How Does the Spatial Structure of Urban Agglomerations Affect the Spatiotemporal Evolution of Population Aging?
Abstract
:1. Introduction
Literature Review
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Research Methods
2.3.1. Spatial Correlation Analysis
2.3.2. Model for Calculating the Rate of Aging
2.3.3. Geodetector Analysis Methodology
3. Results
3.1. Spatial and Temporal Evolution of Population Aging
3.1.1. Overall Rise in the Level of Population Aging and the Type of Shift
3.1.2. The Level of Population Aging Is Characterized by a Clear Spatial Correlation
3.1.3. Accelerating Population Aging and Increasing Spatial Variability
3.1.4. “Old and Fast” Growth Characterized by the Predominance of the “Double Growth” Model
3.2. Factors Affecting Spatial and Temporal Changes in Population Aging
3.2.1. Selection of Indicators
3.2.2. Analysis of Results
4. Discussion and Conclusions
4.1. Discussion
4.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grafeneder-Weissteiner, T.; Prettner, K. Agglomeration and demographic change. J. Urban. Econ. 2013, 74, 1–11. [Google Scholar] [CrossRef]
- Park, D.; Shin, K. Impact of Population Aging on Asia’s Future Economic Growth, 2021–2050. Asian Dev. Rev. 2023, 40, 49–78. [Google Scholar] [CrossRef]
- Gaigbe-Togbe, V.; Bassarsky, L.; Gu, D.; Spoorenberg, T.; Zeifman, L.; Gerland, P.; Bay, G.; Castanheira, H.C.; Gonnella, G.; Hertog, S.; et al. World Population Prospects 2022: Summary of Results; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2022. [Google Scholar]
- United Nations, Department of Economic and Social Affairs, Population Division (2022). World Population Prospects 2022: Methodology of the United Nations Population Estimates and Projections. UN DESA/POP/2022/TR/NO. 4. New York. Available online: https://population.un.org/wpp/Publications/Files/WPP2022_Methodology.pdf (accessed on 17 March 2024).
- United Nations. World Population Aging 2017; United Nation Publication: New York, NY, USA, 2017.
- Fan, C.L. The construction of city clusters and metropolitan areas in China under the new development pattern. J. Econ. Geogr. 2021, 41, 1–7. [Google Scholar]
- Buffel, T.; Phillipson, C. Can global cities be‘age-friendly cities’? Urban development and ageing populations. J. Cities 2016, 55, 94–100. [Google Scholar] [CrossRef]
- Ji, S.; Zhu, Z.S. Study on the balance of population mobility and regional economic development in Chinese urban agglomerations—An analysis based on the long form data of the sixth national population census. J. Econ. Theory Econ. Manag. 2014, 2, 5–16. [Google Scholar]
- Xu, Q.M.; Hu, C.G.; Liu, D.X. Population agglomeration gradient and industrial structure optimization and upgrading in urban agglomerations-A comparison between China’s Yangtze River Delta region and Japan and South Korea. Chin. J. Popul. Sci. 2015, 1, 29–37+126. [Google Scholar]
- Shi, Y.; Xu, N. Analysis of Influence of Population Aging on Urban Economic Growth. Open Cybern. Syst. J. 2015, 9, 2847–2852. [Google Scholar] [CrossRef]
- Van Hoof, J.; Kazak, J.K.; Perek-Białas, J.M.; Peek, S.T. The Challenges of Urban Ageing: Making Cities Age-Friendly in Europe. Int. J. Environ. Res. Public Health 2018, 15, 2473. [Google Scholar] [CrossRef] [PubMed]
- Fuguitt, G.V.; Tordella, S.J. Elderly Net Migration: The New Trend of Nonmetropolitan Population Change. Res. Aging 1980, 2, 191–204. [Google Scholar] [CrossRef]
- Bryant, E.S.; El-Attar, M. Migration and Redistribution of the Elderly: A Challenge to Community Services1. Gerontologist 1984, 24, 634–640. [Google Scholar] [CrossRef]
- Johnson, K.M. Recent Population Redistribution Trends in Nonmetropolitan America. Rural. Sociol. 1989, 54, 301–326. [Google Scholar]
- Ito, K. Changes in determinants of long-distance elderly migration in Japan. Stud. Reg. Sci. 2011, 41, 179–194. [Google Scholar] [CrossRef]
- Lundholm, E. Return to where? The geography of elderly return migration in Sweden. SAGE Publ. 2015, 22, 92–103. [Google Scholar] [CrossRef]
- Liu, Y.-P.; Wang, R.-X. Spatio-temporal Evolution of Population Aging in China from the Perspective of Urban Agglomeration: An Analysis Based on Census and Sample Survey Data. J. China West Norm. Univ. Nat. Sci. 2023, 1–12. [Google Scholar] [CrossRef]
- Guo, X.X. Spatial and temporal evolution of population aging in Chinese urban agglomerations and the factors affecting it: An analysis based on national census data. J. Yunnan Univ. Natl. Philos. Soc. Sci. Ed. 2023, 40, 84–94. [Google Scholar]
- Wang, L.C.; Wu, R.W.; Li, W. Spatial and temporal patterns of population aging in Chinese urban agglomerations. J. Geogr. 2017, 72, 1001–1016. [Google Scholar]
- Li, H.M.; Wang, Z.B.; Zhao, N.N.; Gao, W. Characteristics of geographical differentiation of population aging in the process of urban agglomeration evolution. J. Reg. Res. Dev. 2021, 40, 164–170. [Google Scholar]
- Li, Y.H. Study on Spatiotemporal Change of Population Aging in the Guanzhong Plain Megalopolis Based on County-scale. J. Xi’an Shiyou Univ. Soc. Sci. Ed. 2023, 32, 52–59. [Google Scholar]
- Liu, J.Y.; Shi, M.H.; Huang, Q.K.; Zhang, F.F.; Jia, Y.F.; Zhang, Q.; Wang, X.M. Spatial differentiation of population aging and coping strategies in the Central Plains urban agglomeration. J. Henan Univ. Nat. Sci. Ed. 2023, 53, 140–150. [Google Scholar]
- Hu, M. Research on the Spatio-Temporal Pattern of Population Aging and Influencing Factors in Counties of Central Plains Urban Agglomeration. Master’s Thesis, Henan University, Kaifeng, China, 2019. [Google Scholar]
- Kang, J.J.; Ding, Z.W.; Zhang, G.S.; Wang, F.Z.; Wu, R.W. Multi-scale spatio-temporal pattern of population aging in the Central Plains. J. Econ. Geogr. 2016, 36, 29–37. [Google Scholar]
- Xie, T.; Li, Y.D.; Zhang, J. A Comparative Study on Spatiotemporal Changes of Population Aging in the Yangtze River Delta and the Pearl River Delt. Popul. Dev. 2021, 27, 111–120. [Google Scholar]
- Zhou, Z.X.; Han, H.R.; Yang, C.F. Spatio-temporal Evolution Characteristics and Impact Mechanism of Population Aging in the Yangtze River Delta Urban Agglomeration at the County Level. J. Econ. Geogr. 2024, 44, 90–101. [Google Scholar] [CrossRef]
- Guo, J.J.; Liu, Y.P. Spatio-Temporal Evolution and Influencing Factors of Population Aging in the Chengdu-Chongqing Economic Circle at the County Level in China Using the Latest Three National Census Data. Tropical. Geogr. 2023, 43, 2087–2101. [Google Scholar] [CrossRef]
- Fang, C.L.; Song, J.T.; Zhang, Q.; Li, M. The formation, development and spatial heterogeneity patterns for the structures system of urban agglomerations in China. Acta Geogr. Sin. 2005, 60, 827–840. [Google Scholar]
- Wu, Y.; Song, Y.X.; Yu, T.T. Spatial Differences in China’s Population Aging and Influencing Factors: The Perspectives of Spatial Dependence and Spatial Heterogeneity. J. Sustain. 2019, 11, 5959. [Google Scholar] [CrossRef]
- Shiode, N.; Morita, M.; Shiode, S.; Okunuki, K.I. Urban and rural geographies of aging: A local spatial correlation analysis of aging population measures. J. Urban Geogr. 2014, 35, 608–628. [Google Scholar] [CrossRef]
- Zhang, K.; Sun, H.; Li, X.Y. Aging Population Spatial Distribution Discrepancy and Impacting Factor. J. Sustain. 2022, 14, 9528. [Google Scholar] [CrossRef]
- Rogers, A.; Woodward, J.A. Tempos of Elderly Age and Geographical Concentration. J. Prof. Geogr. 1992, 44, 72–83. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, Y.; Zhang, X.; Xia, S. Identifying the Impacts of Social, Economic, and Environmental Factors on Population Aging in the Yangtze River Delta Using the Geographical Detector Technique. J. Sustain. 2018, 10, 1528. [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, C.D. Geoprobes: Principles and Prospects. J. Geogr. 2017, 72, 116–134. [Google Scholar]
- Wang, L.C.; Wu, R.W.; Liu, H.M.; Zhou, P.; Kang, J.J. Spatial pattern and regional differences of population aging in China at county scale. J. Prog. Geogr. Sci. 2016, 35, 921–931. [Google Scholar]
- McCarthy, K.F. The Elderly Population Changing Spatial Distribution: Patterns of Change Since 1960; Rand Corp.: St. Monica, LA, USA, 1983. [Google Scholar]
- Wu, L.G.; Wu, R.W.; Yang, D.G. Spatial and Temporal Evolution of Population Aging and Influencing Factors in China, 2000-2020. J. World Geogr. Res. 2023, 1–16. [Google Scholar]
- Wang, M.; Wang, S.B.; Yang, H. Exploring the spatial-temporal distribution and evolution of population aging and social-economic indicators in China. J. BMC Public Health 2021, 21, 966. [Google Scholar]
- Wang, S.B. Spatial patterns and social-economic influential factors of aging indexes: A global assessment from 1990 to 2010 using spatial regressive modeling. J. Soc. Sci. Med. 2020, 253, 112963. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.H.; Han, H.R. Spatial Characteristics and Influencing Factors of Population Aging in the Yangtze River Economic Belt. J. Resour. Dev. Mark 2022, 38, 443–450. [Google Scholar]
- Cao, H.Q.; Chen, S.Y.; Xi, X.C. Aging, migration, and structural transformation in China. J. Econ. Model 2023, 126, 106430. [Google Scholar] [CrossRef]
- Yang, C.; Ma, C.Y.; Wang, J.; Zhou, Y.Q. Cross-border aging in China’s Greater Bay Area in the digital age: A comparative study of mobile application adoption by Hong Kong older migrants and local older adults in Shenzhen. J. Trans. Plan. Urban. Res. 2023, 2, 149–166. [Google Scholar] [CrossRef]
- Prenzel, P. Are old regions less attractive? Interregional labor migration in a context of population aging. J. Pap. Reg. Sci. 2021, 100, 1429–1447. [Google Scholar] [CrossRef]
- Sampaio, D.; King, R.; Walsh, K. Geographies of the aging–migration nexus: An introduction. J. Area 2018, 50, 440–443. [Google Scholar] [CrossRef]
- Gottman, J. Megalopolis: The Urbanization of the Northeastern Seaboard of the United States; The M L T Press: Cambridge, UK, 1961. [Google Scholar]
- Hen, O.; Yu, D. Stages, characters and exploitation modes of urban agglomerations development in China. Mod. Urban Res. 2009, 24, 77–82. [Google Scholar]
2000 | 2010 | 2020 | ||||
---|---|---|---|---|---|---|
Average Level (%) | Number of Counties (Districts) Involved | Average Level (%) | Number of Counties (Districts) Involved | Average Level (%) | Number of Counties (Districts) Involved | |
N | 0 | 0 | 0 | 0 | 0 | 0 |
CⅠ | 5.44 | 1 | 0 | 0 | 0 | 0 |
CⅡ | 6.48 | 16 | 0 | 0 | 0 | 0 |
LⅠ | 8.18 | 126 | 8.93 | 28 | 9.77 | 2 |
LⅡ | 10.34 | 2 | 12.09 | 111 | 12.46 | 20 |
LⅢ | 0 | 0 | 15.26 | 6 | 19.36 | 123 |
Year | Moran’s I | p-Test Value | Z-Statistic Value |
---|---|---|---|
2000 | 0.370 | 0.001 | 7.7 |
2010 | 0.332 | 0.001 | 7.202 |
2020 | 0.424 | 0.001 | 8.851 |
Type of Indicator | Specific Indicator | Symbol | Indicator Description |
---|---|---|---|
Endogenous factors | Initial aging level | L2000, L2010 | The share of the population over 65 years of age in the total population at the beginning of the study period indicates the elderly population base and largely influences the basic direction of aging. |
the proportion of the population aged 55–64 | ∆C55–64 | The higher the proportion of older persons to the total population that will step in 10 years, the greater the impact on the degree of population aging in 10 years. | |
the fertility level | ∆F | The average number of surviving children of women of childbearing age between 15 and 60 years was chosen as a proxy variable for fertility level, with a larger number indicating a larger young population. | |
Exogenous factors | the in-migration rate | ∆INr | Inflows as a proportion of the total population, with implications for population aging in both in-migrating and out-migrating areas |
emigration rate | ∆EMr | The share of the outflow population in the total population, characterizes the outflow of the population. |
L2000 | ∆C55–64 | ∆F | ∆INr | ∆Emr | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2000–2010 | 2010– 2020 | 2000– 2010 | 2010– 2020 | 2000– 2010 | 2010– 2020 | 2000– 2010 | 2010– 2020 | 2000– 2010 | 2010– 2020 | ||
CCUA | * D | 0.04 | 0.42 | 0.27 | 0.06 | 0.09 | 0.24 | 0.32 | 0.12 | 0.19 | 0.15 |
S | 0.42 | 0.00 | 0.00 | 0.60 | 0.13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Core City | D | 0.23 | 0.64 | 0.28 | 0.07 | 0.27 | 0.37 | 0.39 | 0.09 | 0.15 | 0.21 |
S | 0.02 | 0.00 | 0.05 | 0.62 | 0.11 | 0.00 | 0.00 | 0.39 | 0.15 | 0.05 | |
Center City | D | 0.09 | 0.62 | 0.54 | 0.21 | 0.10 | 0.25 | 0.12 | 0.18 | 0.36 | 0.13 |
S | 0.62 | 0.00 | 0.00 | 0.54 | 0.73 | 0.11 | 0.17 | 0.21 | 0.24 | 0.44 | |
Nodal City | D | 0.03 | 0.10 | 0.20 | 0.08 | 0.11 | 0.10 | 0.12 | 0.24 | 0.43 | 0.50 |
S | 0.98 | 0.51 | 0.07 | 0.83 | 0.51 | 0.30 | 0.14 | 0.01 | 0.00 | 0.00 | |
Chengdu-Chongqing Development Axis | D | 0.19 | 0.50 | 0.31 | 0.05 | 0.29 | 0.28 | 0.41 | 0.11 | 0.16 | 0.13 |
S | 0.02 | 0.00 | 0.01 | 0.56 | 0.03 | 0.00 | 0.00 | 0.25 | 0.07 | 0.27 | |
Chengde-Mianle City Belt | D | 0.08 | 0.67 | 0.48 | 0.13 | 0.22 | 0.39 | 0.48 | 0.22 | 0.22 | 0.18 |
S | 0.54 | 0.00 | 0.00 | 0.54 | 0.60 | 0.02 | 0.00 | 0.04 | 0.16 | 0.32 | |
Riverside City Belt | D | 0.03 | 0.27 | 0.11 | 0.17 | 0.22 | 0.27 | 0.19 | 0.04 | 0.52 | 0.16 |
S | 0.93 | 0.71 | 0.58 | 0.87 | 0.99 | 0.14 | 0.29 | 0.99 | 0.13 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, M.; Wang, L.; Li, Q. How Does the Spatial Structure of Urban Agglomerations Affect the Spatiotemporal Evolution of Population Aging? Sustainability 2024, 16, 3710. https://doi.org/10.3390/su16093710
Fu M, Wang L, Li Q. How Does the Spatial Structure of Urban Agglomerations Affect the Spatiotemporal Evolution of Population Aging? Sustainability. 2024; 16(9):3710. https://doi.org/10.3390/su16093710
Chicago/Turabian StyleFu, Miao, Lucang Wang, and Qianguo Li. 2024. "How Does the Spatial Structure of Urban Agglomerations Affect the Spatiotemporal Evolution of Population Aging?" Sustainability 16, no. 9: 3710. https://doi.org/10.3390/su16093710
APA StyleFu, M., Wang, L., & Li, Q. (2024). How Does the Spatial Structure of Urban Agglomerations Affect the Spatiotemporal Evolution of Population Aging? Sustainability, 16(9), 3710. https://doi.org/10.3390/su16093710