Microfiber Fragment Pollution: Sources, Toxicity, Strategies, and Technologies for Remediation
Abstract
:1. Introduction
1.1. Current Trends in Textile Production
1.2. Environmental Toxicity of MF Pollution
2. Sources of MF Emissions into the Environment
2.1. MF Release during Home Laundering
2.2. Wastewater Treatment Plants (WWTPs) and Persistence of Synthetic MFs in Them
3. Fate, Transport, and Persistence of MF Pollutants in Our Biosphere
4. Innovative Treatment Technologies for MP and MF Mitigation
4.1. Electrochemical Oxidation
4.2. Electrocoagulation
4.3. Photocatalytic Degradation
4.4. Magnetic Separation
5. Strategies and Policies for Reducing MF Pollution
5.1. Increasing Consumer Awareness
- (a).
- Environmental agencies such as the United States Environmental Protection Agency (US EPA) and other stakeholders must develop educational campaigns to enhance consumer awareness regarding MF shedding, its environmental ramifications, and the influence of laundering behaviors on MF release;
- (b).
- Encourage sustainable purchasing decisions for clothing items. This includes avoiding unnecessary consumption of synthetic textiles and opting for products with minimal harmful chemical treatments;
- (c).
- Educating consumers on the optimal frequency of washing clothes, considering that frequent laundering directly correlates with higher MF release [75]. Drawing from empirical research on the factors contributing to microfiber shedding, we have outlined laundering variables influencing microfiber release during washing in Figure 3 of this paper. We trust that these findings will aid in developing strategies to minimize microfiber shedding during laundering processes.
5.2. Technological Solutions for Home Laundering
- (a).
- Investigate and adopt technologies designed for the improved capturing efficacy of MFs during laundering, including redesigned mesh bags or filters attached to the laundry-machine pipes;
- (b).
- Explore the effectiveness of in-drum devices and filters in capturing MFs, with a focus on incorporating these technologies into consumer practices;
- (c).
- Promote the development and adoption of new washing machines with built-in MF-catching technologies, reducing reliance on aftermarket solutions. It is important to recognize the potential of such technologies to significantly decrease MF emissions from laundry [17].
5.3. Prioritizing Mitigating MF Emissions during Textile Production
- (a).
- Prioritize efforts to reduce MF emissions, beginning with fabric production, given the substantial global textile production volumes discussed in Section 1.1 of this paper;
- (b).
- (c).
- Rethink mechanical and chemical finishing techniques to preserve fiber surfaces and reduce susceptibility to fragmentation [51];
- (d).
- Introduce the prewashing of textiles and apparel with MF-filtering devices into the textile manufacturing supply chain to mitigate consumer washing impacts later on.
5.4. Regulating the Overproduction of Synthetic Textiles
- (a).
- Acknowledge the environmental threat posed by synthetic MFs and consider reducing the production of synthetic textiles to foster a more sustainable textile industry. As noted in several studies, synthetic-fiber-fragment pollution poses a major threat to our ecosystem and biodiversity [7,11,12,13,14,15,16,17]. Synthetic fibers offer important functional assets that may be inherently missing in natural fibers, hence their existence in the industry. It is important to regulate their production and consumption rates based on their functional uses rather than economic benefits so that we can continue reaping their functional benefits without having to ban them completely due to their harmful environmental impacts;
- (b).
- Drawing inspiration from successful bans on plastic grocery bags in several countries, authorities can restrict the production and consumption of synthetic textiles to address the root cause of the issue, which will help mitigate synthetic MF emissions;
- (c).
- Synthetic-fiber-fragmentation pollution is a real threat to our environment and must be addressed with synergistic efforts between producers, manufacturers, designers, consumers, government lawmakers, and environmental-regulation authorities.
5.5. Enhancing Global Wastewater Treatment Infrastructure
- (a).
- Mandate the improvement of global wastewater treatment plants (WWTPs) to incorporate technologies specifically designed for capturing MFs in influent water. We discussed several innovative wastewater treatment technologies in Section 4 of this paper that can be adapted by the WWTPs for MP and MF treatment;
- (b).
- Regulatory bodies like environmental-protection agencies and governments can set standards for WWTPs, encouraging the adoption of advanced technologies capable of filtering out higher percentages of MFs from laundry effluent waters [77].
5.6. Developing Sustainable Disposal Methods
5.7. Implementing Labeling Laws for Consumer Education
- (a).
- Governments can establish clothing-labeling laws designed to educate consumers about the environmental impacts of synthetic garments and proper care techniques to minimize MF release [44];
- (b).
- Enforcing eco-labeling practices on synthetic clothing would ensure that consumers are informed about the best methods to reduce MF emissions, promoting sustainable purchasing and laundering behaviors.
6. Major Knowledge Gaps and Future Research Directions
6.1. Development of Standardized Experimental Method
- (a).
- Devising a universally accepted experimental method and updating standards for the quantification of MF shedding during laundering, which is reproducible is imperative;
- (b).
- Furthermore, it is crucial to develop standard laundering apparatuses for laboratory experiments that can mimic household laundry emissions. The procedure for filtration methods, testing methodology, quality assurance protocols, and a comprehensive analysis of the entire laundering cycle, including tumble drying. must be developed.
6.2. Technological Advancements for Identification and Quantification
- (a).
- Pioneering new technologies to enhance the accurate identification and quantification of MFs;
- (b).
- Explore common methods such as optical microscopy, scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and Raman spectroscopy to further refine accuracy [33].
6.3. Human and Environmental Impact Studies
6.4. MF Biodegradation Studies
- (a).
- Extended research efforts towards investigating the biodegradation behaviors of both natural and synthetic MFs in natural environments are recommended. Both biotic and abiotic factors must be taken into account in such studies. This approach is currently lacking in present lab-based research in this area.
- (b).
- Address the lack of studies that assess the degradation of MFs in aquatic environments, acknowledging the well-established resistance of plastic products to biodegradation [31].
6.5. Leaching of Toxic Chemicals from Textile Finishes
- (a).
- Conduct in-depth research on the leaching of toxic chemicals from applied textile finishes during degradation processes. We did not find many studies focusing on the breaking down of textile finishing compounds and their impacts on aquatic life through MF carriers;
- (b).
- Examine the toxicity of these leachates to better understand the potential environmental impacts and health risks associated with chemical release from synthetic textiles.
6.6. MF Sorption of Harmful Chemicals and Pathogens
- (a).
- Explore the ability of MFs to absorb harmful chemicals and pathogens from the wastewater sludge and disperse them into other settings;
- (b).
- Adapt techniques from research on the sorption of metals and metalloids by MP particles during wastewater treatment plant (WWTP) processes [43].
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Cauwenberghe, L.; Janssen, C.R. Microplastics in Bivalves Cultured for Human Consumption. Environ. Pollut. 2014, 193, 65–70. [Google Scholar] [CrossRef]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic Waste Inputs from Land into the Ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef]
- What You Should Know about Microfiber Pollution|US EPA. Available online: https://www.epa.gov/trash-free-waters/what-you-should-know-about-microfiber-pollution (accessed on 6 December 2023).
- Liu, J.; Yang, Y.; Ding, J.; Zhu, B.; Gao, W. Microfibers: A Preliminary Discussion on Their Definition and Sources. Environ. Sci. Pollut. Res. 2019, 26, 29497–29501. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S. Biodegradable Textile Polymers: A Review of Current Scenario and Future Opportunities. Environ. Technol. Rev. 2023, 12, 441–457. [Google Scholar] [CrossRef]
- Materials Market Report. 2023. Available online: https://textileexchange.org/knowledge-center/reports/materials-market-report-2023/ (accessed on 12 January 2024).
- How EU Policy Can Tackle Microplastic Pollution. Available online: https://seas-at-risk.org/publications/how-eu-policy-can-tackle-microplastic-pollution/ (accessed on 6 November 2023).
- Balasaraswathi, S.R.; Rathinamoorthy, R. Synthetic Textile and Microplastic Pollution: An Analysis on Environmental and Health Impact. In Sustainable Textiles: Production, Processing, Manufacturing & Chemistry; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–20. [Google Scholar] [CrossRef]
- Holland, O. French Lawmakers Approve Bill Penalizing Fast Fashion. Available online: https://www.cnn.com/2024/03/15/style/france-fast-fashion-bill-intl-hnk/index.html (accessed on 19 March 2024).
- De Sá, L.C.; Oliveira, M.; Ribeiro, F.; Rocha, T.L.; Futter, M.N. Studies of the Effects of Microplastics on Aquatic Organisms: What Do We Know and Where Should We Focus Our Efforts in the Future? Sci. Total Environ. 2018, 645, 1029–1039. [Google Scholar] [CrossRef]
- Henkel, C.; Hüffer, T.; Hofmann, T. Polyvinyl Chloride Microplastics Leach Phthalates into the Aquatic Environment over Decades. Environ. Sci. Technol. 2022, 56, 14507–14516. [Google Scholar] [CrossRef] [PubMed]
- Kolarik, B.; Morrison, G.C. Accumulation of Polychlorinated Biphenyls in Fabrics in a Contaminated Building, and the Effect of Laundering. Indoor Air 2021, 32, e12944. [Google Scholar] [CrossRef]
- Effective 1 April 2022: Treatments Containing Perfluoroalkyl or Polyfluoroalkyl Substances for Use on Converted Textiles or Leathers. Available online: https://pfascentral.org/policy/effective-april-1-2022-treatments-containing-perfluoroalkyl-or-polyfluoroalkyl-substances-for-use-on-converted-textiles-or-leathers (accessed on 17 March 2024).
- Ernest, S.; Nicolson, T.; Petit, C.; Geisler, R.; Haffter, P.; Rauch, G. Mariner Is Defective in Myosin VIIA: A Zebrafish Model for Human Hereditary Deafness. Hum. Mol. Genet. 2000, 9, 2189–2196. [Google Scholar] [CrossRef]
- Hammer, J.; Kraak, M.H.; Parsons, J.R. Plastics in the Marine Environment: The Dark Side of a Modern Gift. In Reviews of Environmental Contamination and Toxicology; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–44. [Google Scholar] [CrossRef]
- Velzeboer, I.; Kwadijk, C.J.; Koelmans, A.A. Strong Sorption of PCBS to Nanoplastics, Microplastics, Carbon Nanotubes, and Fullerenes. Environ. Sci. Technol. 2014, 48, 4869–4876. [Google Scholar] [CrossRef] [PubMed]
- Watt, E.; Picard, M.; Maldonado, B.; Abdelwahab, M.A.; Mielewski, D.F.; Drzal, L.T.; Misra, M.; Mohanty, A.K. Ocean Plastics: Environmental Implications and Potential Routes for Mitigation—A Perspective. RSC Adv. 2021, 11, 21447–21462. [Google Scholar] [CrossRef]
- Goal 14|Department of Economic and Social Affairs. Available online: https://sdgs.un.org/goals/goal14 (accessed on 1 April 2024).
- Green, D.S.; Kregting, L.; Boots, B.; Blockley, D.J.; Brickle, P.; da Costa, M.; Crowley, Q. A Comparison of Sampling Methods for Seawater Microplastics and a First Report of the Microplastic Litter in Coastal Waters of Ascension and Falkland Islands. Mar. Pollut. Bull. 2018, 137, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; charan Rath, C.; Das, A.P. Marine Microfiber Pollution: A Review on Present Status and Future Challenges. Mar. Pollut. Bull. 2019, 140, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Chan, F.K.; Stanton, T.; Johnson, M.F.; Kay, P.; He, J.; Wang, J.; Kong, C.; Wang, Z.; Liu, D.; et al. Synthesis of Dominant Plastic Microfibre Prevalence and Pollution Control Feasibility in Chinese Freshwater Environments. Sci. Total Environ. 2021, 783, 146863. [Google Scholar] [CrossRef] [PubMed]
- De Felice, B.; Antenucci, S.; Ortenzi, M.A.; Parolini, M. Laundering of Face Masks Represents an Additional Source of Synthetic and Natural Microfibers to Aquatic Ecosystems. Sci. Total Environ. 2022, 806, 150495. [Google Scholar] [CrossRef]
- Sillanpää, M.; Sainio, P. Release of Polyester and Cotton Fibers from Textiles in Machine Washings. Environ. Sci. Pollut. Res. 2017, 24, 19313–19321. [Google Scholar] [CrossRef] [PubMed]
- Zambrano, M.C.; Pawlak, J.J.; Daystar, J.; Ankeny, M.; Cheng, J.J.; Venditti, R.A. Microfibers Generated from the Laundering of Cotton, Rayon and Polyester Based Fabrics and Their Aquatic Biodegradation. Mar. Pollut. Bull. 2019, 142, 394–407. [Google Scholar] [CrossRef] [PubMed]
- Özkan, İ.; Gündoğdu, S. Investigation on the Microfiber Release under Controlled Washings from the Knitted Fabrics Produced by Recycled and Virgin Polyester Yarns. J. Text. Inst. 2020, 112, 264–272. [Google Scholar] [CrossRef]
- Yuksekkaya, M.E.; Celep, G.; Dogan, G.; Tercan, M.; Urhan, B. A Comparative Study of Physical Properties of Yarns and Fabrics Produced from Virgin and Recycled Fibers. J. Eng. Fibers Fabr. 2016, 11, 68–76. [Google Scholar] [CrossRef]
- Albini, G.; Brunella, V.; Placenza, B.; Martorana, B.; Guido Lambertini, V. Comparative Study of Mechanical Characteristics of Recycled Pet Fibres for Automobile Seat Cover Application. J. Ind. Text. 2018, 48, 992–1008. [Google Scholar] [CrossRef]
- Sarıoğlu, E. An Investigation on Performance Optimization of R-PET/Cotton and V-Pet/Cotton Knitted Fabric. Int. J. Cloth. Sci. Technol. 2019, 31, 439–452. [Google Scholar] [CrossRef]
- Majumdar, A.; Shukla, S.; Singh, A.A.; Arora, S. Circular Fashion: Properties of Fabrics Made from Mechanically Recycled Poly-Ethylene Terephthalate (PET) Bottles. Resour. Conserv. Recycl. 2020, 161, 104915. [Google Scholar] [CrossRef]
- Kishor, R.; Purchase, D.; Saratale, G.D.; Saratale, R.G.; Ferreira, L.F.; Bilal, M.; Chandra, R.; Bharagava, R.N. Ecotoxicological and Health Concerns of Persistent Coloring Pollutants of Textile Industry Wastewater and Treatment Approaches for Environmental Safety. J. Environ. Chem. Eng. 2021, 9, 105012. [Google Scholar] [CrossRef]
- Gaylarde, C.; Baptista-Neto, J.A.; da Fonseca, E.M. Plastic Microfibre Pollution: How Important Is Clothes’ Laundering? Heliyon 2021, 7, e07105. [Google Scholar] [CrossRef]
- Periyasamy, A.P.; Tehrani-Bagha, A. A Review on Microplastic Emission from Textile Materials and Its Reduction Techniques. Polym. Degrad. Stab. 2022, 199, 109901. [Google Scholar] [CrossRef]
- Henry, B.; Laitala, K.; Klepp, I.G. Microfibres from Apparel and Home Textiles: Prospects for Including Microplastics in Environmental Sustainability Assessment. Sci. Total Environ. 2019, 652, 483–494. [Google Scholar] [CrossRef]
- Ismail, M.; Akhtar, K.; Khan, M.I.; Kamal, T.; Khan, M.A.; Asiri, M.A.; Seo, J.; Khan, S.B. Pollution, Toxicity and Carcinogenicity of Organic Dyes and Their Catalytic Bio-Remediation. Curr. Pharm. Des. 2019, 25, 3645–3663. [Google Scholar] [CrossRef]
- Lusher, A. Microplastics in the Marine Environment: Distribution, Interactions and Effects. In Marine Anthropogenic Litter; Springer: Berlin/Heidelberg, Germany, 2015; pp. 245–307. [Google Scholar] [CrossRef]
- Ribeiro, F.; O’Brien, J.W.; Galloway, T.; Thomas, K.V. Accumulation and Fate of Nano- and Micro-Plastics and Associated Contaminants in Organisms. TrAC Trends Anal. Chem. 2019, 111, 139–147. [Google Scholar] [CrossRef]
- Galloway, T.S.; Cole, M.; Lewis, C. Interactions of Microplastic Debris throughout the Marine Ecosystem. Nat. Ecol. Evol. 2017, 1, 0116. [Google Scholar] [CrossRef]
- Mattsson, K.; Johnson, E.V.; Malmendal, A.; Linse, S.; Hansson, L.-A.; Cedervall, T. Brain Damage and Behavioural Disorders in Fish Induced by Plastic Nanoparticles Delivered through the Food Chain. Sci. Rep. 2017, 7, 11452. [Google Scholar] [CrossRef]
- De Falco, F.; Di Pace, E.; Cocca, M.; Avella, M. The Contribution of Washing Processes of Synthetic Clothes to Microplastic Pollution. Sci. Rep. 2019, 9, 6633. [Google Scholar] [CrossRef]
- De Falco, F.; Cocca, M.; Avella, M.; Thompson, R.C. Microfiber Release to Water, via Laundering, and to Air, via Everyday Use: A Comparison between Polyester Clothing with Differing Textile Parameters. Environ. Sci. Technol. 2020, 54, 3288–3296. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Bai, X.; Ye, Z. Removal and Generation of Microplastics in Wastewater Treatment Plants: A Review. J. Clean. Prod. 2021, 291, 125982. [Google Scholar] [CrossRef]
- Carr, S.A. Sources and Dispersive Modes of Micro-fibers in the Environment. Integr. Environ. Assess. Manag. 2017, 13, 466–469. [Google Scholar] [CrossRef] [PubMed]
- Frost, H.; Bond, T.; Sizmur, T.; Felipe-Sotelo, M. A Review of Microplastic Fibres: Generation, Transport, and Vectors for Metal(Loid)s in Terrestrial Environments. Environ. Sci. Process. Impacts 2022, 24, 504–524. [Google Scholar] [CrossRef] [PubMed]
- Carney Almroth, B.M.; Åström, L.; Roslund, S.; Petersson, H.; Johansson, M.; Persson, N.-K. Quantifying Shedding of Synthetic Fibers from Textiles; a Source of Microplastics Released into the Environment. Environ. Sci. Pollut. Res. 2017, 25, 1191–1199. [Google Scholar] [CrossRef] [PubMed]
- Belzagui, F.; Crespi, M.; Álvarez, A.; Gutiérrez-Bouzán, C.; Vilaseca, M. Microplastics’ Emissions: Microfibers’ Detachment from Textile Garments. Environ. Pollut. 2019, 248, 1028–1035. [Google Scholar] [CrossRef]
- Napper, I.E.; Thompson, R.C. Release of Synthetic Microplastic Plastic Fibres from Domestic Washing Machines: Effects of Fabric Type and Washing Conditions. Mar. Pollut. Bull. 2016, 112, 39–45. [Google Scholar] [CrossRef]
- Vassilenko, E.; Watkins, M.; Chastain, S.; Mertens, J.; Posacka, A.M.; Patankar, S.; Ross, P.S. Domestic Laundry and Microfiber Pollution: Exploring Fiber Shedding from Consumer Apparel Textiles. PLoS ONE 2021, 16, e0250346. [Google Scholar] [CrossRef]
- Periyasamy, A.P. Evaluation of Microfiber Release from Jeans: The Impact of Different Washing Conditions. Environ. Sci. Pollut. Res. 2021, 28, 58570–58582. [Google Scholar] [CrossRef]
- Periyasamy, A.P.; Venkataraman, M.; Kremenakova, D.; Militky, J.; Zhou, Y. Progress in Sol-Gel Technology for the Coatings of Fabrics. Materials 2020, 13, 1838. [Google Scholar] [CrossRef]
- Rathinamoorthy, R.; Raja Balasaraswathi, S. Investigations on the Impact of Handwash and Laundry Softener on Microfiber Shedding from Polyester Textiles. J. Text. Inst. 2021, 113, 1428–1437. [Google Scholar] [CrossRef]
- Hernandez, E.; Nowack, B.; Mitrano, D.M. Polyester Textiles as a Source of Microplastics from Households: A Mechanistic Study to Understand Microfiber Release during Washing. Environ. Sci. Technol. 2017, 51, 7036–7046. [Google Scholar] [CrossRef]
- Cotton, L.; Hayward, A.S.; Lant, N.J.; Blackburn, R.S. Improved Garment Longevity and Reduced Microfibre Release Are Important Sustainability Benefits of Laundering in Colder and Quicker Washing Machine Cycles. Dye. Pigment. 2020, 177, 108120. [Google Scholar] [CrossRef]
- Yang, L.; Qiao, F.; Lei, K.; Li, H.; Kang, Y.; Cui, S.; An, L. Microfiber Release from Different Fabrics during Washing. Environ. Pollut. 2019, 249, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Cesa, F.S.; Turra, A.; Checon, H.H.; Leonardi, B.; Baruque-Ramos, J. Laundering and Textile Parameters Influence Fibers Release in Household Washings. Environ. Pollut. 2020, 257, 113553. [Google Scholar] [CrossRef]
- Kelly, M.R.; Lant, N.J.; Kurr, M.; Burgess, J.G. Importance of Water-Volume on the Release of Microplastic Fibers from Laundry. Environ. Sci. Technol. 2019, 53, 11735–11744. [Google Scholar] [CrossRef] [PubMed]
- Hazlehurst, A.; Tiffin, L.; Sumner, M.; Taylor, M. Quantification of Microfibre Release from Textiles during Domestic Laundering. Environ. Sci. Pollut. Res. 2023, 30, 43932–43949. [Google Scholar] [CrossRef]
- Lant, N.J.; Hayward, A.S.; Peththawadu, M.M.; Sheridan, K.J.; Dean, J.R. Microfiber Release from Real Soiled Consumer Laundry and the Impact of Fabric Care Products and Washing Conditions. PLoS ONE 2020, 15, e0233332. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Yang, T.; Mitrano, D.M.; Heuberger, M.; Hufenus, R.; Nowack, B. Systematic Study of Microplastic Fiber Release from 12 Different Polyester Textiles during Washing. Environ. Sci. Technol. 2020, 54, 4847–4855. [Google Scholar] [CrossRef]
- Jönsson, C.; Levenstam Arturin, O.; Hanning, A.-C.; Landin, R.; Holmström, E.; Roos, S. Microplastics Shedding from Textiles—Developing Analytical Method for Measurement of Shed Material Representing Release during Domestic Washing. Sustainability 2018, 10, 2457. [Google Scholar] [CrossRef]
- Dalla Fontana, G.; Mossotti, R.; Montarsolo, A. Assessment of Microplastics Release from Polyester Fabrics: The Impact of Different Washing Conditions. Environ. Pollut. 2020, 264, 113960. [Google Scholar] [CrossRef]
- Galvão, A.; Aleixo, M.; De Pablo, H.; Lopes, C.; Raimundo, J. Microplastics in Wastewater: Microfiber Emissions from Common Household Laundry. Environ. Sci. Pollut. Res. 2020, 27, 26643–26649. [Google Scholar] [CrossRef]
- Kärkkäinen, N.; Sillanpää, M. Quantification of Different Microplastic Fibres Discharged from Textiles in Machine Wash and Tumble Drying. Environ. Sci. Pollut. Res. 2020, 28, 16253–16263. [Google Scholar] [CrossRef]
- Athey, S.N.; Adams, J.K.; Erdle, L.M.; Jantunen, L.M.; Helm, P.A.; Finkelstein, S.A.; Diamond, M.L. The Widespread Environmental Footprint of Indigo Denim Microfibers from Blue Jeans. Environ. Sci. Technol. Lett. 2020, 7, 840–847. [Google Scholar] [CrossRef]
- Choi, S.; Kwon, M.; Park, M.-J.; Kim, J. Analysis of Microplastics Released from Plain Woven Classified by Yarn Types during Washing and Drying. Polymers 2021, 13, 2988. [Google Scholar] [CrossRef]
- De Falco, F.; Gullo, M.P.; Gentile, G.; Di Pace, E.; Cocca, M.; Gelabert, L.; Brouta-Agnésa, M.; Rovira, A.; Escudero, R.; Villalba, R.; et al. Evaluation of Microplastic Release Caused by Textile Washing Processes of Synthetic Fabrics. Environ. Pollut. 2018, 236, 916–925. [Google Scholar] [CrossRef] [PubMed]
- Jabbar, A.; Tausif, M. Investigation of Ring, Airjet and Rotor Spun Yarn Structures on the Fragmented Fibers (Microplastics) Released from Polyester Textiles during Laundering. Text. Res. J. 2023, 93, 5017–5028. [Google Scholar] [CrossRef] [PubMed]
- Pirc, U.; Vidmar, M.; Mozer, A.; Kržan, A. Emissions of Microplastic Fibers from Microfiber Fleece during Domestic Washing. Environ. Sci. Pollut. Res. 2016, 23, 22206–22211. [Google Scholar] [CrossRef] [PubMed]
- Kapp, K.J.; Miller, R.Z. Electric Clothes Dryers: An Underestimated Source of Microfiber Pollution. PLoS ONE 2020, 15, e0239165. [Google Scholar] [CrossRef]
- O’Brien, S.; Okoffo, E.D.; O’Brien, J.W.; Ribeiro, F.; Wang, X.; Wright, S.L.; Samanipour, S.; Rauert, C.; Toapanta, T.Y.; Albarracin, R.; et al. Airborne Emissions of Microplastic Fibres from Domestic Laundry Dryers. Sci. Total Environ. 2020, 747, 141175. [Google Scholar] [CrossRef]
- Leslie, H.A.; Brandsma, S.H.; van Velzen, M.J.M.; Vethaak, A.D. Microplastics En Route: Field Measurements in the Dutch River Delta and Amsterdam Canals, Wastewater Treatment Plants, North Sea Sediments and Biota. Environ. Int. 2017, 101, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Peller, J.R.; Eberhardt, L.; Clark, R.; Nelson, C.; Kostelnik, E.; Iceman, C. Tracking the Distribution of Microfiber Pollution in a Southern Lake Michigan Watershed through the Analysis of Water, Sediment and Air. Environ. Sci. Process. Impacts 2019, 21, 1549–1559. [Google Scholar] [CrossRef]
- Dris, R.; Gasperi, J.; Rocher, V.; Saad, M.; Renault, N.; Tassin, B. Microplastic Contamination in an Urban Area: A Case Study in Greater Paris. Environ. Chem. 2015, 12, 592. [Google Scholar] [CrossRef]
- Fortin, S.; Song, B.; Burbage, C. Quantifying and Identifying Microplastics in the Effluent of Advanced Wastewater Treatment Systems Using Raman Microspectroscopy. Mar. Pollut. Bull. 2019, 149, 110579. [Google Scholar] [CrossRef]
- Talvitie, J.; Mikola, A.; Koistinen, A.; Setälä, O. Solutions to Microplastic Pollution—Removal of Microplastics from Wastewater Effluent with Advanced Wastewater Treatment Technologies. Water Res. 2017, 123, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Hartline, N.L.; Bruce, N.J.; Karba, S.N.; Ruff, E.O.; Sonar, S.U.; Holden, P.A. Microfiber Masses Recovered from Conventional Machine Washing of New or Aged Garments. Environ. Sci. Technol. 2016, 50, 11532–11538. [Google Scholar] [CrossRef]
- Uddin, S.; Fowler, S.W.; Behbehani, M. An Assessment of Microplastic Inputs into the Aquatic Environment from Wastewater Streams. Mar. Pollut. Bull. 2020, 160, 111538. [Google Scholar] [CrossRef]
- Naji, A.; Azadkhah, S.; Farahani, H.; Uddin, S.; Khan, F.R. Microplastics in Wastewater Outlets of Bandar Abbas City (Iran): A Potential Point Source of Microplastics into the Persian Gulf. Chemosphere 2021, 262, 128039. [Google Scholar] [CrossRef]
- Kirstein, I.V.; Kirmizi, S.; Wichels, A.; Garin-Fernandez, A.; Erler, R.; Löder, M.; Gerdts, G. Dangerous Hitchhikers? Evidence for Potentially Pathogenic Vibrio Spp. on Microplastic Particles. Mar. Environ. Res. 2016, 120, 1–8. [Google Scholar] [CrossRef]
- Reisser, J.; Shaw, J.; Hallegraeff, G.; Proietti, M.; Barnes, D.K.; Thums, M.; Wilcox, C.; Hardesty, B.D.; Pattiaratchi, C. Millimeter-Sized Marine Plastics: A New Pelagic Habitat for Microorganisms and Invertebrates. PLoS ONE 2014, 9, e100289. [Google Scholar] [CrossRef]
- Lamb, J.B.; Willis, B.L.; Fiorenza, E.A.; Couch, C.S.; Howard, R.; Rader, D.N.; True, J.D.; Kelly, L.A.; Ahmad, A.; Jompa, J.; et al. Plastic Waste Associated with Disease on Coral Reefs. Science 2018, 359, 460–462. [Google Scholar] [CrossRef]
- Besseling, E.; Redondo-Hasselerharm, P.; Foekema, E.M.; Koelmans, A.A. Quantifying Ecological Risks of Aquatic Micro- and Nanoplastic. Crit. Rev. Environ. Sci. Technol. 2018, 49, 32–80. [Google Scholar] [CrossRef]
- Palacios-Mateo, C.; van der Meer, Y.; Seide, G. Analysis of the Polyester Clothing Value Chain to Identify Key Intervention Points for Sustainability. Environ. Sci. Eur. 2021, 33, 2. [Google Scholar] [CrossRef]
- Clark, J.R.; Cole, M.; Lindeque, P.K.; Fileman, E.; Blackford, J.; Lewis, C.; Lenton, T.M.; Galloway, T.S. Marine Microplastic Debris: A Targeted Plan for Understanding and Quantifying Interactions with Marine Life. Front. Ecol. Environ. 2016, 14, 317–324. [Google Scholar] [CrossRef]
- Cózar, A.; Echevarría, F.; González-Gordillo, J.I.; Irigoien, X.; Úbeda, B.; Hernández-León, S.; Palma, Á.T.; Navarro, S.; García-de-Lomas, J.; Ruiz, A.; et al. Plastic Debris in the Open Ocean. Proc. Natl. Acad. Sci. USA 2014, 111, 10239–10244. [Google Scholar] [CrossRef]
- Wang, F.; Wang, F.; Zeng, E.Y. Sorption of Toxic Chemicals on Microplastics. Microplastic Contam. Aquat. Environ. 2018, 166, 225–247. [Google Scholar] [CrossRef]
- Nizzetto, L.; Futter, M.; Langaas, S. Are Agricultural Soils Dumps for Microplastics of Urban Origin? Environ. Sci. Technol. 2016, 50, 10777–10779. [Google Scholar] [CrossRef]
- Piehl, S.; Leibner, A.; Löder, M.G.; Dris, R.; Bogner, C.; Laforsch, C. Identification and Quantification of Macro- and Microplastics on an Agricultural Farmland. Sci. Rep. 2018, 8, 17950. [Google Scholar] [CrossRef] [PubMed]
- Dris, R.; Gasperi, J.; Saad, M.; Mirande, C.; Tassin, B. Synthetic Fibers in Atmospheric Fallout: A Source of Microplastics in the Environment? Mar. Pollut. Bull. 2016, 104, 290–293. [Google Scholar] [CrossRef]
- Xiao, S.; Cui, Y.; Brahney, J.; Mahowald, N.M.; Li, Q. Long-Distance Atmospheric Transport of Microplastic Fibres Influenced by Their Shapes. Nat. Geosci. 2023, 16, 863–870. [Google Scholar] [CrossRef]
- Dris, R.; Gasperi, J.; Mirande, C.; Mandin, C.; Guerrouache, M.; Langlois, V.; Tassin, B. A First Overview of Textile Fibers, Including Microplastics, in Indoor and Outdoor Environments. Environ. Pollut. 2017, 221, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Catarino, A.I.; Macchia, V.; Sanderson, W.G.; Thompson, R.C.; Henry, T.B. Low Levels of Microplastics (MP) in Wild Mussels Indicate That MP Ingestion by Humans Is Minimal Compared to Exposure via Household Fibres Fallout during a Meal. Environ. Pollut. 2018, 237, 675–684. [Google Scholar] [CrossRef]
- Prata, J.C. Microplastics in Wastewater: State of the Knowledge on Sources, Fate and Solutions. Mar. Pollut. Bull. 2018, 129, 262–265. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, S.; Moore, F.; Akhbarizadeh, R. Microplastic Pollution in Deposited Urban Dust, Tehran Metropolis, Iran. Environ. Sci. Pollut. Res. 2017, 24, 20360–20371. [Google Scholar] [CrossRef] [PubMed]
- Free, C.M.; Jensen, O.P.; Mason, S.A.; Eriksen, M.; Williamson, N.J.; Boldgiv, B. High-Levels of Microplastic Pollution in a Large, Remote, Mountain Lake. Mar. Pollut. Bull. 2014, 85, 156–163. [Google Scholar] [CrossRef]
- De Souza Machado, A.A.; Lau, C.W.; Till, J.; Kloas, W.; Lehmann, A.; Becker, R.; Rillig, M.C. Impacts of Microplastics on the Soil Biophysical Environment. Environ. Sci. Technol. 2018, 52, 9656–9665. [Google Scholar] [CrossRef] [PubMed]
- De Souza Machado, A.A.; Lau, C.W.; Kloas, W.; Bergmann, J.; Bachelier, J.B.; Faltin, E.; Becker, R.; Görlich, A.S.; Rillig, M.C. Microplastics Can Change Soil Properties and Affect Plant Performance. Environ. Sci. Technol. 2019, 53, 6044–6052. [Google Scholar] [CrossRef] [PubMed]
- Boots, B.; Russell, C.W.; Green, D.S. Effects of Microplastics in Soil Ecosystems: Above and below Ground. Environ. Sci. Technol. 2019, 53, 11496–11506. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, X.; Li, Y.; Powell, T.; Wang, X.; Wang, G.; Zhang, P. Microplastics as Contaminants in the Soil Environment: A Mini-Review. Sci. Total Environ. 2019, 691, 848–857. [Google Scholar] [CrossRef]
- Gewert, B.; Plassmann, M.; Sandblom, O.; MacLeod, M. Identification of Chain Scission Products Released to Water by Plastic Exposed to Ultraviolet Light. Environ. Sci. Technol. Lett. 2018, 5, 272–276. [Google Scholar] [CrossRef]
- Kosuth, M.; Wattenberg, E.W.; Mason, S.A.; Tyree, C.; Morrison, D. Synthetic Polymer Contamination in Global Drinking Water. Available online: https://orbmedia.org/stories/Invisibles_final_report (accessed on 1 April 2024).
- Liebezeit, G.; Liebezeit, E. Synthetic Particles as Contaminants in German Beers. Food Addit. Contam. Part A 2014, 31, 1574–1578. [Google Scholar] [CrossRef] [PubMed]
- Mason, M.C.; Pauluzzo, R.; Muhammad Umar, R. Recycling Habits and Environmental Responses to Fast-Fashion Consumption: Enhancing the Theory of Planned Behavior to Predict Generation Y Consumers’ Purchase Decisions. Waste Manag. 2022, 139, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Rist, S.; Carney Almroth, B.; Hartmann, N.B.; Karlsson, T.M. A Critical Perspective on Early Communications Concerning Human Health Aspects of Microplastics. Sci. Total Environ. 2018, 626, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Rochman, C.M.; Tahir, A.; Williams, S.L.; Baxa, D.V.; Lam, R.; Miller, J.T.; Teh, F.-C.; Werorilangi, S.; Teh, S.J. Anthropogenic Debris in Seafood: Plastic Debris and Fibers from Textiles in Fish and Bivalves Sold for Human Consumption. Sci. Rep. 2015, 5, 14340. [Google Scholar] [CrossRef] [PubMed]
- Senathirajah, K.; Attwood, S.; Bhagwat, G.; Carbery, M.; Wilson, S.; Palanisami, T. Estimation of the Mass of Microplastics Ingested—A Pivotal First Step towards Human Health Risk Assessment. J. Hazard. Mater. 2021, 404, 124004. [Google Scholar] [CrossRef] [PubMed]
- Eilebrecht, E.; Ökologie, B.A.; Wenzel, S.; Fraunhofer, I.M.; Teigeler, S.M.; Windshügel, S.B.; Keminer, O.; Fraunhofer, I.; Chachulski, H.L.; Kohler, H.M. Bewertung des endokrinen Potenzials von Bisphenol Alternativstoffen in umweltrelevanten Verwendungen. Dessau-Roßlau Ger. Environ. Agency Text. 2019, 123, 1–84. [Google Scholar]
- Wright, S.L.; Kelly, F.J. Plastic and Human Health: A Micro Issue? Environ. Sci. Technol. 2017, 51, 6634–6647. [Google Scholar] [CrossRef] [PubMed]
- Waring, R.H.; Harris, R.M.; Mitchell, S.C. Plastic Contamination of the Food Chain: A Threat to Human Health? Maturitas 2018, 115, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Xie, Y.; Wang, J. Microplastic Degradation Methods and Corresponding Degradation Mechanism: Research Status and Future Perspectives. J. Hazard. Mater. 2021, 418, 126377. [Google Scholar] [CrossRef]
- Ouarda, Y.; Tiwari, B.; Azaïs, A.; Vaudreuil, M.-A.; Ndiaye, S.D.; Drogui, P.; Tyagi, R.D.; Sauvé, S.; Desrosiers, M.; Buelna, G.; et al. Synthetic Hospital Wastewater Treatment by Coupling Submerged Membrane Bioreactor and Electrochemical Advanced Oxidation Process: Kinetic Study and Toxicity Assessment. Chemosphere 2018, 193, 160–169. [Google Scholar] [CrossRef]
- Kang, J.; Zhou, L.; Duan, X.; Sun, H.; Ao, Z.; Wang, S. Degradation of Cosmetic Microplastics via Functionalized Carbon Nanosprings. Matter 2019, 1, 745–758. [Google Scholar] [CrossRef]
- Kiendrebeogo, M.; Karimi Estahbanati, M.R.; Khosravanipour Mostafazadeh, A.; Drogui, P.; Tyagi, R.D. Treatment of Microplastics in Water by Anodic Oxidation: A Case Study for Polystyrene. Environ. Pollut. 2021, 269, 116168. [Google Scholar] [CrossRef] [PubMed]
- Moussa, D.T.; El-Naas, M.H.; Nasser, M.; Al-Marri, M.J. A Comprehensive Review of Electrocoagulation for Water Treatment: Potentials and Challenges. J. Environ. Manag. 2017, 186, 24–41. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Song, B.; Zhu, Y.; Zeng, G.; Zhang, Y.; Yang, Y.; Wen, X.; Chen, M.; Yi, H. Removal of Microplastics via Drinking Water Treatment: Current Knowledge and Future Directions. Chemosphere 2020, 251, 126612. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Segura, S.; Eiband, M.M.; de Melo, J.V.; Martínez-Huitle, C.A. Electrocoagulation and Advanced Electrocoagulation Processes: A General Review about the Fundamentals, Emerging Applications and Its Association with Other Technologies. J. Electroanal. Chem. 2017, 801, 267–299. [Google Scholar] [CrossRef]
- Liu, P.; Qian, L.; Wang, H.; Zhan, X.; Lu, K.; Gu, C.; Gao, S. New Insights into the Aging Behavior of Microplastics Accelerated by Advanced Oxidation Processes. Environ. Sci. Technol. 2019, 53, 3579–3588. [Google Scholar] [CrossRef]
- Zhu, K.; Jia, H.; Zhao, S.; Xia, T.; Guo, X.; Wang, T.; Zhu, L. Formation of Environmentally Persistent Free Radicals on Microplastics under Light Irradiation. Environ. Sci. Technol. 2019, 53, 8177–8186. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.-M.; Sin, J.-C.; Zeng, H.; Lin, H.; Li, H.; Chai, Y.-Y.; Choong, M.-K.; Mohamed, A.R. Green Synthesis of Fe-ZnO Nanoparticles with Improved Sunlight Photocatalytic Performance for Polyethylene Film Deterioration and Bacterial Inactivation. Mater. Sci. Semicond. Process. 2021, 123, 105574. [Google Scholar] [CrossRef]
- Zhang, N.; Li, Y.B.; He, H.R.; Zhang, J.F.; Ma, G.S. You Are What You Eat: Microplastics in the Feces of Young Men Living in Beijing. Sci. Total Environ. 2021, 767, 144345. [Google Scholar] [CrossRef]
- Maksoud, M.I.A.A.; Elgarahy, A.M.; Farrell, C.; Al-Muhtaseb, A.H.; Rooney, D.W.; Osman, A.I. Insight on Water Remediation Application Using Magnetic Nanomaterials and Biosorbents. Coord. Chem. Rev. 2020, 403, 213096. [Google Scholar] [CrossRef]
- Grbic, J.; Nguyen, B.; Guo, E.; You, J.B.; Sinton, D.; Rochman, C.M. Magnetic Extraction of Microplastics from Environmental Samples. Environ. Sci. Technol. Lett. 2019, 6, 68–72. [Google Scholar] [CrossRef]
- TTang, Y.; Zhang, S.; Su, Y.; Wu, D.; Zhao, Y.; Xie, B. Removal of Microplastics from Aqueous Solutions by Magnetic Carbon Nanotubes. Chem. Eng. J. 2021, 406, 126804. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, Y.; Wang, H. Surface Reactions in Selective Modification: The Prerequisite for Plastic Flotation. Environ. Sci. Technol. 2020, 54, 9742–9756. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Zhang, X.; Hu, J. Methods for Separating Microplastics from Complex Solid Matrices: Comparative Analysis. J. Hazard. Mater. 2021, 409, 124640. [Google Scholar] [CrossRef] [PubMed]
- Alpizar, F.; Carlsson, F.; Lanza, G.; Carney, B.; Daniels, R.C.; Jaime, M.; Ho, T.; Nie, Z.; Salazar, C.; Tibesigwa, B.; et al. A Framework for Selecting and Designing Policies to Reduce Marine Plastic Pollution in Developing Countries. Environ. Sci. Policy 2020, 109, 25–35. [Google Scholar] [CrossRef]
- Leslie, H.A.; van Velzen, M.J.M.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and Quantification of Plastic Particle Pollution in Human Blood. Environ. Int. 2022, 163, 107199. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Zhao, H.; Zhao, Y.; Zhu, Q.; Qiao, R.; Ren, H.; Zhang, Y. An Efficient Method for Extracting Microplastics from Feces of Different Species. J. Hazard. Mater. 2020, 384, 121489. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.; Hong, Y.-C. Exposure to Bisphenol A from Drinking Canned Beverages Increases Blood Pressure. Hypertension 2015, 65, 313–319. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McCay, J.; Mehta, S. Microfiber Fragment Pollution: Sources, Toxicity, Strategies, and Technologies for Remediation. Sustainability 2024, 16, 3077. https://doi.org/10.3390/su16073077
McCay J, Mehta S. Microfiber Fragment Pollution: Sources, Toxicity, Strategies, and Technologies for Remediation. Sustainability. 2024; 16(7):3077. https://doi.org/10.3390/su16073077
Chicago/Turabian StyleMcCay, James, and Sunidhi Mehta. 2024. "Microfiber Fragment Pollution: Sources, Toxicity, Strategies, and Technologies for Remediation" Sustainability 16, no. 7: 3077. https://doi.org/10.3390/su16073077
APA StyleMcCay, J., & Mehta, S. (2024). Microfiber Fragment Pollution: Sources, Toxicity, Strategies, and Technologies for Remediation. Sustainability, 16(7), 3077. https://doi.org/10.3390/su16073077