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Abstract: A thorough understanding of the impact of climatic factors on agricultural production is
crucial for improving crop models and enhancing predictability of crop prices and yields. Fluctu-
ations in crop yield and price can have significant implications for the market sector and farming
community. Given the projected increase in frequency and intensity of extreme events, reliable
modelling of cropping patterns becomes essential. Temperature anomalies are expected to play a
prominent role in future extreme events, emphasizing the need to comprehend their influence on
crop yield. Forecasting extreme yield, which encompasses both the highest and lowest levels of agri-
cultural production within a given time period, along with peak crop prices representing the highest
market values, poses greater challenges in forecasting compared to other values. Probability-based
predictions, accounting for uncertainty and variability, offer a more accurate approach for extreme
value estimation and risk assessment. In this study, we employ a multivariate analysis based on vine
copula to explore the interdependencies between temperature anomalies and daily strawberry yield
in Santa Maria, California. By considering the maximum and minimum daily yields each month, we
observe an increased probability of yield loss with rising temperature anomalies. While we do not
explicitly consider the specific impacts of temperature anomalies under individual Representative
Concentration Pathway (RCP) scenarios, our analysis is conducted within the broader context of
the current global warming scenario. This allows us to capture the overall anticipated effects of
regional temperature anomalies on agriculture. The findings of this study have potential impacts and
consequences for understanding the vulnerability of agricultural systems and improving crop model
predictions. By enhancing our understanding of the relationships between temperature anomalies
and crop yield, we can inform decision-making processes related to the impact of climate change on
agriculture. This research contributes to the ongoing efforts in improving agricultural sustainability
and resilience in the face of changing climatic conditions.

Keywords: extreme yield; temperature anomaly; vine copula; conditional probability

1. Introduction

Agricultural production is highly sensitive to climatic variabilities [1–3]. The recur-
rence of extreme events such as heat waves, droughts, flood, etc., are pushing the global
crop productivity to an extremely vulnerable state and this will have a profound impact
on food security [2,4]. Among the climatic factors influencing crop yield, temperature
anomalies are most likely to influence the crop yields negatively [4–8] and can ultimately
impact a crop’s market values. Considering the current climate change crisis, quantifying
the impact of temperature anomalies on crop yields will be of significant value in planning
adaptive strategies to assist agriculture and to avoid risk of food insecurity. The response
of crops to high temperature stress has been studied in detail for different crops such as
groundnut, wheat, maize, and rice, most of them involving experimental studies [9–14].
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Temperatures that lie outside the range of optimum temperature levels for crops can
have severe repercussions on the irrigated crop yields [15]. Both high and low temperatures
can create a distress in the rate of agricultural production [4,16]. Understanding crop
productivity responses to the regional weather and their explicit inclusion in crop models
will aid in improving the planning of agricultural production.

Over the past few years, significant progress has been made in understanding the
climate–yield relationships by many researchers. For instance, Goulart et al., 2021 [17] used
a random forest model and global warming scenarios to predict an increase in soybean
crop failures in the Midwestern United States due to warmer summer conditions. They
introduced the concept of impact-analogues, which are expected to increase with warmer
climates, providing a comprehensive risk estimation of future scenarios. Zhang et al.,
2023 [18] examined the impact of climate extremes on vegetation growth on the Tibetan
Plateau, utilizing event coincidence analysis to assess the susceptibility of different vegeta-
tion types to drought, extreme wet, hot, and cold events. They highlighted the importance
of understanding vegetation responses to climate variability and identified ecologically
sensitive regions that may be at risk due to changing climate conditions. Feng et al.,
2021 [19] examined the evolving relationship between climate variables and crop yield,
highlighting the impact of concurrent changes in precipitation–yield and temperature–yield
relationships on the risk of crop yield reduction. They proposed a statistical approach to
assess these risks, especially under compound dry–hot conditions, and underscored the
importance of adapting agricultural planning to these changing climate–yield dynamics.
Powell et al., 2015 [20] examined the impact of extreme weather events on wheat yields in
the Netherlands, utilizing econometric techniques on farm-level panel data and established
a correlation between increased frequency of such events and reduced yields, highlighting
the importance of local-level analysis for accurate measurement and forecasting. Shayan-
mehr et al., 2020 [21] examined the impact of climate change on potato yield and variability
in Iran’s Agro-Ecological Zones (AEZs) for the 2050s, using models to project local cli-
mate scenarios and assess future agricultural outcomes. They highlighted the need for
region-specific strategies to mitigate yield reduction and ensure food security in the face of
changing climatic conditions.

Some of the previous similar studies focus on the influence of isolated extreme events
such as heat waves and droughts on crop yields [22,23]. Recent studies have shown that
the concurrent weather extremes can create larger impacts to the crop yield than isolated
extreme events [19,24].

While different crop models and AI models were able to predict the non-extreme yield
and price of strawberry and other crops with reasonable accuracy, the accurate prediction
of extreme (both maximum and minimum) yield and price is found to be difficult [25,26].
However, these extreme yields are highly important in quantifying the profits for different
stakeholders such as farmers and the market sector. Identifying the interdependence of
extreme values in the crop sector can play a crucial role in improving the extreme value
prediction performance of models. An integrated, probabilistic model by incorporating the
uncertainties and interdependencies between the crop yield and weather anomalies can
improve the prediction of crop yield, especially the extreme values [27].

This study focuses on analyzing the variations in strawberry yield in relation to the
anomalies in regional air temperature within the study area in California, United States.
Strawberry is a lucrative farm produce and has a critically low shelf life. Currently, the
market for strawberries alone is worth USD 3.02 billion and they are one of the top ten
most valued commodities for California and the United States’ economy [28].

Strawberries reach maturity and bear fruit relatively quickly due to their shallow root
systems, necessitating optimal light conditions for high yield and fruit quality. Addition-
ally, proper water management is essential to maximize both yield and fruit quality in
strawberries [29]. With an aim of explaining the influence of regional weather conditions
on strawberries, several studies have been carried out [29–31]. Some of these studies have
shown a critical correlation between strawberry yield and temperature changes [29,30,32].
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Temperature affects nutrient uptake and photosynthesis in strawberry plants [33]. High
temperature can also inhibit developmental stages during flower formation and can even-
tually bog down the fruit quality [34].

In our study, we made a deliberate choice to primarily focus on temperature anomalies
as the key climatic factor influencing crop yield. This decision is supported by compelling
justifications based on the unique characteristics of the study area and the current irrigation
practices used to grow this commercial crop. Firstly, the area is characterized by strict
irrigation practices, where crop growth and yield are predominantly reliant on controlled
water supply rather than natural precipitation. This reduces the impact of variations
in precipitation on crop yield [35], making temperature anomalies one of the primary
climatic factors of interest. While soil moisture is undoubtedly crucial for crop growth
and development, strict irrigation practices in the study area ensure that soil moisture
levels are maintained at optimal levels, minimizing their variability and impact on crop
yield. Additionally, extensive analysis of historical data revealed a strong and consistent
correlation between temperature anomalies and crop yield in the study area. In contrast,
the correlation between precipitation and yield was found to be comparatively weaker
and hence is not reported here. This finding highlights the dominant role of temperature
anomalies in driving yield variations, underscoring the need to investigate and understand
their impact for improved agricultural predictions.

Furthermore, our choice to focus on temperature anomalies aligns with previous
studies conducted in similar agricultural contexts. Existing research consistently high-
lights the significant influence of temperature fluctuations on crop growth, development,
and yield potential [36–38]. By emphasizing temperature anomalies, we build upon this
knowledge and contribute to the growing understanding of their impact on agricultural
systems. Considering the expected temperature rise and its potential consequences for
agricultural production [39], understanding the influence of temperature anomalies be-
comes crucial. Higher temperatures can have profound effects on critical physiological
processes in crops, such as photosynthesis, respiration [39], and water use efficiency [36].
By focusing on temperature anomalies, we aim to uncover the specific interdependencies
between temperature variations and crop performance, contributing to the development
of more robust and accurate agricultural models and predictions. Here, we present a
data-based analysis of the influence of temperature anomalies on the extreme strawberry
yield over the Southwestern United States. This study here is trying to analyze and figure
out the importance of extreme value analyses. A multivariate copula analysis has been
used to understand the conditional probability of decreasing yield given the temperature
anomalies. Understanding of the influence of temperature anomalies on crop yield will
help in the development of appropriate adaptation measures for agriculture planning and
management. The findings of this work help in understanding responses of strawberry
extreme yields to the regional temperature anomalies, which is critical to address the needs
of the farming communities and to help the agricultural marketing industry in making
appropriate price predictions.

2. Materials and Methods
2.1. Data

In this study, the strawberry yield from Santa Maria County in California, United
States, was analyzed with respect to the regional air temperature anomalies. California
holds significant importance in the global strawberry industry, being responsible for pro-
ducing over 80% of the fresh market and processed strawberries grown in the United States.
Moreover, it accounts for approximately 20% of the world’s total strawberry production [40].
The Central Coast and Santa Maria Valley of California collectively host two-thirds of the
total acreage dedicated to strawberry production [28,40].

Growers in the Santa Maria region have historically employed drip irrigation systems.
In the Santa Maria Valley, strawberry fields are typically divided into drip-irrigated sections
ranging from 1 to 5 acres. The drip lines used have lengths varying between 200 and
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325 feet, with high-flow, 4 mil drip tape featuring emitters spaced every 8 inches and
installed at depths of 1 to 3 inches. Additionally, drip tapes are replaced annually to
ensure optimal irrigation efficiency [41]. Furthermore, to address concerns regarding the
representativeness of monitored meteorological conditions, it is important to note that the
cultivation practices described herein are widely adopted across the entire region [41]. This
ensures that temperature data collected accurately reflect the prevailing environmental
conditions experienced by strawberry crops in the Santa Maria Valley.

The study period spans from 2011 to 2019, capturing a comprehensive dataset of
strawberry yield variations in the Santa Maria Valley. It is pertinent to note that throughout
the study period, consistent irrigation practices were maintained, with minimal devia-
tions observed. This ensures the reliability of yield data and allows for a more accurate
assessment of the impact of temperature anomalies on strawberry yield dynamics.

The daily data of strawberry yield and temperature pertaining to Santa Maria County
in California for a time period from 2011 to 2019 were collected from two publicly available
websites [42,43]. In this study, the influence of temperature anomalies on the strawberry
yields was analyzed. For this purpose, the monthly maximum temperature anomalies were
estimated as the deviations from the average monthly temperature from 1991 to 2021 that
is publicly available on the website [44].

In order to define the yield loss with respect to the daily strawberry yield extremes,
the following guidelines were proposed in this study.

The standardised yield was estimated by standardizing the maximum and minimum
daily yield over each month by means of z score transformation as given below.

Std. Ymax =
Ymax − µmax

σmax
(1)

Std. Ymin =
Ymin − µmin

σmin
(2)

where Std. Ymax and Std. Ymin are the standardised daily maximum and minimum yield
over each month, Ymax and Ymin are the maximum and minimum daily yield over each
month, µmax and µmin are the mean of the maximum and minimum yield time series data
(for every month in the time period), and σmax and σmin are the standard deviation of the
maximum and minimum yield time series data.

In this study, for better understanding, the yield loss is defined as three types of losses
(low, moderate, and high). The three categories of yield loss are defined in this study
as follows:

−1.0 < Std.Y ≤ −0.5 : Low Yield loss
−1.5 < Std.Y ≤ −1.0 : Moderate Yield loss

Std.Y ≤ −1.5 : High Yield loss
(3)

The monthly temperature anomalies were analyzed with the standardised maximum
and minimum strawberry yield at Santa Maria for the time period from 2011 to 2019.

2.2. Copula Analysis

Sklar [45] first introduced copula in 1959. Copulas are largely useful in describing the
dependencies between random variables [46]. They are mathematical functions by which
we can obtain a joint distribution of random variables using their univariate distributions.
The major utility of copulas comes where the random variables under consideration do not
follow the same marginal distributions in which case it is difficult to find joint distribution
without the use of a copula.

Sklar’s theorem states that for a given joint multivariate distribution function and
relevant marginal distributions for the corresponding random variables, there always exists
a copula function that relates the marginal distributions of the variables [45] which can be
mathematically derived as follows:
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Consider the bivariate case with two random variables, X1 and X2, with distribution
functions F1(X1) and F2(X2), respectively. As per Sklar’s theorem there always exists a
copula function (C) such that,

F(X1 = x1, X2 = x2) = C(F1(x1), F2(x2)) (4)

where C(ul,u2) is itself a distribution function where u1 and u2 are F1(x1), F2(x2)), respectively.
A copula can be described as a cumulative distribution function with a uniform

marginal. Each of the marginal distributions produces a probability of events. The copula
function maps these probabilities to a joint probability, by giving a relationship on the
probabilities. Hence, copulas build multivariate distributions by merely determining the
dependence between the random variables without having any influence on the marginals.
The detailed mathematical formulations and derivations of copulas can be seen in many
scientific articles [47–49]

In contrast to bivariate copulas, which are very popular in various fields such as
finance, marketing, hydrology [50–54], etc., applicability of multivariate copulas was
seldom explored until recently due to the complexity in the construction of multivariate
copulas. Vine copula is a flexible multi-variate copula construction method [49,55,56] which
has a large potential for many multi-variate data analysis applications. The underlying
theory for the vine copula is from Joe [57]. The use of vine copulas is gaining popularity in
various fields [58–63].

2.3. Construction of a 3-Dimensional Vine Copula

The selection of the copula function that best describes the given data is a crucial step in
the analysis of data using copulas. In the current study, the focus will be on a 3-dimensional
vine copula coupling the three marginal distributions of three random variables, X, Y and
Z (monthly maximum yield, monthly minimum yield, and monthly temperature anomaly).
We assume that the samples of all three variables were each transformed (U, V, and W) so that
all three variables are now approximately uniformly distributed on [0, 1]. The fundamental
idea of vine copulas is to construct multivariate copulas based on a hierarchical mixing of
bivariate copulas [64]. All pairwise dependencies are modelled with bivariate copulas. If
all mutual dependencies defined are with respect to the same variable, the construction is
called a canonical vine (C-vine). If all mutual dependences are considered one after the
other variable, this is called a D-vine [65]. C- and D-vines are special cases of regular vines.

Fitting a C-vine might be advantageous when a particular variable is known to be
a key variable that governs interactions in the data set. In such a case, this variable can
be placed at the root of the canonical vine structure [66]. Different vine copula decompo-
sitions produce different multivariate distributions [65]. The selection of the vine copula
structure is an important stage in the modelling process, which can be performed by any
of the available methods in the literature such as based on the absolute empirical Kendall
tau [67], and maximum likelihood method [66]. Here, the maximum likelihood method
is used, by considering different copula families and the best fit is determined by the
highest log-likelihood value. The estimations in this paper were performed using R 4.2.2,
which is an open-source software environment for statistical computing, and the package
“VineCopula” [68].

2.4. Calculation of Joint Probability of Occurrence of Events Using Copula

The major focus of this study is to understand the dependency of standardised straw-
berry yields (both maximum and minimum) on temperature anomaly. A 3D copula is used
in this study and the joint probabilities of occurrence of strawberry yield and temperature
anomalies for various scenarios are estimated. Different combinations of relations with the
fitted copula distribution and the marginal distributions can be used to estimate the joint
probabilities of occurrence of events. Some of which, those that were used in this study, are
given below:
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2.4.1. Univariate Probability

Univariate probability denotes the probability of an event by considering the marginal
distribution of the random variable alone. The mutual dependencies of the variable with
other random variables are not considered here. This type of probability will be referred to
as UP in this paper from here onwards.

UP(X ≤ x) = F(x) (5)

UP(X > x) = 1 − F(x) (6)

where F is the cumulative distribution function of the random variable (X).

2.4.2. Joint Probability for Tri-Variate Events

In multivariate frequency analysis involving three variables using copula, the follow-
ing probability distributions can be used where C is the copula function.

P(X1 ≤ x1) = F1(x1) = u; P(X2 ≤ x2) = F2(x2) = v; P(X3 ≤ x3) = F3(x3) = w; (7)

C12(u, v) = F12(x1, x2) = P12(X1 ≤ x1, X2 ≤ x2); (8)

C13(u, w) = F13(x1, x3) = P13(X1 ≤ x1, X3 ≤ x3) (9)

C23(v, w) = F23(x2, x3) = P23(X2 ≤ x2, X3 ≤ x3) (10)

C(u, v, w) = F(x1, x2, x3) = P(X1 ≤ x1, X2 ≤ x2, X3 ≤ x3) (11)

For tri-variate random variables, X1, X2, and X3, some of the formulae of tri-variate
probability distributions is given as follows [49]:

P(X1 ≤ x1, X2 ≤ x2, X3 > x3) = P12(X1 ≤ x1, X2 ≤ x2)− P(X1 ≤ x1, X2 ≤ x2, X3 ≤ x3)
= C12(u, v)− C(u, v, w)

(12)

P(X1 > x1, X2 > x2, X3 ≤ x3)
= P(X3 ≤ x3)− P13(X1 ≤ x1, X3 ≤ x3)− P23(X2 ≤ x2, X3 ≤ x3) + P(X1 ≤ x1, X2 ≤ x2, X3 ≤ x3)
= w − C13(u, w)− C23(v, w) + C(u, v, w)

(13)

2.4.3. Conditional Probability of Tri-Variate Events

For tri-variate random variables, X1, X2, and X3, the conditional probability of occur-
rence of events can be estimated with the help of the underlying copulas. An example case
is defined below [49]:

Case 1:

X1 > x1 ∩ X2 > x2 | X3 = x3 (or X1 > x1 ∩ X3 > x3 | X2 = x2, X2 > x2 ∩ X3 > x3 | X1 = x1)

In this case, under the condition X3 = x3, both values of X1 and X2 are exceeded. In
this case:

(P(X 1 > x1 ∩ X2 > x2 | X3 = x3) = 1 − P(X1 ≤ x1 | X3 = x3)− P(X2 ≤ x2 | X3 = x3) + P(X1 ≤ x1, X2 ≤ x2 | X3 = x3) (14)

where

P(X1 ≤ x1 | X3 = x3) =
∂C13(u, w)

∂w

∣∣∣∣
W=w

, P(X2 ≤ x2 | X3 = x3) =
∂C23(v, w)

∂w

∣∣∣∣
W=w

(15)

More detailed mathematical expressions can be found in Zhang and Singh [49].

3. Preliminary Data Analysis

Before starting any modelling process, it is always advisable to carry out a preliminary
data analysis. The primary focus of this study is on strawberry yield affected by temper-
ature anomalies. Hence, the maximum and minimum daily yield over each month have
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been estimated and are given in Figure 1a. It can be observed that the yield data are an ap-
proximately stationary process with a predominant seasonal pattern with peak yield during
June. Similarly, the maximum monthly temperature observed at Santa Maria from 2011 to
2019 and the average maximum temperature over months based on temperature data from
1990 to 2021 [44] are given in Figure 1b. The monthly maximum temperature anomalies
are estimated by calculating the deviation of the observed maximum temperature from the
average maximum temperature over months and are shown in Figure 1b,c. As the data
length is comparatively short to estimate long-term trends in the data, the temperature
anomaly does not show any predominant trend (Figure 1c). It can be inferred that the yield
and the temperature anomaly data are approximate stationary processes during the time
period of 2011–2019. The basic statistics of the data are given in Table 1.
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Figure 1. (a) Maximum and minimum monthly strawberry yield at Santa Maria from 2011 to 2019;
(b) the observed temperature at Santa Maria from 2011 to 2019 and the temperature anomalies
estimated; (c) trend of monthly maximum temperature anomalies observed from 2011 to 2019.

Table 1. Basic statistics of the yield and temperature anomaly data.

Statistics Max Yield
(Pounds/Acre)

Min Yield
(Pounds/Acre)

Max Temp Anomaly
(◦F)

Min. 57.94 1 −11.9

1st Qu. 128.5 17.72 −2.6

Median 185 73.74 4.5

Mean 245.66 86.21 5.839

3rd Qu 327.67 123.15 13.85

Max. 686 356.32 25.9

4. Results and Discussion

In order to identify the correlation of strawberry yield and the temperature anomaly,
a 3D copula analysis was carried out with standardised maximum and minimum daily
strawberry yield over each month and monthly maximum temperature anomaly as the
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three random variables. To conduct multi-variate copula analysis, a vine copula structure
was selected for this study. Apart from a multivariate analysis, individual univariate
frequency analyses of the random variables were also conducted to identify the relevance
of using copula analysis in conducting analysis of dependent random variables.

4.1. Univariate Analysis

As the first case, univariate frequency analysis of the random variables is conducted
without considering the interdependence between the random variables. The random
variables (standardised maximum yield, standardised minimum yield, and the temperature
anomaly) were analyzed individually. The histograms of the variables are given in Figure 2.
It can be observed from the histograms that the standardised maximum and minimum
yields are positively skewed whereas the temperature anomalies show both skewness and
heavy tails.
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Different probability distributions were tested and the marginal probability distribu-
tion that describes the process best was selected for each of the random variables. The
“GAMLSS” [69,70] package in R was used for the purpose. Skew exponential power type III
(SEP3) distribution was found to be the best fit for standardised maximum and minimum
yield data whereas skewed exponential power type II (SEP2) distribution was found to best
describe the temperature anomaly process.

Hence, the identified univariate probability distributions for the three variables were
fitted to the data. From the marginal distribution, the probability of different cases (events)
as described in Equation (3) were calculated using Equations (5) and (6) and are tabulated,
which is given in Table 2.
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Table 2. Probability of the yield loss events and temperature anomaly (TA) to be more than the given
thresholds using the univariate probability distribution of the random variables.

Events Probability of Occurrence Remarks

Std. Ymax ≤ −0.5, Std. Ymin ≤ −0.5 0.004 Yield loss
Std. Ymax ≤ −1.0, Std. Ymin ≤ −1.0 0.0001 Moderate or high yield loss
Std. Ymax ≤ −1.5, Std. Ymin ≤ −1.5 0.25 × 10−6 High yield loss

TA> 1, TA ≤ 2 0.036 Temperature anomaly is between the range of 1 ◦F
and 2 ◦F

TA> 2 TA ≤ 3 0.042 Temperature anomaly is between the range of 2 ◦F
and 3 ◦F

TA > 3 0.61 Temperature anomaly greater than 3 ◦F

As the standardised maximum and minimum yields follow the same marginal distri-
bution (SEP3), their joint probability can be found by directly applying the product rule for
independent events as follows:

P(Std. Ymax ≤ a, Std. Ymin ≤ b) = P(Std. Ymax ≤ a) × P(Std. Ymin ≤ b) (16)

4.2. Multivariate Copula Analysis Using Vine Copula

We employed vine copulas also known as pair-copula constructions (PCC) to model
the dependence of strawberry yield and temperature anomaly. To model the dependence
using vine copula, the data from the real domain were transformed to copula data, such
that all data points lie inside [0, 1]. This was accomplished by computing the pseudo-
observations of the data matrix by weighing the original variables based on the covariance
structure of the data. The use of pseudo-observations helps to retain the essential structure
of the data while making it easier to fit statistical models and interpret the results. Working
with the pseudo-observations eliminates the marginal properties of the variables and retains
the information about their interdependence [71].

The root node of a C-vine tree is identified by identifying the node with the strongest
dependencies to all other nodes. The node with the maximum column sum in the empirical
Kendall’s tau matrix is selected as the root node. To do this, the Kendall correlation matrix
for the variables was generated and the absolute value of the correlation coefficient of
each variable was added together (Table 3). The variable with the highest sum is selected
as the root node of the C-vine tree. In our case study, the root node of the C-vine tree is
the minimum strawberry yield. The vine tree structure selected for this study is given in
Figure 3.

Table 3. Kendall correlation matrix for the variables.

Variables Std. Max
Yield

Std. Min
Yield

Temperature
Anomaly Sum

Standardised maximum yield 1 0.55 −0.29 1.84

Standardised minimum yield 0.55 1 −0.417 1.967

Temperature anomaly −0.29 −0.417 1 1.707

We used bivariate copulas to formulate the PCC for the three links. Each link represents
a bivariate copula that best describes the dependence between the corresponding variables.
The bivariate copulas selected for each of the links are also shown in Figure 3. The selection
and fitting of the copula were performed in R 4.2.2 using the “VineCopula” package.
Copulas are fitted against the data using maximum likelihood estimation, and then the
Akaike information criteria (AIC) criterion is computed for different copula families in R
package “VineCopula” [68]. The Tawn II copula (asymmetric logistic copula) [72,73] which
is an extension of the Gumbel copula describes the dependence of the marginal distributions
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of standardised minimum yield and standardised maximum yield. BB8 (Joe−Frank) copula,
which is a mixture model of the Joe and Frank copulas, describes the relation between
standardised minimum yield and temperature anomaly, and the Joe copula describes the
conditional relation with standardised maximum yield and temperature anomaly given
standardised minimum yield.
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Based on the fitted copula, the standardised maximum strawberry yield, standardised
minimum strawberry yield, and temperature anomaly were simulated and compared with
the observed data (Figure 4). It was observed that the copula could capture the pattern and
behaviour of the yield and temperature data.

The joint probability analysis of standardised minimum and maximum strawberry
yield and temperature anomaly was conducted using a vine copula. The focus of this
study was to determine the impact of temperature anomaly on strawberry yield through
conditional probability analysis. The conditional probability (CP) of standardised minimum
and maximum strawberry yield (as given in Equation (3)) given the temperature anomaly
was analyzed using the established vine copula. The results of the scenarios analyzed
are presented in Table 4, which displays the conditional probability of various yield loss
conditions for different temperature anomalies.

Table 4 demonstrates the impact of temperature anomalies on the standardised mini-
mum and maximum strawberry yields. The table shows the probability of yield loss events
(with its severity) for different temperature anomaly conditions. Our findings clearly
demonstrate that temperature anomalies have a significant impact on strawberry yield in
Santa Maria, California. By comparing the univariate and multivariate analysis results (as
shown in Tables 2 and 4), we highlight the significance of multivariate probabilistic analysis
in crop yield studies. The univariate analysis (Table 2), which focuses solely on marginal
distributions, tends to underestimate the likelihood of yield loss events. This oversight
occurs because it overlooks the intricate relationship between temperature anomalies and
crop yields.
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Table 4. Multivariate probability of yield loss events for different temperature anomaly conditions.

No Events
Conditional Probability of Occurrence
of Events Given the Following TA (◦F) Remarks

1< TA≤2 2< TA≤3 TA>3

1 Std. Ymax ≤ −0.5 & Std. Ymin ≤ −0.5|TA 0.584 0.56 0.8 Yield loss

2 Std. Ymax ≤ −1 & Std. Ymin ≤ −1|TA 0.039 0.037 0.66 Moderate or high yield loss

3 Std. Ymax ≤ −1.5 & Std. Ymin ≤ −1.5|TA 0.0006 0.0005 0.63 High yield loss

In contrast, the multivariate copula analysis, incorporating the joint dependence struc-
ture, allows for a more accurate assessment of the conditional probabilities of yield loss
events for different temperature anomalies. This approach captures the interdependen-
cies between temperature anomalies and crop yield, revealing the complex relationship
between the variables. By considering the joint dependence structure, our analysis reveals
that the conditional probability of various yield loss events is much higher for different
possible temperature anomalies. For instance, we observe that when the temperature
anomaly exceeds 3 ◦F, high yield loss events are highly probable. This highlights the critical
importance of considering the intricate relationship between temperature anomalies and
crop yields.
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This comparison between the univariate and multivariate analyses underscores the
importance of considering multivariate dependencies when studying the effects of temper-
ature anomalies on crop yield, particularly in the context of climate change. Thus, copula-
based multivariate analysis offers valuable insights by capturing the joint dependence
structure between variables, enabling a more realistic assessment of the risks associated
with temperature anomalies.

This study highlights the importance of understanding the influence of temperature
anomalies on extreme crop yields and estimating the risk of yield reduction under extreme
weather conditions to ensure food security under global warming. By applying copula
analysis, we can accurately assess conditional probabilities and gain detailed insights into
the influence of temperature anomalies on crop yields. It offers a more realistic assess-
ment of the risks associated with temperature anomalies, enabling stakeholders to devise
more effective risk management and climate change adaptation strategies. This becomes
particularly relevant in the current climate change scenario, where global warming is
projected and understanding the impact of temperature anomalies on agricultural pro-
duction becomes crucial for effective adaptation and decision making. By understanding
the complex relationship between temperature anomalies and crop yields, stakeholders
can implement targeted measures to minimize yield losses and enhance the resilience of
agricultural systems in the face of climate change.

The results of this study will be helpful in developing an integrated probabilistic crop
climate model with improved prediction performance, especially in predicting the extreme
crop yields and prices. The implications of our findings are significant for strawberry
farmers in Santa Maria, California. Understanding the dependency patterns between
temperature anomalies and crop yield can inform farmers about the risks associated with
temperature extremes and help them make informed decisions regarding crop management
practices, irrigation scheduling, and other adaptation measures. This knowledge can guide
farmers and policymakers in implementing effective climate change adaptation strategies
in strawberry production and potentially in other high-value agricultural crops.

5. Limitations of This Study

Despite the valuable insights gained from our study, it is important to acknowledge
its limitations. These limitations include the following:

Generalizability: The findings of our study are specific to the context of Santa Maria,
California, and the strawberry crop. Extrapolating these results to other regions or agri-
cultural crops should be done with caution, as different crops and regions may exhibit
unique climatic and agronomic characteristics. A significant area of future research could
be exploring the potential compounding effects of extreme heat and drought on crops,
especially in rain-fed regions, by considering other climate variables.

Biotic factors: In the current study, we considered commercial fully irrigated (pest
controlled) crops, hence the influence of biotic factors, such as diseases, on crop yield
was not explicitly considered in our analysis. Incorporating biotic variables into the
copula modelling framework is a potential avenue for future research to improve the
comprehensiveness of yield predictions especially for noncommercially grown crops.

Time scale: Another limitation of our study is the relatively short time scale of the
research data, which ranges from 2011 to 2019. A longer time scale, ideally spanning at
least 30 years, would be more suitable for studying the relationship between crop yield and
climate change. This limitation should be acknowledged as it may affect the generalizability
of our findings to longer-term climate variations. As future research, expanding the time
frame can be considered, which will enhance our understanding of the changing climate–
crop dynamics.

Despite these limitations, this study offers a valuable tool for analyzing the influence
of temperature anomalies on strawberry yield. It provides a framework for studying
the complex dependencies between climate variables and crop performance. Our results
contribute to the growing understanding of climate–crop relationships and demonstrate
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the potential for utilizing multivariate copula analysis in agricultural decision making and
climate change adaptation.

6. Conclusions

This study utilizes C-vine copula analysis to investigate the relationship between
temperature anomalies and strawberry yield in Santa Maria, California. The findings
demonstrate a significant dependence between temperature anomalies and crop yield,
highlighting the importance of considering temperature variations in crop climate models.

While our study illustrates the influence of temperature on crop yield, integrating
such analysis into broader crop models can yield more actionable insights for agricultural
production practices. Such integrated models hold practical implications, offering guidance
for decision-making processes aimed at mitigating the effects of temperature anomalies
on crop production and contributing to the broader knowledge base on climate and agri-
culture. By incorporating temperature anomalies into crop models, resource allocation
can be optimized, crop yield predictions can be improved, and farming system resilience
can be enhanced.

This research contributes to the broader understanding of the intricate relationships
between regional temperature anomalies and agricultural outcomes. By employing mul-
tivariate copula analysis, we showcase its effectiveness in quantifying the dependence
between temperature anomalies and crop yield.

Future research can expand on our findings by including additional factors such as bi-
otic factors and applying copula analysis to other high-value agricultural crops. This would
further refine the predictive capabilities of crop climate models and provide a comprehen-
sive understanding of temperature anomalies’ impact on different agricultural systems.

Author Contributions: Conceptualization, P.U. and K.P.; methodology, P.U.; software, P.U.; vali-
dation, P.U., K.P. and F.K.; formal analysis, P.U.; investigation, P.U.; resources, P.U.; data curation,
P.U.; writing—original draft preparation, P.U.; writing—review and editing, P.U., K.P. and F.K.;
visualization, P.U.; supervision, K.P. and F.K.; project administration, P.U.; funding acquisition, K.P.
and F.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially funded by NSERC and Loblaws NSERC-CRD.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kumari, A.; Lakshmi, G.A.; Krishna, G.K.; Patni, B.; Prakash, S.; Bhattacharyya, M.; Singh, S.K.; Verma, K.K. Climate Change and

Its Impact on Crops: A Comprehensive Investigation for Sustainable Agriculture. Agronomy 2022, 12, 3008. [CrossRef]
2. Elias, E.H.; Flynn, R.; Idowu, O.J.; Reyes, J.; Sanogo, S.; Schutte, B.J.; Smith, R.; Steele, C.; Sutherland, C. Crop Vulnerability to

Weather and Climate Risk: Analysis of Interacting Systems and Adaptation Efficacy for Sustainable Crop Production. Sustainability
2019, 11, 6619. [CrossRef]

3. Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability
2021, 13, 1318. [CrossRef]

4. Talib, M.N.A.; Ahmed, M.; Naseer, M.M.; Slusarczyk, B.; Popp, J. The Long-Run Impacts of Temperature and Rainfall on
Agricultural Growth in Sub-Saharan Africa. Sustainability 2021, 13, 595. [CrossRef]

5. Eck, M.A.; Murray, A.R.; Ward, A.R.; Konrad, C.E. Influence of Growing Season Temperature and Precipitation Anomalies on
Crop Yield in the Southeastern United States. Agric. For. Meteorol. 2020, 291, 108053. [CrossRef]

6. John, R.P.; Megan, G. Temperatures and the Growth and Development of Wheat: A Review. Eur. J. Agron. 1999, 10, 23–36.
7. Ottman, M.J.; Kimball, B.A.; White, J.W.; Wall, G.W. Wheat Growth Response to Increased Temperature from Varied Planting

Dates and Supplemental Infrared Heating. Agron. J. 2012, 104, 7–16. [CrossRef]
8. Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature Increase

Reduces Global Yields of Major Crops in Four Independent Estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [CrossRef]
9. Asseng, S.; Ewert, F.; Martre, P.; Rötter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.;

et al. Rising Temperatures Reduce Global Wheat Production. Nat. Clim. Chang. 2015, 5, 143–147. [CrossRef]

https://doi.org/10.3390/agronomy12123008
https://doi.org/10.3390/su11236619
https://doi.org/10.3390/su13031318
https://doi.org/10.3390/su13020595
https://doi.org/10.1016/j.agrformet.2020.108053
https://doi.org/10.2134/agronj2011.0212
https://doi.org/10.1073/pnas.1701762114
https://doi.org/10.1038/nclimate2470


Sustainability 2024, 16, 3523 14 of 16

10. Challinor, A.J.; Wheeler, T.R.; Craufurd, P.Q.; Slingo, J.M. Simulation of the Impact of High Temperature Stress on Annual Crop
Yields. Agric. For. Meteorol. 2005, 135, 180–189. [CrossRef]

11. Ferris, R.; Ellis, R.H.; Wheeler, T.R.; Hadley, P. Effect of High Temperature Stress at Anthesis on Grain Yield and Biomass of
Field-Grown Crops of Wheat. Ann. Bot. 1998, 82, 631–639. [CrossRef]

12. Matsui, T.; Omasa, K.; Horie, T. The Difference in Sterility Due to High Temperatures during the Flowering Period among
Japonica-Rice Varieties. Plant Prod. Sci. 2001, 4, 90–93. [CrossRef]

13. Vara Prasad, P.V.; Craufurd, P.Q.; Summerfield, R.J.; Wheeler, T.R. Effects of Short Episodes of Heat Stress on Flower Production
and Fruit-set of Groundnut (Arachis hypogaea L.). J. Exp. Bot. 2000, 51, 777–784. [CrossRef] [PubMed]

14. Wang, X.; Peng, L.; Zhang, X.; Yin, G.; Zhao, C.; Piao, S. Divergence of Climate Impacts on Maize Yield in Northeast China. Agric.
Ecosyst. Environ. 2014, 196, 51–58. [CrossRef]

15. Karimzadeh Soureshjani, H.; Ghorbani Dehkordi, A.; Bahador, M. Temperature Effect on Yield of Winter and Spring Irrigated
Crops. Agric. For. Meteorol. 2019, 279, 107664. [CrossRef]

16. Grace, J. Temperature as a Determinant of Plant Productivity. Symp. Soc. Exp. Biol. 1988, 42, 91–107. [PubMed]
17. Goulart, H.M.D.; van der Wiel, K.; Folberth, C.; Balkovic, J.; van den Hurk, B. Storylines of Weather-Induced Crop Failure Events

under Climate Change. Earth Syst. Dyn. 2021, 12, 1503–1527. [CrossRef]
18. Zhang, Y.; Hong, S.; Liu, D.; Piao, S. Susceptibility of Vegetation Low-Growth to Climate Extremes on Tibetan Plateau. Agric For

Meteorol. 2023, 331, 109323. [CrossRef]
19. Feng, S.; Hao, Z.; Zhang, X.; Hao, F. Changes in Climate-Crop Yield Relationships Affect Risks of Crop Yield Reduction. Agric.

For. Meteorol. 2021, 304–305, 108401. [CrossRef]
20. Powell, J.P.; Reinhard, S. Measuring the Effects of Extreme Weather Events on Yields. Weather Clim. Extrem. 2015, 12, 69–79.

[CrossRef]
21. Shayanmehr, S.; Rastegari Henneberry, S.; Sabouhi Sabouni, M.; Shahnoushi Foroushani, N. Climate Change and Sustainability of

Crop Yield in Dry Regions Food Insecurity. Sustainability 2020, 12, 9890. [CrossRef]
22. Schmitt, J.; Offermann, F.; Söder, M.; Frühauf, C.; Finger, R. Extreme Weather Events Cause Significant Crop Yield Losses at the

Farm Level in German Agriculture. Food Policy 2022, 112, 102359. [CrossRef]
23. Zipper, S.C.; Qiu, J.; Kucharik, C.J. Drought Effects on US Maize and Soybean Production: Spatiotemporal Patterns and Historical

Changes. Environ. Res. Lett. 2016, 11, 094021. [CrossRef]
24. Toreti, A.; Cronie, O.; Zampieri, M. Concurrent Climate Extremes in the Key Wheat Producing Regions of the World. Sci Rep 2019,

9, 5493. [CrossRef]
25. Lobell, D.B.; Cahill, K.N.; Field, C.B. Weather-Based Yield Forecasts Developed for 12 California Crops. Calif. Agric. 2006,

60, 211–215. [CrossRef]
26. Nassar, L.; Okwuchi, I.E.; Saad, M.; Karray, F.; Ponnambalam, K.; Agrawal, P. Prediction of Strawberry Yield and Farm Price

Utilizing Deep Learning. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK,
19–24 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–7.

27. Newlands, N.K.; Zamar, D.S.; Kouadio, L.A.; Zhang, Y.; Chipanshi, A.; Potgieter, A.; Toure, S.; Hill, H.S.J. An Integrated,
Probabilistic Model for Improved Seasonal Forecasting of Agricultural Crop Yield under Environmental Uncertainty. Front.
Environ. Sci. 2014, 2, 17. [CrossRef]

28. California Department of Food and Agriculture (CDFA)—Statistics. Available online: https://www.cdfa.ca.gov/statistics/
(accessed on 9 October 2022).

29. Li, H.; Li, T.; Gordon, R.J.; Asiedu, S.K.; Hu, K. Strawberry Plant Fruiting Efficiency and Its Correlation with Solar Irradiance,
Temperature and Reflectance Water Index Variation. Environ. Exp. Bot. 2010, 68, 165–174. [CrossRef]

30. Palencia, P.; Martínez, F.; Medina, J.J.; López-Medina, J. Strawberry Yield Efficiency and Its Correlation with Temperature and
Solar Radiation. Hortic. Bras. 2013, 31, 93–99. [CrossRef]

31. Waister, P.D. Wind as a Limitation on the Growth and Yield of Strawberries. J. Hortic. Sci. 1972, 47, 411–418. [CrossRef]
32. Casierra-Posada, F.; Peña-Olmos, J.E.; Ulrichs, C. Basic Growth Analysis in Strawberry Plants (Fragaria sp.) Exposed to Different

Radiation Environments. Agron. Colomb. 2012, 30, 25–33.
33. Ganmore-Neumann, R.; Kafkafi, U. The Effect of Root Temperature and Nitrate/Ammonium Ratio on Straw-berry Plants. II.

Nitrogen Uptake, Mineral Ions, and Carboxylate Concentrations. Agron J. 1985, 77, 835–840. [CrossRef]
34. Heide, O.M. Photoperiod and Temperature Interactions in Growth and Flowering of Strawberry. Physiol. Plant. 1977, 40, 21–26.

[CrossRef]
35. Webber, H.; Ewert, F.; Olesen, J.E.; Müller, C.; Fronzek, S.; Ruane, A.C.; Bourgault, M.; Martre, P.; Ababaei, B.; Bindi, M.; et al.

Diverging Importance of Drought Stress for Maize and Winter Wheat in Europe. Nat. Commun. 2018, 9, 4249. [CrossRef]
[PubMed]

36. Asseng, S.; Foster, I.; Turner, N.C. The Impact of Temperature Variability on Wheat Yields. Glob. Chang. Biol. 2011, 17, 997–1012.
[CrossRef]

37. Zabel, F.; Müller, C.; Elliott, J.; Minoli, S.; Jägermeyr, J.; Schneider, J.M.; Franke, J.A.; Moyer, E.; Dury, M.; Francois, L.; et al.
Large Potential for Crop Production Adaptation Depends on Available Future Varieties. Glob. Chang. Biol. 2021, 27, 3870–3882.
[CrossRef] [PubMed]

https://doi.org/10.1016/j.agrformet.2005.11.015
https://doi.org/10.1006/anbo.1998.0740
https://doi.org/10.1626/pps.4.90
https://doi.org/10.1093/jexbot/51.345.777
https://www.ncbi.nlm.nih.gov/pubmed/10938870
https://doi.org/10.1016/j.agee.2014.06.009
https://doi.org/10.1016/j.agrformet.2019.107664
https://www.ncbi.nlm.nih.gov/pubmed/3270210
https://doi.org/10.5194/esd-12-1503-2021
https://doi.org/10.1016/j.agrformet.2023.109323
https://doi.org/10.1016/j.agrformet.2021.108401
https://doi.org/10.1016/j.wace.2016.02.003
https://doi.org/10.3390/su12239890
https://doi.org/10.1016/j.foodpol.2022.102359
https://doi.org/10.1088/1748-9326/11/9/094021
https://doi.org/10.1038/s41598-019-41932-5
https://doi.org/10.3733/ca.v060n04p211
https://doi.org/10.3389/fenvs.2014.00017
https://www.cdfa.ca.gov/statistics/
https://doi.org/10.1016/j.envexpbot.2009.12.001
https://doi.org/10.1590/S0102-05362013000100015
https://doi.org/10.1080/00221589.1972.11514484
https://doi.org/10.2134/agronj1985.00021962007700060003x
https://doi.org/10.1111/j.1399-3054.1977.tb01486.x
https://doi.org/10.1038/s41467-018-06525-2
https://www.ncbi.nlm.nih.gov/pubmed/30315168
https://doi.org/10.1111/j.1365-2486.2010.02262.x
https://doi.org/10.1111/gcb.15649
https://www.ncbi.nlm.nih.gov/pubmed/33998112


Sustainability 2024, 16, 3523 15 of 16

38. Wang, Z.; Zhang, T.Q.; Tan, C.S.; Xue, L.; Bukovsky, M.; Qi, Z.M. Modeling Impacts of Climate Change on Crop Yield and
Phosphorus Loss in a Subsurface Drained Field of Lake Erie Region, Canada. Agric. Syst. 2021, 190, 103110. [CrossRef]

39. Eyshi Rezaei, E.; Webber, H.; Gaiser, T.; Naab, J.; Ewert, F. Heat Stress in Cereals: Mechanisms and Modelling. Eur. J. Agron. 2015,
64, 98–113. [CrossRef]

40. United States Department of Agriculture. National Agricultural Statistics Service. Available online: https://www.nass.usda.gov/
(accessed on 9 April 2024).

41. Hanson, B.; Bendixen, W. Drip Irrigation Evaluated in Santa Maria Valley Strawberries. Calif. Agric. 2004, 58, 48–53. [CrossRef]
42. The California Strawberry Commission. Available online: https://www.calstrawberry.com/en-us/ (accessed on 9 January 2022).
43. The California Irrigation Management Information System. Available online: http://www.cimis.water.ca.gov/ (accessed on 10

January 2022).
44. Santa Maria Climate. Available online: https://en.climate-data.org/north-america/united-states-of-america/california/santa-

maria-1488/ (accessed on 7 June 2022).
45. Sklar, A. Fonctions de Repartition à n Dimensionls et Leurs Marges; Publications de l’Institut Statistique de l’Université de Paris:

Paris, France, 1959; pp. 229–231.
46. Ponnambalam, K.; Seifi, A.; Vlach, J. Yield Optimization with Correlated Design Parameters and Non-Symmetrical Marginal

Distributions. In Proceedings of the 2003 International Symposium on Circuits and Systems, ISCAS ’03, Bangkok, Thailand, 25–28
May 2003; IEEE: Piscataway, NJ, USA, 2020; Volume 4, pp. IV-736–IV-739.

47. Hofert, M.; Kojadinovic, I.; Machler, M.; Yan, J. Elements of Copula Modeling with R; Springer: Berlin/Heidelberg, Germany, 2018;
ISBN 9783319896342.

48. Nelson, R.B. An Introduction to Copulas, 2nd ed.; Bickel, P., Diggle, P., Fienberg, S., Gather, U., Olkin, I., Zeger, S., Eds.; Springer:
Berlin/Heidelberg, Germany, 2006; ISBN 13:978-0387-28659-4.

49. Zhang, L.; Singh, V.P. Copulas and Their Applications in Water Resources Engineering; Cambridge University Press: Cambridge, UK,
2019; ISBN 9781108565103.

50. Latif, S.; Mustafa, F. Bivariate Flood Distribution Analysis under Parametric Copula Framework: A Case Study for Kelantan
River Basin in Malaysia. Acta Geophys. 2020, 68, 821–859. [CrossRef]

51. Roch, O.; Alegre, A. Testing the Bivariate Distribution of Daily Equity Returns Using Copulas. An Application to the Spanish
Stock Market. Comput. Stat. Data Anal. 2006, 51, 1312–1329. [CrossRef]

52. Vaz de Melo Mendes, B.; Mendes Semeraro, M.; Câmara Leal, R.P. Pair-Copulas Modeling in Finance. Financ. Mark. Portf. Manag.
2010, 24, 193–213. [CrossRef]

53. Righi, M.B.; Ceretta, P.S. Analyzing the Dependence Structure of Various Sectors in the Brazilian Market: A Pair Copula
Construction Approach. Econ. Model 2013, 35, 199–206. [CrossRef]

54. Hu, L. Dependence Patterns Across Financial Markets: A Mixed Copula Approach. Appl. Financ. Econ. 2006, 16, 717–729.
[CrossRef]

55. Okhrin, O.; Ristig, A.; Xu, Y.-F. Copulae in High Dimensions: An Introduction. In Applied Quantitative Finance; Härdle, W., Chen,
C.H., Overbeck, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 9783662544860.

56. Zhang, M.; Bedford, T. Vine Copula Approximation: A Generic Method for Coping with Conditional Dependence. Stat. Comput.
2018, 28, 219–237. [CrossRef]

57. Joe, H. Multivariate Models and Multivariate Dependence Concepts; Chapman and Hall/CRC: Boca Raton, FL, USA, 1997;
ISBN 9780367803896.

58. Nazir, H.M.; Hussain, I.; Faisal, M.; Mohamd Shoukry, A.; Abdel Wahab Sharkawy, M.; Fawzi Al-Deek, F.; Ismail, M. Dependence
Structure Analysis of Multisite River Inflow Data Using Vine Copula-CEEMDAN Based Hybrid Model. PeerJ 2020, 8, e10285.
[CrossRef] [PubMed]

59. Spanhel, F.; Kurz, M.S. Simplified Vine Copula Models: Approximations Based on the Simplifying Assumption. Electron. J. Stat.
2019, 13, 1254–1291. [CrossRef]

60. Latif, S.; Mustafa, F. Parametric Vine Copula Construction for Flood Analysis for Kelantan River Basin in Malaysia. Civ. Eng. J.
2020, 6, 1470–1491. [CrossRef]

61. El Hannoun, W.; el Adlouni, S.-E.; Zoglat, A. Vine-Copula-Based Quantile Regression for Cascade Reservoirs Management. Water
2021, 13, 964. [CrossRef]

62. Xu, P.; Wang, D.; Wang, Y.; Singh, V.P. A Stepwise and Dynamic C-Vine Copula–Based Approach for Nonstationary Monthly
Streamflow Forecasts. J. Hydrol. Eng. 2022, 27, 04021043. [CrossRef]

63. Chen, L.; Singh, V.P.; Shenglian, G.; Hao, Z.; Li, T. Flood Coincidence Risk Analysis Using Multivariate Copula Functions. J.
Hydrol. Eng. 2012, 17, 742–755. [CrossRef]

64. Bedford, T.; Cooke, R.M. Vines: A New Graphical Model for Dependent Random Variables. Ann. Stat. 2002, 30, 1031–1068.
[CrossRef]

65. Gräler, B.; van den Berg, M.J.; Vandenberghe, S.; Petroselli, A.; Grimaldi, S.; de Baets, B.; Verhoest, N.E.C. Multivariate Return
Periods in Hydrology: A Critical and Practical Review Focusing on Synthetic Design Hydrograph Estimation. Hydrol. Earth Syst.
Sci. 2013, 17, 1281–1296. [CrossRef]

66. Aas, K.; Czado, C.; Frigessi, A.; Bakken, H. Pair-Copula Constructions of Multiple Dependence. Insur. Math. Econ. 2009,
44, 182–198. [CrossRef]

https://doi.org/10.1016/j.agsy.2021.103110
https://doi.org/10.1016/j.eja.2014.10.003
https://www.nass.usda.gov/
https://doi.org/10.3733/ca.v058n01p48
https://www.calstrawberry.com/en-us/
http://www.cimis.water.ca.gov/
https://en.climate-data.org/north-america/united-states-of-america/california/santa-maria-1488/
https://en.climate-data.org/north-america/united-states-of-america/california/santa-maria-1488/
https://doi.org/10.1007/s11600-020-00435-y
https://doi.org/10.1016/j.csda.2005.11.007
https://doi.org/10.1007/s11408-010-0130-1
https://doi.org/10.1016/j.econmod.2013.06.012
https://doi.org/10.1080/09603100500426515
https://doi.org/10.1007/s11222-017-9727-9
https://doi.org/10.7717/peerj.10285
https://www.ncbi.nlm.nih.gov/pubmed/33194437
https://doi.org/10.1214/19-EJS1547
https://doi.org/10.28991/cej-2020-03091561
https://doi.org/10.3390/w13070964
https://doi.org/10.1061/(ASCE)HE.1943-5584.0002145
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000504
https://doi.org/10.1214/aos/1031689016
https://doi.org/10.5194/hess-17-1281-2013
https://doi.org/10.1016/j.insmatheco.2007.02.001


Sustainability 2024, 16, 3523 16 of 16

67. Dißmann, J.; Brechmann, E.C.; Czado, C.; Kurowicka, D. Selecting and Estimating Regular Vine Copulae and Application to
Financial Returns. Comput. Stat. Data Anal. 2013, 59, 52–69. [CrossRef]

68. Nagler, T.; Schepsmeier, U.; Stoeber, J.; Brechmann, E.C.; Graeler, B.; Erhardt, T. VineCopula: Statistical Inference of Vine Copulas.
Available online: https://github.com/tnagler/VineCopula (accessed on 11 January 2022).

69. Rigby, R.; Stasinopoulos, M.; Heller, G.; De Bastiani, F. Distributions for Modelling Location, Scale and Shape: Using GAMLSS in R;
CRC Press: Boca Raton, FL, USA, 2019.

70. Stasinopoulos, D.M.; Rigby, R.A. Generalized Additive Models for Location Scale and Shape (GAMLSS) in R. J. Stat. Softw. 2007,
23, 1–46. [CrossRef]

71. Jane, R.; Dalla Valle, L.; Simmonds, D.; Raby, A. A Copula-Based Approach for the Estimation of Wave Height Records Through
Spatial Correlation. Coast. Eng. 2016, 117, 1–18. [CrossRef]

72. Eschenburg, P. Properties of Extreme-Value Copulas; Universitat Munchen: München, Germany, 2013.
73. Tawn, J.A. Bivariate Extreme Value Theory: Models and Estimation. Biometrika 1988, 75, 397–415. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.csda.2012.08.010
https://github.com/tnagler/VineCopula
https://doi.org/10.18637/jss.v023.i07
https://doi.org/10.1016/j.coastaleng.2016.06.008
https://doi.org/10.1093/biomet/75.3.397

	Introduction 
	Materials and Methods 
	Data 
	Copula Analysis 
	Construction of a 3-Dimensional Vine Copula 
	Calculation of Joint Probability of Occurrence of Events Using Copula 
	Univariate Probability 
	Joint Probability for Tri-Variate Events 
	Conditional Probability of Tri-Variate Events 


	Preliminary Data Analysis 
	Results and Discussion 
	Univariate Analysis 
	Multivariate Copula Analysis Using Vine Copula 

	Limitations of This Study 
	Conclusions 
	References

