The Impact of Consumer Environmental Preferences on the Green Technological Innovation of Chinese Listed Companies
Abstract
:1. Introduction
2. Theoretical Background and Research Hypotheses
2.1. Consumer Environmental Preferences
2.2. The Mechanism of Consumer Environmental Preferences to Promote Green Technology Innovation
2.2.1. R&D Investment
2.2.2. Environmental Protection Concept
3. Methodology
3.1. Samples and Data Collection
3.2. Variables
3.2.1. Dependent Variable: Green Technology Innovation
3.2.2. Independent Variable: Consumer Environmental Preferences
3.2.3. Control Variables
3.3. Model Construction
4. Results
4.1. Benchmark Regression Analysis
4.2. Endogenous Issues Analysis
4.3. Robustness Test
5. Further Analysis
5.1. Mediating Mechanism Test
5.1.1. The Mediating Role of R&D Investment
5.1.2. The Mediating Role of the Environmental Concept
5.2. Heterogeneity Analysis
5.2.1. Level of Marketization
5.2.2. Intensity of Government Environmental Regulation
5.2.3. Enterprise Size
5.2.4. Corporate Property
6. Discussion
7. Conclusions and Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Su, Y.; Zhu, X.; Deng, Y.; Chen, M.; Piao, Z. Does the Greening of the Tax System Promote the Green Transformation of China’s Heavily Polluting Enterprises? Environ. Sci. Pollut. Res. 2023, 30, 54927–54944. [Google Scholar] [CrossRef]
- Wang, C.; Shi, Y.; Zhang, L.; Zhao, X.; Chen, H. The Policy Effects and Influence Mechanism of China’s Carbon Emissions Trading Scheme. Air Qual. Atmos. Health 2021, 14, 2101–2114. [Google Scholar] [CrossRef]
- Kikuchi-Uehara, E.; Nakatani, J.; Hirao, M. Corrigendum to “Analysis of Factors Influencing Consumers’ Proenvironmental Be havior Based on Life Cycle Thinking. Part I: Effect of Environmental Awareness and Trust in Environmental Information on Product Choice” [J. Clean. Product. 117 (2016) 10–18]. J. Clean. Prod. 2017, 142, 2045. [Google Scholar] [CrossRef]
- Lami, O.; Mesías, F.J.; Balas, C.; Díaz-Caro, C.; Escribano, M.; Horrillo, A. Does Carbon Footprint Play a Relevant Role in Food Consumer Behaviour? A Focus on Spanish Beef. Foods 2022, 11, 3899. [Google Scholar] [CrossRef]
- Du, Y.; Wang, H. Green Innovation Sustainability: How Green Market Orientation and Absorptive Capacity Matter? Sustainability 2022, 14, 8192. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Li, J.; Wang, Z. Green Process Innovation, Green Product Innovation and Its Economic Performance Improvement Paths: A Survey and Structural Model. J. Environ. Manag. 2021, 297, 113282. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Cao, X. Do Corporate Social Responsibility Practices Contribute to Green Innovation? The Mediating Role of Green Dy namic Capability. Technol. Soc. 2022, 68, 101868. [Google Scholar] [CrossRef]
- Xie, X.; Huo, J.; Zou, H. Green Process Innovation, Green Product Innovation, and Corporate Financial Performance: A Content Analysis Method. J. Bus. Res. 2019, 101, 697–706. [Google Scholar] [CrossRef]
- Stucki, T. What Hampers Green Product Innovation: The Effect of Experience. Ind. Innov. 2019, 26, 1242–1270. [Google Scholar] [CrossRef]
- Shang, T.; Tian, M.; Tao, N.; Chen, Y. Market-Oriented Green Innovation Model: Conceptualisation and Scale Development of Disruptive Green Innovation. Asian J. Technol. Innov. 2022, 30, 672–688. [Google Scholar] [CrossRef]
- Lehmann, N.; Sloot, D.; Schüle, C.; Ardone, A.; Fichtner, W. The Motivational Drivers behind Consumer Preferences for Regional Electricity—Results of a Choice Experiment in Southern Germany. Energy Econ. 2023, 120, 106585. [Google Scholar] [CrossRef]
- Wu, X.; Hu, B.; Xiong, J. Understanding Heterogeneous Consumer Preferences in Chinese Milk Markets: A Latent Class Approach. J. Agric. Econ. 2020, 71, 184–198. [Google Scholar] [CrossRef]
- He, J.; Lei, Y.; Fu, X. Do Consumer’s Green Preference and the Reference Price Effect Improve Green Innovation? A Theoretical Model Using the Food Supply Chain as a Case. Int. J. Environ. Res. Public Health 2019, 16, 5007. [Google Scholar] [CrossRef]
- Kim, M.-Y. Consumer Preference for Credit Card Benefits: The Effect of Pro-Environmental Disposition. Int. J. Adv. Smart Converg. 2022, 11, 64–69. [Google Scholar] [CrossRef]
- Su, W.; Zhang, Y.Y.; Li, S.; Sheng, J. Consumers’ Preferences and Attitudes towards Plant-Based Milk. Foods 2023, 13, 2. [Google Scholar] [CrossRef]
- Zhu, Z.; Ma, X.; Tian, X.; Zhang, T. The Value of Food Products from Mixed Crop-Livestock Systems: Environmental Benefits and Regional Environmental Carrying Capacity. Appl. Econ. 2023, 55, 1859–1875. [Google Scholar] [CrossRef]
- Aprile, M.C.; Punzo, G. How Environmental Sustainability Labels Affect Food Choices: Assessing Consumer Preferences in South ern Italy. J. Clean. Prod. 2022, 332, 130046. [Google Scholar] [CrossRef]
- Zhang, A.; Xi, W.; Xu, F.Z.; Wu, R. Deconstructing Consumers’ Low-Carbon Tourism Promotion Preference and Its Consequences: A Heuristic-Systematic Model. J. Hosp. Tour. Manag. 2023, 57, 48–60. [Google Scholar] [CrossRef]
- Iris, G.; Abraham, H.; Doron, K. Examination of the Relationship between Dietary Choice and Consumer Preferences for Sustainable Near-Food Products in Israel. J. Clean. Prod. 2018, 197, 1148–1158. [Google Scholar] [CrossRef]
- Huo, H.; Liu, H.; Bao, X.; Cui, W. Game Analysis of Supply Chain Enterprises’ Choice of Carbon Emission Reduction Behavior under Environmental Regulation and Consumers’ Low Carbon Preference. Discret. Dyn. Nat. Soc. 2022, 2022, 3013289. [Google Scholar] [CrossRef]
- Dunlap, R.; Van Liere, K. The” New Environmental Paradigm”: A Proposed Measuring Instrument for Environmental Quality. Soc. Sci. Q. 1978, 65, 1013–1028. [Google Scholar]
- Dunlap, R.E. The New Environmental Paradigm Scale: From Marginality to Worldwide Use. J. Environ. Educ. 2008, 40, 3–18. [Google Scholar] [CrossRef]
- Huang, L.; Liang, C.; He, M. Corporate Green Governance: The Power of the Public and the Media. Account. Res. 2022, 8, 90–105. (In Chinese) [Google Scholar]
- Hu, D.; Jiao, J.; Tang, Y.; Xu, Y.; Zha, J. How Global Value Chain Participation Affects Green Technology Innovation Processes: A Moderated Mediation Model. Technol. Soc. 2022, 68, 101916. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Gao, J.; Tan, H. Media Attention and Green Technology Innovation of Heavily Polluting Enterprises. China Soft Sci. 2023, 9, 30–40. (In Chinese) [Google Scholar]
- Ülkü, M.A.; Hsuan, J. Towards Sustainable Consumption and Production: Competitive Pricing of Modular Products for Green Consumers. J. Clean. Prod. 2017, 142, 4230–4242. [Google Scholar] [CrossRef]
- Li, Y.; Xia, Y.; Zhao, Z. The Impact of Executive Green Perceptions on Corporate Performance in Heavy Pollution Industries: A Moderated Mediated Effects Model. Sci. Technol. Prog. Countermeas. 2023, 7, 113–123. (In Chinese) [Google Scholar]
- Sun, Y.; Sun, H. Green Innovation Strategy and Ambidextrous Green Innovation: The Mediating Effects of Green Supply Chain Integration. Sustainability 2021, 13, 4876. [Google Scholar] [CrossRef]
- Ito, K.; Zhang, S. Willingness to Pay for Clean Air: Evidence from Air Purifier Markets in China. J. Political Econ. 2020, 128, 1627–1672. [Google Scholar] [CrossRef]
- Zheng, Z.; Ma, Y.; Fan, A. Environmental Preference, Market Competition and Corporate Green Innovation. J. Shandong Univ. (Philos. Soc. Sci. Ed.) 2023, 4, 125–136. (In Chinese) [Google Scholar]
- Wu, L.; Yang, M.; Sun, K. Impact of Public Environmental Concern on Corporate and Governmental Environmental Governance. China Popul.-Resour. Environ. 2022, 2, 1–14. (In Chinese) [Google Scholar]
- Fang, X.; Hu, D. Corporate ESG Performance and Innovation–Evidence from A-Share Listed Companies. Econ. Res. 2023, 02, 91–106. (In Chinese) [Google Scholar]
- Zhou, Y.; Tian, L.; Yang, X. Schumpeterian Endogenous Growth Model under Green Innovation and Its Enculturation Effect. Energy Econ. 2023, 127, 107109. [Google Scholar] [CrossRef]
- Qiu, L.; Hu, D.; Wang, Y. How Do Firms Achieve Sustainability through Green Innovation under External Pressures of Environ mental Regulation and Market Turbulence? Bus. Strategy Environ. 2020, 29, 2695–2714. [Google Scholar] [CrossRef]
Variables | Abridge | Obs | Mean | Std. Dev. | Min | Max | |
---|---|---|---|---|---|---|---|
Dependent variable | Total number of green patent applications | Total | 4980 | 0.49 | 0.93 | 0 | 6.91 |
Green invention patent applications | Inva | 4980 | 0.34 | 0.78 | 0 | 6.75 | |
Green utility patent applications | Uma | 4980 | 0.29 | 0.69 | 0 | 5.59 | |
Total number of green patents granted | Total_1 | 4980 | 0.41 | 0.83 | 0 | 6.87 | |
Green invention patent grants | Inva_1 | 4980 | 0.20 | 0.60 | 0 | 6.70 | |
Green utility patent grants | Uma_1 | 4980 | 0.29 | 0.70 | 0 | 5.69 | |
Independent variable | “Baidu” environmental pollution search index | Preference | 4980 | 4.76 | 0.40 | 1.36 | 5.37 |
Public environmental protection claims index | Public | 3479 | 9.74 | 2.01 | 3.93 | 14.93 | |
Mediator variables | Enterprise R&D investment | R&D invest | 4329 | 17.96 | 1.80 | 7.55 | 24.08 |
Enterprise environmental concept word frequency | Concept | 4387 | 1.44 | 0.97 | 0 | 5.38 | |
Control variables | Asset-liability ratio | Lev | 4980 | 0.48 | 0.22 | 0.01 | 3.26 |
Net asset profit margin | ROA | 4980 | 0.03 | 0.09 | −1.23 | 1.53 | |
Gross profit margin | GOP | 4980 | 0.20 | 0.14 | −2.23 | 0.91 | |
Debt-to-equity market value ratio | DE | 4892 | 0.36 | 0.22 | 0 | 0.90 | |
Cash ratio | Cash | 4980 | 0.61 | 1.64 | 0 | 67.34 | |
Firm age | Age | 4980 | 25.20 | 4.73 | 14.00 | 47.00 | |
Firm size | Size | 4980 | 22.75 | 1.44 | 19.07 | 28.64 |
Variables | (1) Total | (2) Inva | (3) Uma | (4) Total | (5) Inva | (6) Uma |
---|---|---|---|---|---|---|
Preference | 0.483 *** (3.14) | 0.249 ** (1.96) | 0.392 *** (3.20) | 0.482 *** (3.09) | 0.261 ** (2.03) | 0.373 *** (3.01) |
Size | - | - | - | 0.197 *** (10.00) | 0.160 *** (9.73) | 0.127 *** (8.53) |
ROA | - | - | - | 0.019 (0.14) | 0.081 (0.71) | −0.051 (−0.47) |
GOP | - | - | - | −0.178 (−1.66) | −0.183 ** (−2.05) | −0.139 (−1.65) |
Cash | - | - | - | 0.004 (0.71) | 0.003 (0.61) | 0.002 (0.42) |
Lev | - | - | - | 0.0763 (0.84) | 0.033 (0.45) | 0.053 (0.75) |
DE | - | - | - | −0.594 *** (−5.01) | −0.4178 *** (−4.24) | −0.420 *** (−4.52) |
Age | - | - | - | 0.0002 (0.03) | 0.002 (0.31) | −0.002 (−0.53) |
_cons | −1.769 ** (−2.56) | −0.797 (−1.39) | −1.609 *** (−2.94) | −5.884 *** (−7.25) | −4.195 *** (−6.22) | −4.159 ** (−6.56) |
R squared | 0.3438 | 0.6169 | 0.4272 | 0.4934 | 0.5545 | 0.5350 |
N | 4980 | 4980 | 4980 | 4892 | 4892 | 4892 |
Variable | IV-FE | Heckman Two-Step | ||
---|---|---|---|---|
Preference | 0.442 ** (2.52) | 0.348 * (1.84) | 0.252 *** (3.73) | 0.557 *** (3.26) |
Size | 0.210 *** (10.10) | 0.202 *** (9.16) | 0.081 *** (3.59) | 1.268 *** (12.80) |
ROA | −0.229 (−1.63) | −0.242 * (−1.68) | 0.092 (0.64) | 0.757 *** (4.95) |
GOP | −0.179 −1.61 | −0.243 ** (−2.12) | −0.060 (−0.51) | −1.182 *** (−8.35) |
Cash | −0.001 (−0.13) | −0.007 (−0.46) | 0.0004 (0.03) | −0.008 (−1.30) |
Lev | −0.041 (−0.43) | −0.176 * (−1.77) | −0.027 (−0.28) | 0.542 *** (5.44) |
DE | −0.443 *** (−3.54) | −0.208 (−1.58) | −0.278 ** (−2.27) | −2.498 *** (−11.96) |
Age | −0.001 (−0.17) | −0.003 (−0.46) | 0.001 (0.21) | −0.003 (−0.57) |
_cons | −6.030 *** (−6.18) | −5.275 *** (−5.06) | −2.423 *** (−5.26) | −33.991 *** (−12.79) |
Cragg–Donald Wald F statistic | 4335.669 | |||
Kleibergen–PaaprkLM statistic | 322.484 *** | |||
N | 4487 | 4077 | 4487 | 4869 |
R squared | 0.4888 | 0.4691 | 0.1664 | 0.5324 |
Variables | (1) Total | (2) Inva | (3) Uma | (4) Total_1 | (5) Inva_1 | (6) Uma_1 |
---|---|---|---|---|---|---|
Preference | - | - | - | 0.234 * (1.75) | −0.106 (−1.13) | 0.409 *** (3.29) |
Public | 0.026 *** (2.74) | 0.015 * (1.96) | 0.021 *** (2.90) | - | - | - |
Size | 0.233 *** (9.77) | 0.194 *** (9.69) | 0.143 *** (8.02) | 0.165 *** (9.59) | 0.105 *** (8.60) | 0.126 *** (8.39) |
GOP | −0.225 * (−1.69) | −0.250 ** (−2.24) | −0.014 (−1.39) | −0.148 (−1.60) | −0.069 (−1.06) | −0.175 ** (−2.07) |
DE | −0.711 *** (−5.07) | −0.549 *** (−4.67) | −0.450 *** (−4.15) | −0.344 *** (−3.36) | −0.199 *** (−2.76) | −0.291 *** (−3.12) |
ROA | 0.040 (0.22) | 0.122 (0.80) | −0.111 (−0.78) | −0.129 (−1.09) | −0.096 (−1.15) | −0.075 (−0.69) |
Cash | 0.008 (0.89) | 0.005 (0.68) | 0.004 (0.61) | 0.003 (0.49) | 0.002 (0.69) | −0.0002 (−0.06) |
Lev | 0.136 (1.31) | 0.082 (0.96) | 0.053 (0.66) | −0.046 (−0.59) | 0.007 (0.13) | −0.067 (−0.94) |
Age | −0.004 (−0.67) | −0.002 (−0.32) | −0.005 (−1.13) | −0.007 (−1.21) | −0.005 (−1.32) | −0.003 (−0.66) |
_cons | −4.572 *** (−8.25) | −3.782 *** (−8.12) | −2.871 *** (−7.01) | −4.027 *** (−5.65) | −0.864 (−1.48) | −4.231 *** (−6.55) |
N | 3392 | 3392 | 3392 | 4892 | 4487 | 4892 |
R squared | 0.4886 | 0.4978 | 0.5231 | 0.4930 | 0.4663 | 0.5227 |
Variables | (1) R&D Invest | (2) Total | (3) Concept | (4) Total |
---|---|---|---|---|
Preference | 0.890 *** (12.24) | −0.008 (−0.19) | 0.203 *** (5.21) | 0.166 *** (4.33) |
R&D invest | - | 0.198 *** (21.30) | - | - |
concept | - | - | - | 0.065 *** (4.06) |
Size | 0.435 *** (12.18) | 0.010 (0.47) | 0.011 (0.51) | 0.095 *** 4.61 |
GOP | −1.527 *** (−6.29) | −0.099 (−0.72) | −0.652 *** (−4.78) | −0.442 *** (−3.29) |
DE | 4.383 *** (18.50) | 0.750 *** (5.36) | 1.519 *** (10.71) | 1.548 *** (10.94) |
ROA | 0.734 (1.07) | 0.673 * (1.74) | 0.398 (1.06) | 0.556 (1.51) |
Cash | −0.118 *** (−5.47) | 0.006 (0.48) | −0.027 *** (−2.88) | −0.009 (−1.01) |
Lev | −1.750 *** (−6.49) | −0.139 −0.91 | −0.842 *** (−5.35) | −0.581 *** (−3.75) |
Age | −0.046 *** (−8.13) | 0.001 (0.29) | −0.002 (−0.64) | −0.001 *** (−2.90) |
_cons | 16.097 *** (37.54) | −3.186 *** (−11.19) | 0.575 ** (2.44) | −0.005 (−0.02) |
N | 3715 | 3715 | 3770 | 3770 |
R squared | 0.1986 | 0.1699 | 0.0606 | 0.0699 |
Sobel statistic | 10.61 *** | 10.61 *** | 3.202 *** | 3.202 *** |
Variables | (1) High Level of Marketization Total | (2) Low Level of Marketization Total | (3) High Level of Marketization Inva | (4) Low Level of Marketization Inva | (5) High Level of Marketization Uma | (6) Low Level of Marketization Uma |
---|---|---|---|---|---|---|
Preference | 0.568 *** (2.61) | 0.385 * (1.70) | 0.152 (0.84) | 0.389 ** (2.10) | 0.522 *** (3.18) | 0.208 (1.14) |
Size | 0.176 *** (7.60) | 0.181 *** (4.77) | 0.140 *** (7.16) | 0.132 *** (4.47) | 0.107 *** (6.26) | 0.122 *** (4.05) |
GOP | −0.115 (−0.93) | −0.202 (−0.93) | −0.102 ** (−0.99) | −0.204 (−1.18) | −0.116 (−1.20) | −0.046 (−0.26) |
DE | −0.548 *** (−3.94) | −0.680 *** (−2.98) | −0.386 *** (−3.33) | −0.387 ** (−2.11) | −0.353 *** (−3.27) | −0.615 *** (−3.37) |
ROA | 0.041 (0.26) | 0.091 (0.33) | 0.079 (0.60) | 0.204 (0.90) | −0.016 (−0.13) | −0.110 (−0.49) |
Cash | 0.006 (0.83) | −0.0001 (−0.01) | 0.003 (0.45) | 0.005 (0.50) | 0.003 (0.67) | −0.004 (−0.39) |
Lev | 0.053 (0.51) | 0.363 * (1.95) | 0.021 (0.55) | 0.192 (1.28) | 0.014 (0.18) | 0.365 ** (2.45) |
Age | 0.003 (0.43) | −0.017 (−1.07) | 0.004 (0.62) | −0.008 (−0.74) | −0.001 (−0.22) | −0.011 (−0.81) |
_cons | −5.886 *** (−5.34) | −4.712 *** (−3.62) | −3.362 *** (−3.66) | −3.977 *** (−3.88) | −4.381 *** (−5.11) | −3.113 *** (−3.00) |
N | 3723 | 1169 | 3723 | 1169 | 3723 | 1169 |
R squared | 0.5190 | 0.5917 | 0.5371 | 0.5966 | 0.5944 | 0.5613 |
Variables | (1) High Environmental-Regulation Intensity Total | (2) Low Environmental-Regulation Intensity Total | (3) High Environmental-Regulation Intensity Inva | (4) Low Environmental-Regulation Intensity Inva | (5) High Environmental-Regulation Intensity Uma | (6) Low Environmental-Regulation Intensity Uma |
---|---|---|---|---|---|---|
Preference | 0.309 * (1.81) | 0.632 *** (2.66) | 0.211 (1.49) | 0.292 (1.49) | 0.227 * (1.79) | 0.448 ** (2.27) |
Size | 0.113 *** (4.33) | 0.223 *** (7.99) | 0.078 *** (3.62) | 0.183 *** (7.78) | 0.078 *** (4.28) | 0.130 *** (6.02) |
GOP | −0.061 (−0.41) | −0.099 (−0.70) | −0.084 (−0.68) | −0.070 (−0.59) | −0.076 (−0.71) | −0.127 (−1.10) |
DE | −0.343 ** (−2.36) | −0.735 *** (−4.08) | −0.150 (−1.24) | −0.598 *** (−4.00) | −0.325 *** (−3.05) | −0.402 *** (−2.73) |
ROA | 0.044 (0.26) | −0.028 (−0.14) | 0.107 (0.76) | 0.036 (0.22) | −0.007 (−0.06) | −0.064 (−0.39) |
Cash | 0.002 (0.30) | 0.004 (0.58) | 0.001 (0.25) | 0.004 (0.57) | 0.002 (0.32) | 0.001 (0.17) |
Lev | 0.054 (0.52) | 0.042 (0.29) | −0.018 (−0.20) | 0.070 (0.59) | 0.115 (1.51) | −0.081 (−0.69) |
Age | 0.003 (0.39) | −0.002 (−0.23) | 0.003 (0.58) | −0.002 (−0.23) | 0.000 (0.04) | −0.001 (−0.11) |
_cons | −3.635 *** (−3.92) | −7.087 *** (−5.82) | −2.579 *** (−3.34) | −4.833 *** (−4.77) | −2.590 *** (−3.88) | −4.511 *** (−4.55) |
N | 2863 | 2493 | 2863 | 2493 | 2863 | 2493 |
R squared | 0.2484 | 0.6509 | 0.3130 | 0.6661 | 0.2056 | 0.6800 |
Variables | (1) Large Enterprises Total | (2) Small- and Medium-Sized Enterprises Total | (3) Large Enterprises Inva | (4) Small- and Medium-Sized Enterprises Inva | (5) Large Enterprises Uma | (6) Small- and Medium-Sized Enterprises Uma |
---|---|---|---|---|---|---|
Preference | 1.296 *** (3.87) | 0.093 (0.65) | 0.881 *** (3.14) | −0.018 (−0.16) | 0.810 *** (2.88) | 0.138 (1.37) |
Size | 0.387 *** (9.61) | 0.120 *** (4.36) | 0.321 *** (9.38) | 0.093 *** (4.19) | 0.252 *** (8.42) | 0.051 *** (2.72) |
GOP | −0.560 ** (−2.47) | 0.096 (0.89) | −0.475 ** (−2.49) | 0.038 (0.44) | −0.367 ** (−2.03) | 0.021 (0.28) |
DE | −0.695 *** (−3.34) | −0.435 *** (−3.00) | −0.432 ** (−2.47) | −0.356 *** (−3.07) | −0.568 *** (−3.32) | −0.165 (−1.64) |
ROA | 0.548 (1.48) | −0.049 (−0.43) | 0.477 (1.54) | 0.014 (0.15) | 0.149 (0.49) | −0.041 (−0.52) |
Cash | −0.047 (−1.13) | 0.001 (0.13) | −0.034 (−0.98) | −0.000 (−0.12) | −0.053 (−1.54) | 0.001 (0.23) |
Lev | 0.183 (0.80) | 0.139 * (1.66) | −0.033 (−0.17) | 0.134 ** (2.00) | 0.151 (0.82) | 0.035 (0.59) |
Age | 0.009 (0.87) | −0.008 (−1.37) | 0.009 (1.06) | −0.004 (−0.88) | 0.000 (0.06) | −0.005 (−1.62) |
_cons | −14.044 *** (−7.81) | −2.569 *** (−2.98) | −10.808 *** (−7.14) | −1.611 ** (−2.33) | −8.967 *** (−6.19) | −1.512 ** (−2.54) |
N | 2459 | 2433 | 2459 | 2433 | 2459 | 2433 |
R squared | 0.4780 | 0.1755 | 0.4790 | 0.1690 | 0.5370 | 0.1463 |
Variables | (1) State-Owned Enterprises Total | (2) Private Enterprises Total | (3) State-Owned Enterprises Inva | (4) Private Enterprises Inva | (5) State-Owned Enterprises Uma | (6) Private Enterprises Uma |
---|---|---|---|---|---|---|
Preference | 0.319 (1.37) | 0.465 ** (2.44) | 0.145 (0.74) | 0.241 (1.59) | 0.346 * (1.80) | 0.286 ** (2.05) |
Size | 0.262 *** (10.21) | 0.134 *** (5.27) | 0.218 *** (10.15) | 0.104 *** (5.05) | 0.181 *** (9.43) | 0.058 *** (3.22) |
GOP | −0.361 ** (−2.15) | 0.021 (0.17) | −0.341 ** (−2.42) | 0.025 (0.25) | −0.235 * (−1.76) | −0.028 (−0.31) |
DE | −0.768 *** (−4.72) | −0.560 *** (−3.57) | −0.577 *** (−4.21) | −0.431 *** (−3.44) | −0.617 *** (−4.71) | −0.257 ** (−2.26) |
ROA | 0.067 (0.29) | −0.013 (−0.09) | 0.151 (0.77) | 0.025 (0.22) | −0.086 (−0.45) | −0.023 (−0.22) |
Cash | −0.010 (−0.55) | 0.001 (0.19) | −0.004 (−0.26) | −0.000 (−0.04) | −0.012 (−0.84) | 0.001 (0.18) |
Lev | 0.153 (1.17) | 0.130 (1.14) | 0.105 (0.95) | 0.141 (1.55) | 0.104 (0.98) | 0.017 (0.21) |
Age | −0.004 (−0.47) | 0.002 (0.23) | 0.001 (0.08) | 0.003 (0.45) | −0.005 (−0.97) | −0.003 (−0.64) |
_cons | −6.433 *** (−5.44) | −4.693 *** (−4.65) | −4.919 *** (−4.95) | −3.154 *** (−3.90) | −5.006 *** (−5.25) | −2.341 *** (−3.21) |
N | 2915 | 2269 | 2915 | 2269 | 2915 | 2269 |
R squared | 0.4966 | 0.4125 | 0.5044 | 0.3412 | 0.5275 | 0.4606 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, P.; Zeng, L. The Impact of Consumer Environmental Preferences on the Green Technological Innovation of Chinese Listed Companies. Sustainability 2024, 16, 2951. https://doi.org/10.3390/su16072951
Yu P, Zeng L. The Impact of Consumer Environmental Preferences on the Green Technological Innovation of Chinese Listed Companies. Sustainability. 2024; 16(7):2951. https://doi.org/10.3390/su16072951
Chicago/Turabian StyleYu, Ping, and Linhui Zeng. 2024. "The Impact of Consumer Environmental Preferences on the Green Technological Innovation of Chinese Listed Companies" Sustainability 16, no. 7: 2951. https://doi.org/10.3390/su16072951
APA StyleYu, P., & Zeng, L. (2024). The Impact of Consumer Environmental Preferences on the Green Technological Innovation of Chinese Listed Companies. Sustainability, 16(7), 2951. https://doi.org/10.3390/su16072951