers: Structure and Preparation
2.1. Chemical Composition of SAP

Superabsorbents, depending on their chemical composition, can be divided into
two groups. The raw materials for production of acrylic SAP are mostly petroleum-based,
relatively cheap synthetic copolymers produced from vinyl monomers and chemically mod-
ified natural polymers [25,26] based on starch [27-29], cellulose [30-34], chitosan [13,35-37],
humic acid [38], proteins [39-41], alginate [42—45] agar [46], curdlan [47-49], gellan [50],
xanthan [51,52] or arabic gum [46,53,54]. It is also possible to produce SAPs as a result
of alkaline hydrolysis of polyacrylonitrile waste used for the production of fibres and
fabrics [55] or a combination of several processes [56]. Many materials have also been cre-
ated consisting of acrylic and/or natural polymers, both chemically modified and grafted
polymers additionally containing other functional ingredients (Figure 1). Additions of
mineral substances such as silica [57,58], attapulgite [59], bentonite [51-61] or kaolin [62]
are often used.
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Figure 1. Raw materials and strategies used to produce SAP materials. Waste raw materials and
natural materials that can be used to reduce the consumption of fossil fuels are marked in green
(green path).

Depending on the properties of the modified biopolymer, there are different strategies
to transform natural polymers into SAP materials. The main goal is to increase the ability to
absorb water, i.e., to increase the number of groups capable of dissociation and functional
groups forming hydrogen bonds. This method is used to modify, for example, cellulose into
soluble carboxymethylcellulose, which is then transformed into an insoluble SAP polymer
using crosslinkers such as polyhydric alcohols [63] or 1,4-butanediol diglycidyl ether [64].

Water-soluble hydrocolloids can be converted into insoluble gels by various sub-
stances. In the case of sodium alginate, difunctional amines [45] or aldehydes, e.g., gluta-
radehyde [65], are used.

A slightly different strategy for modifying biopolymers involves graft polymerisation.
This process involves the polymerisation of vinyl monomers in the presence of biopolymers,
e.g., starch [66,67], chitosan [35,36] or guar gum [68]. As a result of radical reactions, vinyl
monomers are attached to the chains of natural polymers, creating branches in the form
of hydrophilic polyelectrolyte chains [27]. Producing SAPs from sustainable biomass is of
vital importance for avoiding CO, emissions and global warming.

2.2. Vinyl Monomers

Synthetic superabsorbents are obtained by polymerisation of vinyl monomers. From
a chemical point of view, these are usually copolymers of, e.g., acrylic acid and other
compounds containing one double bond with a crosslinker, which is a vinyl compound,
containing more than one double bond [69].

Derivatives of acrylic acid and other vinyl compounds are used to synthesize su-
perabsorbents. Acrylic polymers are produced by radical polymerisation of acrylic acid
(AAC) [31], methacrylic acid (MAA) [70], 2-acrylamido-2-methylpropanesulphonic acid
(AMPS) [71], acrylamide (AAM), N-isopropylacrylamide (NIPAM) [72], acrylonitrile
(ACN) [73] or their mixtures (Figure 2) [70]. SAPs can be neutral, anionic or cationic. These
polymers exhibit hydrophilic properties due to the presence of functional groups such as
hydroxyl (-OH), carboxyl (-COOH), amide (-<CONH-) or sulphone (-SO3H) [70] groups.
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Figure 2. Vinyl monomers used in the production of SAPs.

Polymers obtained as a result of the polymerisation of acidic or alkaline monomers,
i.e., those containing groups capable of dissociation, are classified as polyelectrolytes [74].
In the case of polymerisation of non-ionic monomers such as acrylamide or acrylonitrile,
the obtained polymers can be transformed into polyelectrolytes as a result of hydrolysis
of the amide [75,76] or nitrile group [73]. This process may occur before, during or after
polymerisation as a result of reaction with a strong (sodium or potassium) base. Hydrolysis
leads to the formation of acrylic acid, or rather its salt, i.e., alkali metal acrylate (Figure 3).

MH 0
2
CHN + DH_ _— CHW + NH3

0 0

Acrylamide Acrylicion

Figure 3. Hydrolysis of acrylamide in an alkaline medium.

The degree of neutralisation of acrylic (Figure 4) and methacrylic acid in the polymer-
ized mixture varies. In the case of polymerisation of an acrylic acid solution, the highest
absorbency is obtained after neutralizing the acid in the range of 60 to 85% mol, using a
solution of sodium (potassium or ammonium) hydroxide and/or carbonate [35,70,77,78].

0
OH =
CH
CHfY . O — ::/\]'r +  H,0

0 ]
Acrylic acid Acrylic ion

Figure 4. The reaction of neutralizing acrylic acid with a base.

Vinyl monomers are produced industrially from acetylene, propylene or propane,
obtained from the processing of natural gas and crude oil [79]. Numerous works are being
carried out on the synthesis of acrylic monomers from waste products containing glyc-
erin [80], sugars [81], fatty acids [82] or the byproducts of waste lignocellulosic biomass [83].
In the first stage, 3-hydroxypropionic acid (3-HP) is produced microbiologically, from
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which acrylic acid is then obtained as a result of catalytic dehydration (Figure 5). The dis-
advantage of microbiological methods is their relatively low biotransformation efficiency,
low concentration of the resulting product and the related relatively high costs and large
amount of waste generated during the concentration and purification of 3-HP. Acrylic acid
can also be obtained by microbiological oxidation of malic or fumaric acid produced from
organic waste materials [84]. The production of acrylic acid using biotechnological methods
seems extremely promising. The advantage of SAP synthesis from sustainably obtained
vinyl monomers is that further polymer synthesis is waste-free and, extremely importantly,
these compounds can be used for graft polymerisation with biopolymers.

HO OH A PN
W CHW . vo
2

0 O

3-Hydroxypropionic acid Acrylic acid
Figure 5. Thermal decomposition of 3-hydroxypropionic acid.

In order to prevent polymerisation during storage and transport, polymerisation
inhibitors are added to acrylic acid and other vinyl monomers. Manufacturers often
add, for example, hydroquinone monomethyl ether (4-methoxyphenol, MEHQ) to glacial
acrylic acid in an amount of approximately 200 mg/kg [67,85]. A monomer that is to be
stored for a long time is supplemented with larger amounts of MEHQ (Figure 6). This
compound captures free radicals, and its action is particularly effective in the presence
of molecular oxygen dissolved in acid. Oxidation of acrylic acid is a beneficial factor
preventing polymerisation of the monomer during storage. MEHQ oxidation reactions
using a thermal initiator such as persulphate are responsible for the colour of the finished
product [86].

Figure 6. Hydroquinone monomethyl ether.

Monomer producers may also add other substances that stabilize free radicals (poly-
merisation inhibitors), such as phenothiazine (0.1%) [87,88], hydroquinone monomethyl
ether (0.1%) [87], methylene blue (0.5-1%) and N,N’-diphenyl-p-phenylenediamine
(0.05%) [89]. Stabilisers and oxygen dissolved in the acrylic acid prevent polymerisa-
tion during transport and storage, but in their presence, unfavourable non-radical pro-
cesses occur [89,90]. One such transformation is the acid dimerisation reaction. As a
result of the Michael reaction, an adduct is formed from two molecules of acrylic acid,
3-acryloxopropionic acid (3-acryloxypropionic acid, AOP) (Figure 7). The reaction can be
repeated to form more complex polyesters (Figure 8) [91].

_ oH w o) OH
) CHK\’( —_— 3
5 0 0

3-Acryloxypropionic acid

Figure 7. The formation of 3-acryloxopropionic acid as a result of the Michael reaction [92].
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Figure 8. Linear polyester compounds formed from acrylic acid during the Michael reaction.

2.3. Radical Polymerisation of Vinyl Monomers

The initiation of radical polymerisation can be carried out in several different ways:
the use of chemical redox initiators, UV radiation [50,93,94] or ionisation radiation [33]. In
the first case, a pair of oxidant-reducer compounds is used to generate free radicals. For
example, peroxides are used as oxidants: sodium persulphate (potassium or ammonium)
(Figure 9), cerium ammonium nitrate [27], benzoyl peroxide [31] or aliphatic azo- com-
pounds like 2,2"-azobisisobutyronitrile (AIBN) [70]. However, the role of a reducing agent
can be played by sodium (potassium) metabisulphite, sodium bisulphate (IV), ascorbic
acid, tetramethylethylenediamine (TMEDA) or ethanolamine [95-97]. Free radicals can
be generated using the Fenton or Fenton-like reaction, in which the oxidant is hydrogen
peroxide in the presence of Fe?* or Cu*, Co®", Ce* ions [98,99]. The emerging hydroxyl
radical hydroxyl (OH®) or hydroxyl radical (HO;®) initiates the polymerisation reaction of
vinyl monomers (Figure 10).

52082~ — 2 SOs~*
SOs* + H20 — SO42-+ OH* + H*

Figure 9. Generation of free radicals using persulphate [75,100].

Fe?* + H2O2 — Fe3*+ OH-+ OH*
Fe3* + H2O2 — Fe2t + HO2* + H*

Figure 10. Fenton reaction [101].

When polymerisation is initiated using UV (UV photopolymerisation), photosensi-
tisers, such as 2,2-dimethoxy-2-phenylacetophenone (Irgacure 651) (BDK) [34,102-104],
1-hydroxycyclohexyl phenyl ketone [105], 4,4’-bi(dimethylamino)benzophenone (MK) [60]
or 2-hydroxy-2-methylpropiophenone [106], are added to the monomers (Figure 11).

CH
3 o)
0O O
CH,
HO
C|J CH,
CH,
2,2-Dimethoxy-2-phenylacetophenone 2-Hydroxy-2-methylpropiophenane
0
0]
CH; )N r~|1\ CH, "o
':H_3 CH 3
4,4'-Bi(dimethylamino)benzophenone Hydroxycyclohexylphenyl ketone

Figure 11. Photoinitiators used in polymerisation initiated by ultraviolet light.
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Polymerisation of monofunctional acrylic monomers leads to unbranched (linear)
water-soluble polymers (Figure 12). These substances have numerous applications as
thickeners, coagulants and stabilisers. In aqueous solutions, polyelectrolytes react with
multivalent ions, combining various fragments of the polyelectrolyte, increasing the mo-
lar mass and reducing solubility [107]. To obtain water-insoluble SAP polymers, mul-
tifunctional vinyl monomers are used as the so-called crosslinker. These compounds
copolymerize with acrylic monomers, creating a multidimensional network. The crosslink-
ers are added before polymerisation in concentrations of approximately 500 ppm to 1%
(0.01-0.2% mol) in relation to the acrylic acid. Its amount is selected so that the crosslinking
reaction product has the desired absorbency. Crosslinkers may contain 2, 3 or 4 vinyl
groups (Figure 13). The more double bonds, the more linear chains are attached to
one node of the polymer network. The following crosslinkers are used in the produc-
tion of SAP: N,N'-methylenebis(acrylamide) (NMBA), triethylene glycol dimethacrylate
(TEGDMA) [108], ethylene glycol dimethacrylate (EGDMA) [109,110], glycerol acrylate
(GA) [99], 1,4-butanediol diacrylate (BDDA) [111], butylenes dimethacrylate (BDMA) [70],
ethylene glycol diacrylate (EGDA), allyl methacrylate, allyl acrylate, diethylene glycol
diacrylate (DEGDA) or trimethylol propane triacrylate (TMPTA) [112].

OH
n+1 CH‘f\H/ — =

o COOH | COOH

Figure 12. Polymerisation of acrylic acid.

(I i
N N @] )‘K///CH
CHN ~ Y\}CHZ CH‘E{/‘Y \_‘/'\0 2
0 0 0

N,N-methylenebisacrylamide Ethylene glycol diacrylate
o} CH, 0]
CHWOMDJ\/;C% CH%{DWDJ\{CHE
0 0] CH,
1,4-Butanediol diacrylate Ethylene glycol dimethacrylate

o o] 0
CHN WCHZ CH{/’/\’( "-\//\\D,/\\\/ \"/\\'CHz
0 0 0

Allyl acrylate Diethylene glycol diacrylate
CHy CH, OH CH,
© CJI\./l\/D
CH%W/ WCHI CH)W/ \(KCH
2 2
0 o] o]
Allyl methacrylate Glicerol 1,3-dimethacrylate

Figure 13. Bifunctional crosslinkers used in copolymerisation with vinyl monomers.
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Before polymerisation, chelating [113] and dispersing compounds and surfactants
are also added to help dissolve hydrophobic crosslinkers. Polymerisation can be carried
out in solution or bulk polymerisation [69] and suspension polymerisation [3,114]. In
the case of modification of natural polymers, it is possible to graft polymerized vinyl
monomers onto starch, cellulose and other natural polymers, such as guar gum [68];
alginate [43,44,115,116] or chemically modified biopolymers, e.g., carboxymethylcellu-
lose [117]; or oxidized starch [118]. In the case of superabsorbents containing starch
or polyvinyl alcohol (PVA), crosslinking substances containing two aldehyde groups are
additionally used, namely glutaraldehyde and di- and tricarboxylic acids: succinic, malonic
or citric [29].

During polymerisation, 3-acryloxopropionic acid reacts with acrylic acid molecules
and can be incorporated into the polymer network (Figure 14) [119].

o] OH
CHZ//\n/ \_/Y

o) o CDC::I}-I o s COOH
Figure 14. Incorporation of 3-acryloxopropionic into the polymer chain [119].

Drying and heating the polymer containing built-in dimer molecules leads to hy-
drolysis and the release of unbound acrylic acid as a result of a process opposite to the
Michael reaction [119]. The speed of this reaction (Figure 15) depends on the temperature.
During the production of an SAP, alkaline hydrolysis of the dimer is possible before poly-
merisation, resulting in the formation of 3-hydroxypropionate in addition to acrylic ions
(Figure 16) [119].

OH
"W”N . CHE/_..A’(
(0]

COOH COOH COOH COOH
a /“»\/

Figure 15. Decomposition of 3-acryloxopropionic molecules incorporated in the polymer chain as a
result of heating the polymer.

P O O ) _ ) HO 0
2 + OH —_— CHz/\r + \/Y
0 0 0 0

3-Acryloxypropionicion Acrylicion 3-Hydroxypropionic ion

Figure 16. Alkaline hydrolysis of acrylic acid dimer [119].

Most of the 3-HPA produced during hydrolysis passes through the polymer drying
stage and remains in the finished product. However, drying should be carried out at
relatively low temperatures, because strongly heated (175-200 °C) 3-hydroxypropionic acid
decomposes with the release of acrylic acid (Figure 5). This reaction increases the content
of free acrylic acid in the finished product to the values obtained without the hydrolysis
step [119].

2.4. Chemical Properties of SAPs

From a chemical point of view, the vast majority of SAPs can be classified as polyelec-
trolytes [120]. These compounds, although insoluble in water, dissociate in this solvent.
Acrylic polymers are cation exchangers that can exchange cations with the environment. As
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a result of these processes, cations, e.g., potassium or ammonium cations, can be introduced
into the environment in a controlled manner, which, due to their excellent solubility, are
otherwise quickly washed away by water (Figure 17). Reactions of this type also increase
the buffer capacity of the system. Hydrogen, potassium or sodium ions contained in
SAPs are released into the environment and replaced by other monovalent or multivalent
ions (Figure 18), e.g., calcium, magnesium [121] and heavy metals [122]. The binding of
multivalent metal ions involves an increase in the degree of crosslinking of the polymer
(Figure 19), which reduces water absorbency and causes the gel to shrink [123]. In an acidic
environment, the reverse reaction may also occur—the equilibria (Figure 18) shift to the left,
which may result in the release of multivalent ions into the environment and the degree of
crosslinking of the polymer may decrease (Figure 19). The gel containing fertiliser ingre-
dients also slows down their extraction due to diffusion resistance. Changing the degree
of crosslinking directly affects the mass transfer through the gel layer. The crosslinking
occurring with multivalent metal ions reduces the release rate of agrochemicals and other
water-soluble substances contained in SAPs.

y
W.‘.H‘ —.._W_FK

COOK COOK

COOH COOK

Figure 17. Release of potassium cations by ion exchange from poly(potassium acrylate).

2+ L .
8]
"W’*ﬂ + e ﬁl 0 + 5 K+

COOK

COOK 0L o
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Figure 18. Binding of multivalent ions (Me?+) by poly(acrylic acid) molecules.

”"“\/\/‘W

0= COOH
W !
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N

Figure 19. Binding of divalent ions (Me?*) by poly(acrylic acid) molecules combined with increased

crosslinking of the polymer.
3. Agricultural and Degraded Land Reclamation Applications
3.1. Agricultural Application

Research into the use of polymers as soil conditioners has been carried out since the
1950s [124]. Since the 1990s, there has been a growing interest in polymers as additives to
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soils and degraded soils to protect them from erosion [125,126], improve the hydrophys-
ical properties of arable land [127-129], reverse desertification [130,131] and retain soil
moisture [126,132].

Acrylic polymers can also help grow crops in saline areas. The observed climate
changes contribute not only to water shortages but also to increased soil salinity. It has
been shown that the addition of a composite containing an SAP with commercial biochar
to soil increases the resistance of Quinoa (Chenopodium quinoa Willd.) to salinity [133].

SAP polymers used as soil additives, due to their availability in price and stability in
the soil environment, are usually based on crosslinked polyacrylates or polyacrylamides
and, due to their specific properties and high absorbency of aqueous solutions, can be used
as soil conditioners [8,11].

3.1.1. Influence of SAPs on Soil Structure and Soil Water Retention

Water in SAP hydrogels is mainly bound by hydrogen bonds. In the case of porous
and fibrous polymers, a small part of the free water is found in the microcapillaries of the
gel (Figure 20). The soft hydrogel changes the structure of the soil and, in particularly
permeable sandy substrates, blocks soil capillaries, thus also increasing water retention.
Water vapor pressure over the hydrogel is much lower than over pure water. In the gel,
water is strongly hydrogen-bonded to the polymer molecules. The hydrogen atoms of water
molecules interact with the oxygen atoms in carboxyl and hydroxyl groups or nitrogen
atoms in amide groups. Such bound water evaporates slowly, even during periods of
drought.

capillary water
x
o} o]} o} 0 (o]

H H
| | | | | \ _H

O—H O—H O—H O0—H O—H |
/ e # % F A N o
e
: 0—H 0—H 0—H 0—H p—H
hydrogen-bonded water in the gel 0

Figure 20. Porous sap hydrogel containing hydrogen-bonded water and free water in capillaries.

Extensive research on the effects of SAPs on soil structure was conducted by
Paluszek [134-136]. The use of acrylic polymers as an additive to the eroded soil sig-
nificantly not only increased water absorption, but also influenced total porosity and the
number of macropores > 20 um and air permeability. The application of polyarylamide
increased the proportion of the 1-2 mm fraction [137].

Zhao’s study found that different SAP contents had a significant effect on soil particle
size distribution [138]. Due to the strong water absorption properties of SAPs, SAP-
treated soil changed the size distribution of soil particles, and thus the soil structure also
changed. The greatest influence of added polymers was observed for the content of clay
particles [139].

The most important property of superabsorbent polymers, from the point of view of cli-
mate change and emerging long periods of drought, is their ability to absorb large amounts
of water. The use of synthetic superabsorbent polymers is an alternative to improving water
retention and availability for crops in water-starved production systems [140-143]. SAPs
have been successfully used to reduce water stress in a wide variety of crops, including
citrus, maize, barley, rapeseed, tomatoes, grapevines and many others [144-149], because
the water absorbed by SAPs is available to plants. The impact of SAPs was also studied in
a number of tree species, including pine [150,151], Eucalyptus grandis, Eucalyptus citriodora,
Pinus caribaea, Araucaria cunninghamii, Melia volkensii, Azadirachta indica, Maesopsis eminii,
Terminalia superba, Picea abies and Fagus sylvatica. Not only was an increased availability



Sustainability 2024, 16, 2945

11 of 27

of water observed, but so was a significant reduction in tree transpiration compared to
control soils without SAP addition [152]. Reduction in evapotranspiration was reported by
Agaba [153]. It is probable that soil amendment with SAPs decreased the hydraulic soil
conductivity that might reduce plant transpiration and soil evaporation. In their study,
Zhao et al. proved that soil mixed with SAPs significantly reduced soil water evaporation.
An SAP concentration of 0.2% can reduce soil water evaporation enough to meet plant
growth needs [138].

It has been estimated that around 90% of the water absorbed by SAPs is available to
plants [154]. SAPs do not decrease vertical water flow through soil profile and do decrease
leaching of nutrients from soils. The advantages of the amendment of soils with SAPs
include increased plant available water in soils, faster growth of plants and prolonged
survival of plants under water stress [138,155].

Benefits of modifying soils with SAPs include increased water availability to plants in
the soil, faster plant growth and longer plant survival under water stress conditions and
reduced water evaporation rates [142,155-157].

A swollen hydrogel acts as a local miniature water reservoir, which helps with initial
crop establishment and results in better plant growth [157]. Singh et al. found that
higher soil moisture retention when using SAPs and then its gradual release over a longer
period of time allows the plant to better use moisture in the root zone with less frequent
irrigation [158].

Similar conclusions were reached by Demitri et al., who investigated the possibility
of using cellulose-based hydrogels as a carrier for long-term and controlled water release
in arid and desert areas. According to the authors, the main advantage of hydrogels is
that they can control the release of stored water as the soil dries out, maintaining soil
moisture for a relatively long time. In addition, SAPs increase soil porosity, providing
better oxygenation for plant roots [156].

The size of the SAP fraction also affects water retention and availability for plants.
Smaller gel particles can block more soil capillaries, reducing the permeability of the
substrate and retaining water in the spaces formed between the swollen hydrogel parti-
cles [109,159].

In summary, the use of SAPs extends the inter-period irrigation period, and the time to
achieve soil dryness is delayed [141], thus reducing the amount of water used in irrigation,
the frequency of irrigation and the total water demand of the crop [157,158]. SAP appli-
cation improves the physical properties of the soil, significantly increasing field capacity
moisture content, plant-available water content and relative field capacity, retention pores,
water-stable structural units and structural coefficient and reduced transmission pores,
penetration resistance and saturated hydraulic conductivity [141].

3.1.2. Fertiliser Release into the Soil by SAPs

SAPs can be saturated with fertiliser compounds (e.g., soluble phosphates, potassium
ions, nitrogen compounds) or plant protection products, which are not immediately leached
by water, but are gradually released into the soil environment and then absorbed by
plants (Figure 21) [21,156,160]. The reduction of nutrient leaching by superabsorbents is
achieved in two ways: by absorbing fertiliser compounds and by retaining water in the
soil, so that superabsorbents prevent soluble compounds and colloids from leaching into
deeper soil layers and draining into watercourses. The rate of diffusion of substances
contained in the hydrogel, both fertiliser ingredients and agrochemicals, also depends on
the size of the individual SAP particles, the degree of crosslinking of the polymer and its
macroscopic structure.
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Figure 21. SAP gel made of anionic polyelectrolyte, e.g., potassium-ammonium polyacrylate. Nega-
tive charges are located on the polymer chains, contributing to the repulsion of the chains; water is
bound by hydrogen bonds with carboxyl anions and remains in a state of thermodynamic equilibrium
with the environment, absorbing and releasing water. The gel stabilises the pH, i.e., the concentration
of oxonium ions (H30O%); as a result of dissociation and diffusion, it slowly releases potassium and
ammonium ions and absorbs polyvalent ions, which contribute to the shrinkage of the gel.

Just as water absorption by SAPs is caused by differences in water activity between
the interior of the gel and the exterior fluid, fertilisers or agrochemicals that are initially of
higher activity in the polymer will diffuse out of the particles into the surroundings. The
initially dry polymer material (xerogel) is activated to release the substance by swelling.
The factors influencing this process depend on the change in the diffusion capacity of
the released substance [160]. The swelling of poly(acrylic acid) and other anionic and
cationic polymers depends on pH, ionic strength and the concentration of polyvalent
ions (Figure 21). These factors can act as parameters controlling the release of substances.
The crosslinking density also influences the degree of swelling and is used to control the
substance release process. In order to create a polymer particle characterised by controlled
release, typically the polymer is obtained first and then the active substance is added to the
polymer by saturating/swelling the finished polymer in a solution of the active substance
and then drying the gel [18,160-163].

SAPs increase retention and prevent leaching of pesticides from the soil [164]. A
variety of polysaccharides such as chitosan, pectin and carboxymethylcellulose have been
used to prepare hydrogels as a soil-stimulating fertiliser release system [24,143].

3.2. Reclamation

Studies on the application of superabsorbents in degraded soils are less common than
those in arable soils and mostly describe the effect of SAP application on plant performance.
SAPs increase the amount of available water in the soil, allowing plants to survive longer
under water stress conditions. Their addition to the soil reduces the evapotranspiration rate
of plants. They induce significantly higher growth rates in plants growing on SAP-modified
soil. Research carried out using SAPs for remediated and degraded land focuses mainly
on their effect on the metal content of the soil. They bind heavy metals and reduce their
negative effects on plants [152,165].

Zaho [166] has shown that acrylamide/acrylic acid cellulose hydrogels that SAPs
absorbed Cu (II), Pb (II) and Cd (II) metal ions from solutions under different conditions
(Figures 18 and 19).

In his research, Torres tested whether a Na-K polyacrylate polymer could be used to
remediate sandy soil artificially contaminated with copper. The copper content of the soil
with SAPs decreased and the polymer particles removed from the soil contained high levels
of copper [167].
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Qu G et al. investigated the use of polyacrylate polymers to aid thephytostabilisation
of mine soils. In a pot study, they found that the application of the polymer led to an
increase in the enzymatic activity of the soil. Water-extractable Cu ad Zn levels of soil
decreased after polymer application [168].

Guiwei et al. investigated the effects of different doses of polyacrylate polymers on
plant growth and mine soil quality from Pb-contaminated. The polymer increased the
water-holding capacity of the soil but this capacity decreased over time. Application of
polyacrylate polymers reduced bioavailable Pb from 15 to 66% of those in the unamended
soil, depending on the polymer application rate [169].

3.3. The Influence of Superabsorbents on the Microbiological Activity of Soils

Soil microorganisms are extremely important for the proper functioning of terrestrial
ecosystems, participating in key processes such as energy flow, nutrient cycling and organic
matter turnover in terrestrial ecosystems, humification processes, contaminant degradation
and maintenance of soil structure [170]. Microbial activity has a direct impact on the func-
tioning of ecosystems and is directly related to the quality of soils; the rate of mineralisation
of soil organic matter may depend on the composition of microbial communities and their
ability to metabolise various organic compounds [171].

Soil environment, human industrial activities and cultivation practices affect micro-
bial activity in soils [170-172]. Consequently, altering the microbiome may affect plant
productivity and diversity [173,174].

The soil microbial biomass plays an important role in the biogeochemical cycling of
soil nutrients, through the production of various enzymes involved in mineralisation and
immobilisation processes, and thus plays an important role in maintaining soil health [175].
One method of studying soil microorganisms is to determine the enzymatic activity of
soils [170,176,177]. Enzymes are products of the activity of microorganisms. They are
proteins that act as catalysts in many biochemical processes in the soil associated with the
cycling of carbon, nitrogen, phosphorus, sulphur and other nutrients [170,172]. Therefore,
determining the activity of soil enzymes can provide information on the cycling of these
elements in the soil and their availability to plants. Soil enzyme determinations are often
used to assess the condition of reclaimed soils [178-180] However, interpretation of the
results obtained is difficult, as the measured activity of soil enzymes is influenced by a
number of factors that sometimes act antagonistically [181]. The enzymatic activity of soils
is influenced by a number of other factors, including abiotic factors such as temperature,
humidity the granulometric composition of the soil [181] Sandy soils have low enzymatic
activity, clay soils have average activity, and humus soils have high enzymatic activity [182].
Soil enzymes are not only produced by microorganisms, but can be products of plant root
secretions or be of animal origin [183]. In addition, extracellular enzymes such as urease
or phosphatases can accumulate in clay or organic material and show false results of soil
microbial activity [176,183].

The addition of SAPs to the soil could be beneficial to soil microorganisms, as they
could use SAPs as a source of carbon and/or nitrogen [184,185].

The results of studies to assess the impact of SAPs on soil microbial communities
are inconclusive and sometimes contradictory. For instance, Kay-Shoemake et al. [184]
reported larger populations of heterotrophic culturable bacteria in polyacryalamide-treated
soils planted to potatoes but not in those planted to bean.

Sojka et al. [128] reported a negative effect of large doses of polyacrylamide superab-
sorbent on active microbial biomass but relatively weak effect on the CLPPs measured with
Biolog® testing for arable soils in Idaho.

Awad et al. [186] studied arable soils in Korea and reported a weak effect of polyacry-
lamide, biopolymer and biochar application on soil enzyme activities for soils that did not
receive plant residues, but a strong stimulating effect was observed for soils that received
plant residues and were treated with biopolymer and biochar.
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Similar results were obtained by Bana et al. [7]. Dehydrogenase, alkaline phosphatase,
acid phosphatase and urease activities increased with the simultaneous application of
crop-residue mulch and SAPs. This positive effect was also observed on soil microbial
(bacteria, fungi, actinobacteria) populations [7].

Sojka et al. suggested that the effect of superabsorbents on soil microbial proper-
ties may depend upon crop cover, cultural practice and on soil properties (e.g., nutrient
contents) [128].

Studies to evaluate the use of SAPs on the microbiological properties of post-industrial
soils are rare and limited to mine soils contaminated with toxic metals [182,187]. These
studies reported a positive effect of SAP application on soil microbiological
properties [168,169,187-189], resulting from increased pH and significantly reduced con-
centrations of toxic metals in the soil solution.

3.4. New SAPs Environmentally Friendly and Plant-Friendly

Currently, research is being carried out to prepare low-cost and environmentally and
plant-friendly SAPs.

Copolymerisation of natural polysaccharides, such as alginate [42], starch [161], cel-
lulose [30], saccharose or chitosan [190-192] with hydrophilic synthetic polymers is one
method of producing environmentally friendly polymers.

Polysaccharides and proteins are most commonly used in the preparation of SAPs
due to the availability of raw material on an industrial scale and their biodegradabil-
ity [11,30,104,152,193,194]. These copolymers can be degraded by natural biological pro-
cesses, including the action of enzymes, microorganisms and water, transforming into
harmless simple compounds that are safe for the environment [27,195].

With the addition of natural polysaccharides, the water absorption and mechanical
strength of the copolymers are reduced [93,104,159,196].

Technologies for obtaining copolymers with starch, carboxymethylcellulose and nat-
ural additives of charcoal or bentonite are being investigated to increase the mechanical
strength of the resulting SAPs [197,198].

Also, the use of only natural polymeric components such as chitin or chitosan in
agricultural crops has an impact on increasing yields and agro-environmental sustain-
ability [199,200]. Chitosan, as a biostimulant [201,202], improves plant tolerance to salin-
ity [203], temperature [204] and drought [205] and promotes water uptake [202,206].

3.5. Restrictions on the Use of SAPs

However, there are limitations to the use of SAPs and factors that reduce their swelling
capacity. Abiotic factors include salinity or the content of multivalent cations in the soil.
SAP polymers contain ionic functional groups, such as carboxyl groups in polyacrylates,
which reduce their ability to swell when multivalent metal ions are present in the soil
and/or irrigation water. These cations form crosslinking bonds between carboxyl groups,
contributing to a reduction in water uptake capacity during many drought and hydration
cycles [207,208]. Zhou et al. reported that with higher cation valency, concentration and
ionic radius, water uptake by polymers decreases significantly Na* < K* < Mg?* < Ca®* <
Fe?t < Fe3* < A3 < Cu?* [209].

The high absorbency of SAP materials in demineralised water does not translate into
high absorbency in water with higher ionic strength [121] and another important parameter,
which is absorbency under load. The effectiveness of SAP application depends on the
application depth and bulk density of the soil [210].

Another limitation in the use of hydrogels for agricultural applications is their low
mechanical resistance [21]. The pressure exerted by the plant and the soil layer on the
SAPs influence the loss of swelling capacity, elasticity and stiffness. To maintain polymer
elasticity, long-chain molecules and adequate interbreeding are needed to dissipate external
mechanical stresses on a hydrogel. The solution to the problem may be new methods of
obtaining hydrogels with increased mechanical elasticity and chemical properties using
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nanofibres [211]. The high surface area-to-volume ratio of nanoparticles and nanolayers has
made them a good choice for use in polymer material networks [212]. Physical/chemical
crosslinking of polymer chains with different structures at the micro/nano scale leads
to networks with new unique properties (e.g., has significant water retention properties
and can withstand large changes in pH, temperature and ionic strength of the swelling
solution) [109].

There are also reports that have shown not only little or no response of hydrogels
to crop yields [207,213], but also negative effects of hydrogels on root biomass and plant
growth [214].

For agricultural applications, it has been shown that the optimum soil application
rate of SAPs is 0.2% SAP per area or lower. If the superabsorbent polymer content is less
than 0.2%, it improves the physical properties of the soil [215], increases the volume of the
growing medium due to expansion after water absorption and expands the root growth
space, which is beneficial to plant growth [216]. Higher doses may negatively affect the
growth and development of plants and disturb root development and negatively affect
root biomass [214,217]. The results of Situ’s research showed that the use of superabsorbent
polymers to eliminate the effect of lack of water resulted in damage to the roots and
a reduction in their biomass [214]. Superabsorbent polymers form a three-dimensional
network [153]. Plant roots can penetrate the hydrogel or attach to the hydrogel surface
to gain direct contact with the water. Particularly in dry environments, roots accumulate
around the hydrogel [218].

After applying higher doses of sodium and potassium acrylic polymer, the content of
Na* and K* in the soil increased significantly. Excessive accumulation of Na* and K* ions
resulted in a decrease in biomass, root length and root surface area and inhibited the uptake
of some nutrients by plants [214]. In parallel, the ionic content has decreased Ca* and
Mg?* in soil and crops after application of superabsorbent polymers. Sodium polyacrylate
had a more negative impact on crops than potassium polyacrylate [214].

It is extremely important to use SAP materials carefully and thoughtfully. Excessive
amounts of xerogel added to the soil may cause adverse effects, including drying of plant
roots. The added polymer absorbs water and reduces soil moisture [219]. The use of SAPs
does not always produce noticeable results. If the soil moisture is optimal, the added
polymer does not significantly affect plant growth [220].

Superabsorbents are, by definition, substances insoluble in water, but they contain
numerous components that migrate into the solvent during the swelling of the xerogel [221].
In the case of these materials, we can talk about the soluble fraction consisting of unreacted
monomer molecules, crosslinkers, necessary additives introduced before polymerisation,
surfactants, solvents and low-molecular or non-crosslinked polymer fractions (Figure 13),
as well as many other substances constituting both impurities of raw materials and by-
products of reactions occurring during storage and polymerisation [86,119]. These sub-
stances significantly affect the quality, properties and possible applications of SAPs. This
characteristic feature of superabsorbents seems to be underestimated or even ignored
during their application or research. Substances migrating from the polymer change pH,
ionic strength, surface tension, selectively bind ions limiting their availability in the envi-
ronment, stabilise suspensions or flocculate and remove them [222-224]. Seemingly the
same materials produced by different manufacturers may in practice differ dramatically in
terms of the qualitative composition of the soluble fraction.

SAP polymers are considered non-toxic and harmless because they are substances
insoluble in water, i.e., indigestible, even after entering the digestive tract of a human or
animal. The above-mentioned substances eluted from polymers end up in the environment,
and their actual impact on living organisms is currently unknown. Manufacturers often
deliberately add various substances to SAP polymers to enrich the material with fertilizing
substances, such as urea [45] or functional substances, e.g., humic acids [104]. In such cases,
substrates introduced together with monomers before polymerisation increase the number
of by-products and the concentration of soluble polymer fractions, which contributes to
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the even greater complexity of the problem of migration of often unknown substances
into the environment. The concentration of water-soluble components is in most cases
small, but this problem requires further research. This is especially important for polymers
introduced into the environment on a larger scale.

3.6. Degradation of SAPs in Soils

SAP degradation can result from various causes, such as chemical hydrolysis, mechan-
ical or biological degradation, irreversible thermal degradation, photochemical oxidation
and UV radiation [185,225,226].

The speed of these reactions depends on many factors such as chemical composition
and the degree of crosslinking. Long carbon chains of polymers (C-C bounds) can be
broken by radicals. UV radiation and oxidation processes occurring in the soil can generate
radicals and reactive oxygen species [227,228]. Radicals break the polymer chains and
cause the hydrated gel to break down and form colloidal solutions. Soil microorganisms,
in particular fungi and certain strains of soil bacteria, are capable of degrading synthetic
superabsorbents [185,229-231].

As a result of the degradation of synthetic polymers, soluble fractions of acrylic
polymers are formed. Linear polyacrylates and polyacrylamides have been used for
decades as additives to prevent erosion, stabilise soil, prevent leaching of colloidal particles
from soil and clarify water [232,233]. Thus, it is likely that most of the soluble linear
polymers present in SAPs (Figures 8 and 13) and the low-molecular-weight water-soluble
polymers formed during the degradation of hydrogels will be adsorbed on the surface of
soil colloids. The multivalent cations present in the soil environment form bonds between
the negatively charged components of the soil and the anionic groups of the polymers.
The degree of polymer adsorption depends on the type and size of the macromolecules,
the ionic strength and concentration of the multivalent cations, the number of colloidal
particles and the pH of the soil. Soluble polymer fractions may additionally contribute to
changing the soil structure and may reduce both water and wind erosion [125,139].

Chemically unbound monomers present in SAPs, such as acrylic acid or acrylamide,
are perfectly soluble in water. In the environment, they can easily get into the soil and
groundwater. Due to the potentially toxic properties of acrylamide, special attention
has been paid to this compound [234,235]. Acrylic acid derivatives are relatively quickly
metabolised in the soil by microorganisms. Acrylamide is converted to ammonia (or am-
monium ion) and acrylic acid (Figure 22), which can be decomposed through a series of
biochemical reactions to water and carbon dioxide (Figure 23) [66]. Potentially, microorgan-
isms in the soil can use acrylamide as a source of nitrogen [227,236,237] and acrylic acid as
a source of carbon, because it can be metabolised in microbial cells, similarly to other low
molecular weight alkyl acids.

CHZ NH, amidase CHZ OH
2 + H,0 . + NH,

o o

Acrylamide Acrylic acid
Figure 22. Enzymatic decomposition of acrylamide in soil.

SAP degradation processes can be intensified by producing materials based on biopoly-
mers or by creating copolymers with natural materials [238,239]. Natural materials based
on carbohydrates or proteins undergo rapid enzymatic hydrolysis because their chains
contain numerous glycosidic or peptide bonds [193]. Accelerating the decomposition of
SAPs in the soil obviously has advantages and disadvantages. The rapid decomposition
of the polymer may require more frequent application and increase costs, but at the same
time it may significantly affect the development of soil microorganisms.
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Figure 23. Oxidation of acrylic acid.

Another still unsolved problem is the decomposition of polyacrylates under UV
light and the need to cover the swollen polymer layer with a soil layer to counteract the
premature decomposition of macromolecules due to radical reactions [184]. Some reports
indicate that polymers degrade to monomers in the presence of light [240].

According to a study by Sarmah and Karak, starch-modified polyacrylic SAPs was
degraded by 40% after three months after application to the soil [241]. In the case of
cellulose-acrylic materials, the biodegradation process lasted only eight weeks [239].

4. Conclusions

Superabsorbents are materials that absorb huge amounts of water and are used for
numerous applications that take advantage of this unique property of these materials. This
article presents a review summarizing the latest research on the synthesis of polymeric
superabsorbents (SAPs), their degradation in soil and their use in agriculture and for the
remediation of degraded land. The review covers the use of various synthetic, natural,
synthetic and combined materials as SAPs.

SAPs enable the introduction and enhancement of retention of water, minerals, fertilis-
ers, crop protection ingredients and immobilised microorganisms in the soil. The slowed,
programmed release of chemical ingredients from insoluble hydrophilic polymers allows
for increased retention of these substances in the soil, but also reduces leaching of ingredi-
ents by groundwater and pollution of ground and surface water. A review of the articles
shows that the dose of SAP applied to the soil is important. Too much SAPs can cause soil
drying out of the application site and stunted plant root growth. SAPs influences positive
changes in the substrate structure. Repeated cycles of swelling and shrinking of the gel
loosen and aerate the soil.

Recent research concert the use of SAPs based on modified biopolymers and their
copolymers with synthetic polymers (eco-friendly polymers). Such polymers are inex-
pensive to obtain (waste utilisation—the green path), increase yields and affect agro-
environmental sustainability. However, it should be noted that the use of environmentally
friendly SAPs is associated with relatively rapid hydrolysis of glycosidic or peptide bonds
and decomposition of biomolecules by microorganisms, which accelerates the biodegrad-
ability of the polymer.

Due to the wide variety of chemical structures of modified biopolymers, their effects
in the soil environment may vary. The production of synthetic SAPs is virtually waste-
free, but when processing biopolymers hazardous waste products must also be taken into
account. The development of biotechnological efficient production of acrylic acid may be a
breakthrough in the sustainable production of SAP materials without the use of fossil fuels.

Superabsorbents materials contain numerous water soluble substances, such as poly-
merisation inhibitors and initiators, residues of unreacted monomers and by-products of
oxidation and monomer transformations occurring during storage, polymerisation, hydrol-
ysis and thermal degradation, crosslinkers, stabilisers, other excipients and soluble polymer
fractions. These substances occur in SAP materials in small, sometimes even in trace
amounts, but in an environment with limited water they can potentially significantly affect
pH, ionic strength, viscosity and surface tension. These factors may significantly affect soil
microorganisms. Basic analyses performed by manufacturers and controlled parameters,
such as absorbency, absorbency under load and the amount of unreacted monomers are
not fully sufficient to predict the processes occurring in the environment, especially the



Sustainability 2024, 16, 2945 18 of 27

impact on soil microorganisms. This issue requires more extensive research. It is possible
that some of the research results and sometimes contradictory conclusions from specific
SAP applications are the result of significant differences in the chemical composition of
commercially available materials.
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