A Comprehensive Assessment of the Carbon Footprint of the Coal-to-Methanol Process Coupled with Carbon Capture-, Utilization-, and Storage-Enhanced Oil Recovery Technology
Abstract
:1. Introduction
- (1)
- We considered CCUS-EOR technology as an example to systematically construct a model to calculate the carbon footprint of CTM co-production coupled with the CCUS-EOR process. The model aimed to provide a comprehensive and accurate reference for calculating the carbon footprint of these processes.
- (2)
- We introduced a coefficient of methanol allocation to address the issue of multi-functionality caused by the by-products of the processes of coal-to-chemical conversion and CCUS-EOR, and this enabled the rational distribution of the contributions of different products in the multi-product system to the carbon footprint.
- (3)
- We used case studies to systematically calculate the carbon footprint of the CTM process in different scenarios. We also examined the internal composition of the carbon footprint of CTM co-production coupled with CCUS-EOR technology, where this provided an accurate and complete reference for reducing the carbon footprint of the CTM process.
2. Preliminary Details of Lifecycle Assessment and Carbon Footprint
2.1. Lifecycle Assessment
2.2. Calculation of the Carbon Footprint
2.3. Allocation
3. Methodology
3.1. Overall Framework
3.2. Construction of the Model to Calculate the Carbon Footprint
3.2.1. CTM Co-Production
3.2.2. CCUS-EOR
- CO2 capture
- CO2 transportation
- CO2 utilization and leakage
4. Case Study
4.1. Introduction to the Case
4.2. Data
4.3. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jeffry, L.; Ong, M.Y.; Nomanbhay, S.; Mofijur, M.; Mubashir, M.; Show, P.L. Greenhouse gases utilization: A review. Fuel 2021, 301, 121017. [Google Scholar] [CrossRef]
- Jia, Z.; Lin, B. How to achieve the first step of the carbon-neutrality 2060 target in China: The coal substitution perspective. Energy 2021, 233, 121179. [Google Scholar] [CrossRef]
- Li, R.; Broadstock, D.C. Coal Pricing in China: Is It a Bit Too Crude? Energies 2021, 14, 3752. [Google Scholar] [CrossRef]
- Su, L.-W.; Li, X.-R.; Sun, Z.-Y. The consumption, production and transportation of methanol in China: A review. Energy Policy 2013, 63, 130–138. [Google Scholar] [CrossRef]
- Li, C.; Bai, H.; Lu, Y.; Bian, J.; Dong, Y.; Xu, H. Life-cycle assessment for coal-based methanol production in China. J. Clean. Prod. 2018, 188, 1004–1017. [Google Scholar] [CrossRef]
- Sui, P.; Ren, B.; Wang, J.; Wang, G.; Zuo, H.; Xue, Q. Current situation and development prospects of metallurgical by-product gas utilization in China’s steel industry. Int. J. Hydrogen Energy 2023, 48, 28945–28969. [Google Scholar] [CrossRef]
- Śliwińska, A.; Burchart-Korol, D.; Smoliński, A. Environmental life cycle assessment of methanol and electricity co-production system based on coal gasification technology. Sci. Total Environ. 2017, 574, 1571–1579. [Google Scholar] [CrossRef]
- Shen, Q.; Song, X.; Mao, F.; Sun, N.; Wen, X.; Wei, W. Carbon reduction potential and cost evaluation of different mitigation approaches in China’s coal to olefin Industry. J. Environ. Sci. 2020, 90, 352–363. [Google Scholar] [CrossRef]
- Gibbins, J.; Chalmers, H. Carbon capture and storage. Energy Policy 2008, 36, 4317–4322. [Google Scholar] [CrossRef]
- Jiang, K.; Ashworth, P. The development of Carbon Capture Utilization and Storage (CCUS) research in China: A bibliometric perspective. Renew. Sustain. Energy Rev. 2021, 138, 110521. [Google Scholar] [CrossRef]
- Tapia, J.F.D.; Lee, J.-Y.; Ooi, R.E.H.; Foo, D.C.Y.; Tan, R.R. A review of optimization and decision-making models for the planning of CO2 capture, utilization and storage (CCUS) systems. Sustain. Prod. Consum. 2018, 13, 1–15. [Google Scholar] [CrossRef]
- Soltanmohammadi, R.; Iraji, S.; Rodrigues de Almeida, T.; Basso, M.; Ruidiaz Munoz, E.; Campane Vidal, A. Investigation of pore geometry influence on fluid flow in heterogeneous porous media: A pore-scale study. Energy Geosci. 2024, 5, 100222. [Google Scholar] [CrossRef]
- Iraji, S.; Soltanmohammadi, R.; Munoz, E.R.; Basso, M.; Vidal, A.C. Core scale investigation of fluid flow in the heterogeneous porous media based on X-ray computed tomography images: Upscaling and history matching approaches. Geoenergy Sci. Eng. 2023, 225, 211716. [Google Scholar] [CrossRef]
- Iraji, S.; De Almeida, T.R.; Munoz, E.R.; Basso, M.; Vidal, A.C. The impact of heterogeneity and pore network characteristics on single and multi-phase fluid propagation in complex porous media: An X-ray computed tomography study. Pet. Sci. 2024, in press. [Google Scholar] [CrossRef]
- Liu, J.; Zhuang, Y.; Wang, C.; Du, J. Life cycle carbon footprint assessment of coal-to-SNG/methanol polygeneration process. Sci. Total Environ. 2024, 908, 168409. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Yang, S.; Kokossis, A. Modeling and Analysis of Coal-Based Lurgi Gasification for LNG and Methanol Coproduction Process. Processes 2019, 7, 688. [Google Scholar] [CrossRef]
- Li, G.; Zhang, K.; Yang, B.; Liu, F.; Weng, Y.; Liu, Z.; Fang, Y. Life cycle analysis of a coal to hydrogen process based on ash agglomerating fluidized bed gasification. Energy 2019, 174, 638–646. [Google Scholar] [CrossRef]
- Qin, Z.; Zhai, G.; Wu, X.; Yu, Y.; Zhang, Z. Carbon footprint evaluation of coal-to-methanol chain with the hierarchical attribution management and life cycle assessment. Energy Convers. Manag. 2016, 124, 168–179. [Google Scholar] [CrossRef]
- Li, J.; Wei, Y.-M.; Liu, L.; Li, X.; Yan, R. The carbon footprint and cost of coal-based hydrogen production with and without carbon capture and storage technology in China. J. Clean. Prod. 2022, 362, 132514. [Google Scholar] [CrossRef]
- Burmistrz, P.; Chmielniak, T.; Czepirski, L.; Gazda-Grzywacz, M. Carbon footprint of the hydrogen production process utilizing subbituminous coal and lignite gasification. J. Clean. Prod. 2016, 139, 858–865. [Google Scholar] [CrossRef]
- Xie, J.; Li, K.; Fan, J.; Peng, X.; Li, J.; Xian, Y. Lifecycle carbon footprint and cost assessment for coal-to-liquid coupled with carbon capture, storage, and utilization technology in China. Front. Energy 2023, 17, 412–427. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html (accessed on 18 April 2006).
- Moretti, C.; Corona, B.; Edwards, R.; Junginger, M.; Moro, A.; Rocco, M.; Shen, L. Reviewing ISO Compliant Multifunctionality Practices in Environmental Life Cycle Modeling. Energies 2020, 13, 3579. [Google Scholar] [CrossRef]
- ISO 14044-2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006.
- Müller, L.J.; Kätelhön, A.; Bringezu, S.; McCoy, S.; Suh, S.; Edwards, R.; Sick, V.; Kaiser, S.; Cuéllar-Franca, R.; El Khamlichi, A.; et al. The carbon footprint of the carbon feedstock CO2. Energy Environ. Sci. 2020, 13, 2979–2992. [Google Scholar] [CrossRef]
- Davoodi, S.; Al-Shargabi, M.; Wood, D.A.; Rukavishnikov, V.S.; Minaev, K.M. Review of technological progress in carbon dioxide capture, storage, and utilization. Gas Sci. Eng. 2023, 117, 205070. [Google Scholar] [CrossRef]
- Dou, L.; Sun, L.; Lyu, W.; Wang, M.; Gao, F.; Gao, M.; Jiang, H. Trend of global carbon dioxide capture, utilization and storage industry and challenges and countermeasures in China. Pet. Explor. Dev. 2023, 50, 1246–1260. [Google Scholar] [CrossRef]
- Liu, Z.; Guan, D.; Wei, W.; Davis, S.J.; Ciais, P.; Bai, J.; Peng, S.; Zhang, Q.; Hubacek, K.; Marland, G.; et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 2015, 524, 335–338. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Ecology and Environment of the People’s Republic of China. Available online: https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202212/t20221221_1008430.html (accessed on 21 December 2022).
- National Bureau of Statistics of China. China Energy Statistical Yearbook 2020, 1st ed.; China Statistics Press: Beijing, China, 2021.
- National Development and Reform Commission. Guidelines for the preparation of provincial GHG Inventories (Trial). Available online: https://www.ndrc.gov.cn/xxgk/jianyitianfuwen/qgzxwytafwgk/202107/t20210708_1288699.html (accessed on 8 July 2021).
- Dahowski, R.T.; Davidson, C.L.; Li, X.C.; Wei, N. Examining CCS Deployment Potential in China Via Application of an Integrated CCS Cost Curve. Energy Procedia 2013, 37, 2487–2494. [Google Scholar] [CrossRef]
- Zhu, B.; Zhou, W.; Hu, S.; Li, Q.; Griffy-Brown, C.; Jin, Y. CO2 emissions and reduction potential in China’s chemical industry. Energy 2010, 35, 4663–4670. [Google Scholar] [CrossRef]
- Yuan, S.; Ma, D.; Li, J.; Zhou, T.; Ji, Z.; Han, H. Progress and prospects of carbon dioxide capture, EOR-utilization and storage industrialization. Pet. Explor. Dev. 2022, 49, 955–962. [Google Scholar] [CrossRef]
Methods | Functional Unit | System Boundary | |
---|---|---|---|
Avoiding actual allocation | Subdivision | Remaining | Remaining |
System expansion | Extra by-product | Remaining | |
Actual allocation | Substitution | Remaining | Extra process |
Allocation | Remaining | Remaining |
Scenarios | Allocation Coefficient | Items | Values | Units | |
---|---|---|---|---|---|
Scenario 1 | 59.91% | Inputs | Coal | 2.93 | t/t |
Steam | 3.20 | GJ/t | |||
Electricity | 0.61 | MWh/t | |||
Outputs | Methanol | 1 | t/t | ||
LNG | 0.33 | t/t | |||
Scenario 2 | 33.10% | Inputs | Coal | 2.93 | t/t |
Steam | 3.20 | GJ/t | |||
Electricity | 1.37 | MWh/t | |||
Diesel | 3.16 | kg/t | |||
Outputs | Methanol | 1 | t/t | ||
LNG | 0.33 | t/t | |||
Oil | 0.60 | t/t |
Units | Items | Symbols | Values | Units | Resources |
---|---|---|---|---|---|
Capture | Capture rate | 70% | / | Field research | |
Electricity consumption | 0.29 | MWh/t | Field research | ||
Transportation | Diesel net calorific value | 42.652 | GJ/t | [30] | |
Diesel carbon content | 0.0202 | tC/GJ | [31] | ||
Diesel carbon oxidation rate | 98% | / | [31] | ||
Diesel consumption | 0.0029 | t/km·t | Field research | ||
Distance | d | 107 | km | [32] | |
EOR | Displacement ratio | / | 3:1 | / | Field research |
Storage rate | 70% | / | Field research | ||
Electricity consumption | 10 | kWh/t | Field research |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zhou, B.; Jin, W.; Deng, H. A Comprehensive Assessment of the Carbon Footprint of the Coal-to-Methanol Process Coupled with Carbon Capture-, Utilization-, and Storage-Enhanced Oil Recovery Technology. Sustainability 2024, 16, 3573. https://doi.org/10.3390/su16093573
Li X, Zhou B, Jin W, Deng H. A Comprehensive Assessment of the Carbon Footprint of the Coal-to-Methanol Process Coupled with Carbon Capture-, Utilization-, and Storage-Enhanced Oil Recovery Technology. Sustainability. 2024; 16(9):3573. https://doi.org/10.3390/su16093573
Chicago/Turabian StyleLi, Xinyue, Bin Zhou, Weiling Jin, and Huangwei Deng. 2024. "A Comprehensive Assessment of the Carbon Footprint of the Coal-to-Methanol Process Coupled with Carbon Capture-, Utilization-, and Storage-Enhanced Oil Recovery Technology" Sustainability 16, no. 9: 3573. https://doi.org/10.3390/su16093573
APA StyleLi, X., Zhou, B., Jin, W., & Deng, H. (2024). A Comprehensive Assessment of the Carbon Footprint of the Coal-to-Methanol Process Coupled with Carbon Capture-, Utilization-, and Storage-Enhanced Oil Recovery Technology. Sustainability, 16(9), 3573. https://doi.org/10.3390/su16093573