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Abstract: Sustainable and renewable energy sources are of great importance in today’s world. In this
respect, renewable energy sources are used in many fields of technology. In order to minimize dust
on PV panels and ensure their sustainability, power losses due to dust must be estimated accurately.
In this way, the efficiency of a sustainable energy source will increase and serious economic savings
can be achieved. In this study, a hybrid deep learning model was designed to predict losses caused
by dust in PV panels installed in the Manisa Saruhanlı district. The hybrid deep learning model
consists of Long Short-Term Memory (LSTM) and K-Nearest-Neighbors (KNN) algorithms. The
performance of the proposed hybrid deep learning model was compared with LSTM and KNN
algorithms. Sensitivity analysis was performed to statistically evaluate the prediction results. The
input variables of the models were time, sunshine duration, humidity, ambient temperature and solar
radiation. The output variable was the losses caused by dust in the PV panels. Hybrid LSTM-KNN,
LSTM and KNN models predicted losses caused by dust in PV panels with 98.22%, 95.51% and 61.49%
accuracy. The hybrid LSTM-KNN model predicted losses caused by dust in PV panels with higher
accuracy than other models. Using LSTM and KNN algorithms together improved the performance
of the hybrid deep learning model. With sensitivity analysis, it was found that solar radiation is the
most important variable affecting the losses caused by dust in PV panels.

Keywords: PV panels; dust losses; hybrid deep learning; Long Short-Term Memory; K-Nearest-
Neighbors; sustainable energy

1. Introduction

With technological and economic advancements, humankind’s need for energy has
increased. Due to many negative reasons, such as air pollution, the depletion of fossil fuels,
global warming, climate change and acid rain, renewable energy is preferred instead of
traditional energy. Solar energy is a promising type of energy in the field of renewable
energy [1]. Solar energy converts the energy coming from the sun directly into electrical
energy. Solar energy is widely used in many areas such as cooking, vehicle charging, and
home heating [2]. Photovoltaic (PV) panels are widely used all over the world due to
their advantages such as low operating costs, zero emissions, minimum maintenance and
high power density. The efficiency of PV modules depends on climatic parameters such
as accumulated dust, relative humidity, temperature, wind speed and solar radiation [3].
Uneven dust accumulation on PV panels leads to losses in transmission. In addition, it
shortens the lifetime of PV panels and the lifetime of the equipment [4]. Dust particles
accumulated on the surface of the PV modules cause scattering and reflection of the
incoming solar radiation and thus impair the solar energy production efficiency [5]. The
shape and size of the dust particles affecting the light transmittance of PV panels are
important. Particles with a diameter of 0.05 mm are considered small particles, particles
with a diameter between 0.05 and 2 mm are considered medium particles and particles
with a diameter between 2 and 57 mm are considered large particles. Small particles
accumulated on the PV cause loss of radiation. Small particles have a greater impact on
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performance compared to large particles. Dust particles in agricultural areas consist of
soil, organic pollen and bird droppings. In urban areas, dust particles come from exhaust
gases. In coastal areas, on the other hand, it is the result of the accumulation of salt [6]. Air
pollution causes a 6.4% reduction in the efficiency of PV panels. On the other hand, dust
causes a 40% reduction in the efficiency of PV panels [7]. Examining the effects of dust
losses on photovoltaic modules is important in calculating the efficiency of PV panels. In
addition, an accurate estimation of dust losses of PV panels is important for maintenance
and repair [8].

Kouz et al. [9] used artificial neural network (ANN) and extreme learning machine
(ELM) algorithms to estimate energy losses due to dust and ambient temperatures. The pre-
diction accuracies of the ELM model and ANN model are 91.42% and 90.69%, respectively.
Hammad et al. [10] used Multivariate Linear Regression (MLR) and ANN models to calcu-
late the energy losses and economic losses of PV panels due to dust. The MLR and ANN
models predicted the energy and cost losses due to dust at 87.7% and 90%, respectively.
Adıgüzel et al. [11] used an Adaptive Neuro-Fuzzy Inference System (ANFIS) to forecast
the performance of photovoltaic modules exposed to dust. The ANFIS Algorithm Root
mean square error (RMSE) = 0.18719 and the coefficient of determination (R2) = 0.99803
for monocrystalline silicon PV modules and the RMSE = 0.87098 and R2 = 0.99714 for
polycrystalline PV modules. Javed et al. [12] used the ANN and MLR models to forecast the
performance loss of PV panels in Qatar due to dust. While the ANN model is R2 = 0.537
and the mean squared error (MSE) = 0.0038, the MLR model is R2 = 0.167 and MSE = 0.0082.
The ANN model showed better performance compared to the MLR model. Perez et al. [13]
used ANN to estimate losses resulting from dust. With new technology, ANN is successful
in predicting losses and its performance metrics are normalized root mean square errors
(NRMSE) = 6.79 and R = 0.91. Zitouni et al. [14] used the MLR, Interactive Multivariate
Linear Regression Model (MLRWI), Response Surface Methodology (RSM) and the ANN
to predict the loss due to dust in PV panels. The ANN produced better prediction results
than the other models. R2 and RMSE are 0.813 and 0.026, respectively. Jamil et al. [15]
used the ANN, recurrent neural network (RNN) and hybrid convolutional neural network
(CNN)-LSTM algorithm to estimate performance ratio and soiling loss in PV panels. The
performance error values of the hybrid CNN-LSTM algorithm are RMSE, mean absolute
error (MAE), mean absolute percentage error (MAPE) and mean bias error (MBE) at 0.00385,
0.04358, 0.28478 and 0.00217, respectively. The hybrid CNN-LSTM algorithm predicted
better than other algorithms. Pavan et al. [16] developed four Bayesian Neural Networks
(BNN) to predict losses due to dust. The performance indexes of the proposed BNN model
are R, RMSE, MAE and MAPE, at 99.96%, 0.22, 0.08 and 2.3, respectively. Valasquez and
Ezcurra [17] used a random forest model to estimate production loss due to dust. The
MAE, mean square error (MSE) and R2 of the proposed algorithm are 0.22, 0.07 and 0.88,
respectively.

We can list this study’s contributions to the world of science in terms of contextualiza-
tion as follows:

- The hybrid LSTM-KNN algorithm has not been used in the literature to estimate losses
due to dust in PV panels.

- The hybrid LSTM-KNN algorithm was used to improve the performance of LSTM
and KNN algorithms. A better prediction was achieved with the hybrid LSTM-KNN
algorithm than with the LSTM and KNN algorithm. However, the prediction time of the
hybrid LSTM-KNN algorithm was longer than that of the LSTM and KNN algorithms.

- Hybrid LSTM-KNN, LSTM and KNN algorithms were implemented in the same
simulation and with the same data. Since algorithms use random values in the
different simulations, different data sets may occur. This may cause comparison
results to be inaccurate.

- Dust loss in PV panels is affected by meteorological data. In this context, the most important
factor affecting dust loss in PV panels was determined to be solar radiation. This is a factor
that increases the efficiency of the solar panel during the installation phase.
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- The power losses of PV panels due to dust were calculated using different algorithms
in the literature. In this context, Pavan et. al. predicted 99.92% of the power loss due
to dust using the BNN model. This estimate is the best performance in the literature.
In this study, the Hybrid LSTM-KNN algorithm predicted 98.22% of the loss due to
dust in PV panels. In this respect, a better result was obtained in this study than many
other studies in the literature.

- In our previous studies, the dust loss of PV panels was estimated with hybrid LSTM-
SVM, hybrid LSTM-tree, and hybrid LSTM-ensemble. However, the results obtained
from other hybrid algorithms were below the values obtained from the hybrid algo-
rithm used in this study.

- Among the algorithms that estimate the power losses of PV panels due to dust, the
hybrid algorithm has not been used much in the literature. Therefore, a hybrid
algorithm was used in this study.

2. Materials and Methods
2.1. Data

The Saruhanlı district of Manisa is situated in the Aegean Region in Turkey and is
a flat and fertile land in the Gediz Lowland. With a surface area of 842 km2, this district
is 43 m above sea level. In the south of the district, there are Turgutlu and Ahmetli; in
the northeast and east, Akhisar and Gölmarmara; in the southwest, Manisa and in the
northwest, Kırık [18]. In Saruhanlı, it is cold and rainy in winter and hot and dry in summer.
The highest rainfall in the Saruhanlı District is 86 millimetres on average, while the lowest
rainfall is 3 millimetres. The highest temperature is 35 ◦C in July and the lowest temperature
is 2 ◦C in January [19]. In Figure 1, you can see a satellite view of the Saruhanlı District.
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In this study, production data from PV panels were taken from the switchgear facility
established in the Saruhanlı district of Manisa. In this region, solar panels are organized
according to different solar angles. As shown in Figure 2, solar power plants are installed
in two different regions in this facility. The solar power plant in the 1st region is called
GES1, while the solar power plant in the 2nd region is called GES2; a total of 13,716 kWp of
electrical energy is generated. The solar panels in the GES1 region are identified as SEM1,
SEM3, SEM4, SEM5, SEM6, SEM7 and SEM8 and the solar panels in the GES2 region are
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identified as SEM1, SEM3, SEM4, SEM5 and SEM6. The data in this study were taken from
the SEM4 solar power plant in the GES1 region.
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Figure 2. Location plan.

In this study, one year of daily data from the PV power plant was used. However,
Table 1 presents the daily data of the PV power plant for January. Figure 3 shows the input
and output data of the solar power plant for January. This plant consists of 33 inverters and
6 strings. The SEM4 power plant consists of 4356 solar panels and generates 1176. 12 kWp
DC electrical energy. Input data and output data for January are presented in Figure 3.
Sunshine duration, humidity, wind speed, temperature and solar radiation data were taken
from the General Directorate of Meteorology, Ministry of Environment, Urbanization and
Climate Change of the Republic of Turkey.
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Table 1. SEM4 data [21,22].

Days Sunshine
Duration (Hours) Humidity Temperature

(◦C)
Solar Radiation

kwsaat÷m2 P(kW)

1 0.3 91.3 11.2 0.9 51.28
2 0.6 89.3 9.7 1.3 72.22
3 1.7 90.6 7.2 1 43.16
4 0 89.1 7.5 1.3 102.4
5 1.3 80.7 12.5 1.1 123.95
6 3.2 88 8.3 1.4 118.6
7 2.1 89.5 8.4 1.3 79.65
8 0.6 83 11.7 1.3 115,55
9 3 77 15.7 0.6 11.13

10 0.6 83.8 15.7 1.3 41.17
11 3 71.3 18 1.2 19.36
12 1.5 52.8 20.2 1.1 69.23
13 0 78.8 12.8 1.2 144.93
14 3.2 82.9 7.6 1.2 101.27
15 1.9 83.1 5.1 1.3 124.53
16 3.1 87.5 1.4 0.9 45.43
17 0.3 84.2 2 1.3 124.59
18 0.6 72.7 1.6 1.4 153.84
19 4.2 74.2 −0.3 1.5 163.03
20 4.5 77.6 −0.6 1.3 176.26
21 4.6 82.3 1 1.5 109,5
22 1.7 88.2 3 1 63.15
23 0 87.7 7.3 1.2 40.82
24 0 79.9 12.9 1.3 82.9
25 0 73.8 14.5 0.9 44.07
26 0 69.8 15.5 1.8 37.77
27 1 77.4 11.5 0.9 27.04
28 0.4 87 3.4 1.3 56.56
29 0.2 86.1 2.6 1.4 145.34
30 2.8 87.9 8.1 0.8 9.07
31 0.3 86.2 9.4 1.6 128.87
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2.2. Sensitivity Analysis

In this study, the cosine amplitude method (CAM) was used to analyze the relationship
between the input and output data of the Hybrid LSTM-KNN algorithm. A data series was
created by collecting data samples as shown in Equation (1) [23].

X = {x1, x2, x3, x4, · · · , xi, · · · , xn} (1)

The data array is a vector consisting of xi data. m represents the length of the vector.

xi = {xi1, xi2, xi3,...,xim} (2)

The data represent a point in m-dimensional space. A coordinate is required to describe
these points. rij represents the relationship between data sample xi and data sample xj.

rij =
∑m

k=1 xikxjk√
∑m

k=1 x2
ik∑m

k=1 x2
jk

(3)

Equation (3) shows that the cosine function is related to the dot product. If two vectors
are at right angles, their inner product is zero, while if they are collinear, their product is
unity [24].

2.3. K-Nearest Neighbor Algorithm

KNN is a method used to predict parametric data that are difficult to predict. KNN
can be divided into regression and classification methods. The architecture of the KNN
algorithm is presented in Figure 4. When KNN is used as a classifier, it classifies the data by
grouping them according to their characteristics. The classification model is used to predict
created situations and to predict pre-processed data. The KNN classification method is one
of the simplest classification techniques as it consumes less information in data distribution
compared to other classification methods. Classification is defined by K selection and
Euclidean distance metrics. When KNN is used as a regression, it is used to predict
processed data [25]. The KNN algorithm is widely used in many problems such as data
mining, fault detection and pattern recognition [26]. KNN selects the most representative
and historical datasets instead of all datasets. It allows the estimation of representative
samples in problem-solving; therefore, historical data sets can be used effectively. The key
features of KNN are as follows:

• Feature Vector: This refers to the current model state and past information. To create a feature
vector under the KNN procedure, a trade-off between accuracy and runtime is required.

• Distance Metric: This refers to the Euclidean distance used to measure the distance
between a feature vector and a subset of it.

• The number of Nearest Neighbors (K): The datasets are arranged according to their
Euclidean distances and K-nearest neighbors are selected. If a higher K value is picked,
this leads to data redundancy in prediction, whereas if a lower value is chosen, this
leads to a loss of information in historical datasets [27].

In this formula, i refers to the index number and d refers to the Euclidean distance
whereas x, y refer to the data points consisting of N dimensions. In the KNN algorithm,
when the training data set is huge, it may take a long time to calculate the distance of each
training sample. Moreover, it is unclear which distance should be used to obtain the best
result [28].

d(x, y) =
√

∑N
i=1(xi − yi)

2 (4)
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2.4. Long Short-Term Memory

RNN demonstrates the ability to sequentially place multi-layered data. It creates a
loop by transferring the data from the input layer to the hidden layer at the very next time
step. This cycle improves the ability to learn and abstract by retaining information from the
previous cycle. However, in long-term studies, there is a gradient loss when calculating
backpropagation. The LSTM is proposed to improve the RNN [29]. The LSTM network
can remember previous information for a long time because it uses a non-linear activation
function in each layer while addressing large-sized parameters. Therefore, it is widely
used in time series problems. The LSTM network architecture is given in Figure 5. The
LSTM consists of three gates: forget, input and output. The first layer of the memory gate
is the forgotten layer, which ensures that unnecessary information will be forgotten and
necessary information will be stored.

ft = σ
(

W f × xt + U f × ht−1 + b f

)
(5)
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ft is the forgetting threshold at time t, σ is the sigmoid activation function, W f is the
weight, xt is the input value, U f is the weight, ht−1 is the output value and b f is the bias.
The gateway is the second layer and this decides what information should be stored.

it = σ(Wi × xt + Ui × ht−1 + bi) (6)

∼
Ct = σ(Wc × xt + Uc × ht−1 + bc) (7)

While Wi, Wc, Ui and Uc refer to the weights, bi and bc refer to the bias. Equation (8) is
used to update the state of a cell at time T.

Ct = ft.Ct−1 + it.
∼
Ct (8)

The output layer is the third layer and is given in Equation (9).

Ot = σ(Wo × xt + Uo × ht−1 + bo) (9)

Ot is the output threshold at time t, Wo is the weights, xt is the input value, Uo is the
weight and bo is the bias term.

ht = Ot.tanh(Ct) (10)

ht is the output value at time t, tanh is the activation function and Ct is the state of the
cell at time t.

After the data pass through three gates, unnecessary information is forgotten and
output [30]. Each gate consists of a point multiplication layer and a sigmoid layer. The
sigmoid layer represents the part that allows the input information in the range [0, 1] to
pass through [31].

2.5. Hybrid LSTM-KNN Algorithm

In this study, a hybrid LSTM-KNN algorithm is proposed to estimate losses caused by
dust in PV panels. The flow diagram of this algorithm is shown in Figure 6. The inputs
of these algorithms include time, sunshine duration, humidity, ambient temperature and
solar radiation. The output is the power losses caused by dust in the PV panels. The KNN
part of hybrid deep learning pre-processes input data. The iteration is repeated until the
optimization process is completed. Then, the data taken from the output of KNN are given
to the input of LSTM. The LSTM algorithm splits the optimized data into 90% training data
and 10% testing data. The training and testing procedure continues until the end of the
iteration. The iteration continues until the training and testing procedure is completed.
The error metrics and prediction results of the hybrid LSTM-KNN algorithm are obtained.
After the completion of the hybrid algorithm, the KNN algorithm and the LSTM algorithm
are run. Right after the hybrid algorithm stops running, the KNN algorithm starts to run.
The results of the KNN algorithm are obtained. Once the KNN algorithm is completed, the
LSTM algorithm starts to run. The performance indicators of the LSTM algorithm and the
prediction results are obtained. A schematic representation of the hybrid deep learning
model used in this study is shown in Figure 7.
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2.6. Performance Metrics

The performance metrics of the algorithms are R2, the mean squared error (MSE) RMSE,
NRMSE, MAPE MAE and peak signal-to-noise ratio (PSNR). The performance metrics reveal
the accuracy of the forecasts made. R2 is shown in Equation (11). The R2 metric shows the
relationship between the actual data and predicted data. The R2 value ranges between 1 and
0. The closer the obtained result is to 1, the better the prediction [32,33].

R2 = [1−
∑n

k=1 (ytrue − ypred)
2

∑n
k=1 (ytrue − ymean)

2 ] (11)

The MSE is shown in Equation (12). The MSE is advantageous when major errors need
to be minimized. It is the basis of many statistical methods due to its being differentiable.
However, in outliers, the MSE may incorrectly affect the performance of the model. The
MAE metric is given in Equation (13). The MAE is less sensitive to outliers. It provides
better performance on outliers by attaching the same emphasis to all faults. The RMSE is
shown in Equation (14). The RMSE metric is given in Equation (14). The RMSE shows the
standard deviation of the errors. If the RMSE is within a limited range with regard to the
test and training samples, the model does not overfit [34].

MSE =
∑n

k=1 (ypred − ytrue)
2

n
(12)

MAE =
∑n

k=1 |ypred − ytrue|
n

(13)

RMSE =

√
∑n

k=1 (ypred − ytrue)
2

n
(14)

The MAPE metric is given in Equation (15). The MAPE error metric is of particular
importance for regression models. It has an intuitive interpretation in terms of relative
error. It is used for absolute variances sensitive to relative changes. However, there are
some drawbacks to this. Since it is restricted to positive data by definition, this indicates
that it is intended for low predictions. It is not suitable for major faults [35].

MAPE =
1
n ∑n

k=1

∣∣∣ ypred−ytrue
ytrue

∣∣∣ (15)
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The NRMSE is shown in Equation (16). The NRMSE is used for a clear reading of the
error. It is the ratio of the root mean square of the error to the observed variable. When
the NRMSE = 0, this indicates perfect prediction, while NRMSE = 1 indicates statistical
prediction. The peak signal-to-noise ratio (PSNR) is given in Equation (17) [36,37].

NRMSE =
1

ytrue

√
(∑n

k=1 ypred−ytrue)
2

n
(16)

PSNR = 10log10(
R2

MSE
) (17)

3. Results and Discussions
3.1. The Sensitivity Analysis of Results

In this study, sensitivity analysis was used to determine the relationship between
losses caused by dust in PV panels and experimental variables. Sunbathing, humidity,
temperature and solar radiation were used as experimental variables. The sensitivity
analysis results are shown in Figure 8. As seen in Figure 8, the most important variable
affecting the result of losses due to dust in PV panels is solar radiation, followed by
insolation and then temperature. Humidity is the parameter that least affects losses caused
by dust in PV panels. In this study, it was found that the parameter that most affects the
losses caused by dust in PV panels is solar radiation.
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3.2. K-Nearest Neighbors of Results

In this section, the KNN algorithm was used to estimate the losses caused by dust in
PV panels. The choice of K value is very important for the success of the KNN algorithm.
If the K value is selected as a minimum, overfitting may be observed. If the K value is
selected to be large, the prediction success will decrease. In this study, data were prepared
and pre-processed before the simulation. The data were given to the hybrid LSTM-KNN
algorithm, to the KNN algorithm and then to the LSTM algorithm. This simulation was
run many times. The simulation was stopped when the best predictive value was achieved.
The KNN algorithm was not run alone. This is why the K value was not chosen. The best
K value obtained in the simulation was taken. In this study, the KNN algorithm was not
intended to be the best estimator for the loss caused by dust in PV panels. Our aim in this
study was to find the advantages and weaknesses of hybrid LSTM-KNN, LSTM and KNN
algorithms when they are run in the same simulation with the same data.
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The input and output data used in the KNN algorithm are given in Section 2.5. The
performance metrics of MSE, PSNR, RMSE, NRMSE and MAPE were used to evaluate the
performance of the KNN algorithm. The data used in the KNN algorithm were determined
as 90% training data and 10% test data. With the KNN algorithm, the best prediction results
were made according to distances and neighborhoods. The neighborhoods and distances of
the KNN algorithm are given in Figure 9. The best neighbor and distance obtained in this
study are given in Table 2. While the KNN algorithm estimated the losses caused by dust
in PV panels, the neighborhood and distance were obtained as 10 and seuclide, respectively.
The performance metrics of the KNN algorithm are given in Table 3. Figure 10 presents the
predicted results and experimental results for the training and testing phases of KNN. The
KNN algorithm predicted the losses due to dust of PV panels as 67.07% and 61.49% for the
training and testing phases.
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Table 2. The distances and neighboring relations of the KNN algorithm.

NumNeighbors(K) Distance

10 Seuclidean

Table 3. Performance metrics of the KNN algorithm.

Performance Metrics Training Testing

MSE 0.0344 0.0344

PSNR 14.6327 14.6394

RMSE 0.1855 0.1854

NRMSE 0.1968 0.2446

MAPE 20.6954 23.2731

R2 0.6707 0.6149

As seen in Figure 10, when the values between the dependent variable and the indepen-
dent variable are taken into account, the deviation of the KNN algorithm is higher than the
LSTM algorithm. As a result, it was observed that the performance of the KNN algorithm
was lower than other algorithms in predicting power losses due to dust in PV panels.

When we compare the KNN algorithm and the LSTM algorithm in this study, the
LSTM model has higher PSNR and R2, while it has lower MSE, RMSE, NRMSE and MAPE.
The KNN model predicted the loss due to dust in PV panels with low accuracy.
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Figure 10. The predicted results for the training and testing stages of KNN and the experimental results.

3.3. Long Short-Term Memory of Results

The LSTM model estimated losses due to dust in PV panels. The input and output
variables given in Section 2.5 were used in the LSTM model. Data from 365 samples were
used in this study. In the LSTM model, 90% of the data were selected as training data and
10% as test data. The performance metrics of the LSTM model are the MSE, PSNR, RMSE,
NRMSE and MAPE.

The performance metrics of the LSTM algorithm for testing and training are given
in Table 4. The RMSE and loss of the LSTM model are given in Figure 11. The test and
training results of the LSTM model for losses caused by dust in PV panels are presented in
Figure 12. As seen in Table 4, the PSNR is higher in the training phase than in the testing
phase. In the LSTM algorithm, the PSNR for training and testing is greater than other
performance metrics. A large PSNR is evidence of good prediction performance. As seen
in Figure 11, the losses and RMSE metric of the LSTM model for training and testing are
minimum. While the RMSE value of the LSTM model was 0.0325 in training, the RMSE
value was 0.0388 in the testing phase. As can be seen from the results, the RMSE value is
close to 0 and the predicted value is close to the real value. As seen in Figure 12, the R2

metric of the LSTM model in training and testing for losses caused by dust of PV panels
were 0.9639 and 0.9551, respectively. The LSTM algorithm has shown a good performance
in estimating the losses of PV panels due to dust.

Table 4. Performance metrics of the LSTM algorithm.

Performance Metrics Training Testing

MSE 0.0011 0.0015
PSNR 29.7727 28.2251
RMSE 0.0325 0.0388
NRMSE 0.0344 0.0512
MAPE 6.4598 6.9112
R2 0.9639 0.9551

As seen in the regression curve in Figure 12, the deviations between the dependent
variable and the independent variable in the testing and training phases of the LSTM model
are at a level close to the minimum. This shows that the estimated value is close to the
real value.
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Figure 11. RMSE and losses for testing and training of the LSTM model.
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Figure 12. The predicted results for the training and testing stages of LSTM and the experimental results.

3.4. Hybrid LSTM-KNN of Results

The hybrid deep LSTM-KNN model was used to predict losses due to dust in PV
panels. The hybrid deep learning model was designed using long short-term memory
and the Knearest neighbour algorithm. The hybrid deep learning architecture is given in
Figure 7. In this section, the data set used in the LSTM and KNN model is used. Similar to
other models, the input variables of the hybrid deep learning model are meteorological
data, while the output variable is the losses caused by dust in PV panels. The parameters
of the hybrid LSTM-KNN model are given in Table 5. The MSE, PSNR, RMSE, NRMSE
and MAPE were used to evaluate the performance of the hybrid deep learning model. The
performance metrics of the hybrid deep learning model are given in Table 6. As seen in
Table 6, the PSNR in the testing and training of the hybrid LSTM-KNN model is higher
than that of the LSTM and KNN models. In addition, the MSE, RMSE, NRMSE and MAPE
of the hybrid deep LSTM-KNN model in testing and training are smaller than the LSTM
and KNN models.
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Table 5. Hybrid LSTM-KNN parameters.

Elapsed
Time Epoch Iteration Frequency Hardware

Resource
Learning Rate

Schedule
Learning

Rate

28 Sec 2000 2000 50 Iterations Single GPU Piecewise 2 × 10−6

Table 6. Performance metrics of the hybrid LSTM-KNN algorithm.

Performance Metrics Training Testing

MSE 1.7915 × 10−4 5.6199 × 10−4

PSNR 37.4679 32.5027

RMSE 0.0134 0.0237

NRMSE 0.0142 0.0313

MAPE 2.7509 4.3873

R2 0.9963 0.9822

Figure 13 presents the predicted results and experimental results for the training and
testing phases of the hybrid LSTM-KNN model. As seen in Figure 13, deviations between
the dependent variable and the independent variable are minimal. The hybrid LSTM-
KNN algorithm proved to have good prediction success in power losses due to dust in PV
panels.The RMSE and loss of the hybrid deep LSTM-KNN model are given in Figure 14.
As seen in Figure 14, the RMSE is minimum and the prediction data are very close to the
real data. The hybrid LSTM-KNN model achieved RMSE values of 0.0134 and 0.0237 for
testing and training, respectively. Losses and RMSE values were close to zero. These results
showed that the hybrid LSTM-KNN model had good prediction success. The performance
metrics of all models are given in Figure 15. In Figure 15a, the hybrid LSTM-KNN model in
the training phase has a larger PSNR and R-value than other models. In addition, the MSE,
RMSE, NRMSE and MAPE values of the hybrid LSTM-KNN model are smaller than other
prediction models. In Figure 15b, the performance of the model in the hybrid LSTM-KNN
test phase was similar to the training phase. As a result, the deep hybrid LSTM-KNN
model has a better prediction performance than LSTM and KNN models.
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A Taylor diagram is a method that statistically measures the degree of similarity
between pairs of interests. The first area of interest is the reference area, while the second
is the test area. It measures the similarity between the reference area and the test area.
However, it shows the root mean square (RMS) difference, correlation coefficient and
standard deviation between these two areas [38].

Figure 16 shows the Taylor diagram for the LSTM, KNN and hybrid LSTM-KNN
models. As can be seen in Figure 16, in both the test and training phases, the hybrid
LSTM-KNN model was closest to the actual value, while the KNN model was far from the
real value.
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In the literature, the following studies were available to estimate the power loss due
to dust of PV panels. The algorithms used were ELM, ANN, ANFIS, hybrid CNN-LSTM,
BNN, Random forest and MLR. The performance metrics for these algorithms were R2,
MSE, RMSE, R, NRMSE and MAPE. Adıgüzel et al. [11] and Pavan et al. [16] estimated that
the dust-related losses of PV panels were 99.803% and 99.92%, respectively. In the current
study, the power loss due to dust was estimated at 98.22%. As seen in the literature, there
were not many hybrid algorithms that predicted the power losses of PV panels due to dust.
Jamil et al. [15] used a hybrid CNN-LSTM algorithm to estimate the power losses of PV
panels due to dust and obtained a RMSE and MAPE of 0.00385 and 0.28474. In the current
study, the RMSE and MAPE were 0.0237 and 4.3873, respectively. Jamil et al. [15]’s hybrid
study was better than the current study. However, the performance of the current study
was better than all other studies in the literature (Table 7).

Table 7. Literature comparison.

Reference Model R2 MSE RMSE R NRMSE MAPE

Kouz et al. [9] ELM 91.42% 0.0462 - - -

Hammad et al. [10] ANN 90.0% 5.7 - - -

Adıgüzel et al. [11] ANFIS 99.803% - 0.87098 - -

Javed et al. [12] ANN 53.7% 0.0038 - - -

Perez et al. [13] ANN - - - 91% 6.79

Zitouni et al. [14] ANN 81.3% - 0.026 - -

Jamil et al. [15] Hybrid CNN-LSTM - - 0.00385 - - 0.28478

Pavan et al. [16] BNN 99.92% - 0.22 99.96% - 2.3

Valasquezand Ezcurra [17] Random forest 0.88% 0.07 - - - -

Sharma et al. [39] MLR 91% - - - - -

Presend study Hybrid LSTM-KNN 98.22% 5.6199 × 10−4 0.0237 99.10% 0.0313 4.3873

4. Conclusions

In this study, we aimed to compare the performance of the LSTM, KNN and hybrid
deep learning models used to predict losses caused by dust in PV panels. The hybrid deep
learning model was created from the LSTM and KNN algorithms. Sensitivity analysis was
performed to evaluate losses caused by dust in PV panels. The MSE, RMSE, NRMSE, MAPE,
PSNR and R2 were used to evaluate the performance of the models. The input variables of
the model were selected as time, sunshine duration, humidity, ambient temperature and
solar radiation. The output variable of the model is the losses of PV panels due to dust.
Hybrid LSTM-KNN, LSTM and KNN models predicted the loss due to dust in PV panels
at 98.22%, 95.51% and 61.49%, respectively. Among the variables affecting the loss due to
dust in PV panels, the most important variable is solar radiation. It affected the loss due to
dust in PV panels by 96.32%.

As a result of this study, it has been proven that power losses of PV panels due to
dust can be predicted with the hybrid LSTM-KNN algorithm. The better performance
of the hybrid LSTM-KNN algorithm over the LSTM and KNN algorithms increased the
prediction value. Estimating the power losses of PV panels due to dust can contribute
to the calculation of energy costs produced by PV power plants. In addition, the finding
that solar radiation is one of the most important pieces of meteorological data affecting
the power losses of PV panels due to dust can aid the manufacturer in terms of location
estimation during the installation phase of PV panels. The hybrid LSTM-KNN algorithm
can be used to estimate the amount of dust accumulated in PV panels and to predict the
short- and long-term power of these panels. However, we could not shorten the running
time of the hybrid LSTM-KNN algorithm and we saw that this time was relatively longer
compared to other hybrid algorithms.
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