A Study of the Spatiotemporal Evolution Patterns and Coupling Coordination between Ecosystem Service Values and Habitat Quality in Diverse Scenarios: The Case of Chengdu Metropolitan Area, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographic Area of Investigation
2.2. Research Structure
2.3. Data Source
2.4. Research Method
2.4.1. PLUS Mode
2.4.2. Multi-Scenario Construction
2.4.3. Measurement of Habitat Quality
2.4.4. Ecosystem Service Value
2.4.5. Coupling Coordination Model
3. Results
3.1. Spatiotemporal Evolution Characteristics of Land Use in Chengdu Metropolitan Area
3.2. Characteristics of Spatial and Temporal Evolution of ESV in Chengdu Metropolitan Area
3.3. Characteristics of Spatial and Temporal Evolution of HQ in Chengdu Metropolitan Area
3.4. Coupling and Harmonization of ESV and HQ under Multi-Scenario Modeling
4. Discussion
4.1. Characterization of the Spatial and Temporal Evolution of ESV and HQ
4.2. Analysis of the Coupled and Harmonized Relationship between the ESV and HQ
4.3. Discussion on the Path of the Urban Development Model in the Multifaceted Scenario
4.4. The Limiting Factors of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allen, C.; Malekpour, S. Unlocking and Accelerating Transformations to the SDGs: A Review of Existing Knowledge. Sustain. Sci. 2023, 18, 1939–1960. [Google Scholar] [CrossRef] [PubMed]
- Frank, E.G.; Schlenker, W. Balancing Economic and Ecological Goals. Science 2016, 353, 651–652. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Tang, Z.; Liu, D.; He, J. Ecological Response to Urban Development in a Changing Socio-Economic and Climate Context: Policy Implications for Balancing Regional Development and Habitat Conservation. Land Use Policy 2020, 97, 104772. [Google Scholar] [CrossRef]
- Yang, R.; Chen, H.; Chen, S.; Ye, Y. Spatiotemporal Evolution and Prediction of Land Use/Land Cover Changes and Ecosystem Service Variation in the Yellow River Basin, China. Ecol. Indic. 2022, 145, 109579. [Google Scholar] [CrossRef]
- Jiang, B.; Chen, Y.; Xiao, Y.; Zhao, J.; Ouyang, Z. Evaluation of the Economic Value of Final Ecosystem Services from the Baiyangdian Wetland. Acta Ecol. Sin. 2017, 37, 2497–2505. [Google Scholar] [CrossRef]
- Garrick, D.; Siebentritt, M.A.; Aylward, B.; Bauer, C.J.; Purkey, A. Water Markets and Freshwater Ecosystem Services: Policy Reform and Implementation in the Columbia and Murray-Darling Basins. Ecol. Econ. 2009, 69, 366–379. [Google Scholar] [CrossRef]
- Xue, D.; Wang, Z.; Li, Y.; Liu, M.; Wei, H. Assessment of Ecosystem Services Supply and Demand (Mis) Matches for Urban Ecological Management: A Case Study in the Zhengzhou–Kaifeng–Luoyang Cities. Remote Sens. 2022, 14, 1703. [Google Scholar] [CrossRef]
- Zadehdabagh, N.; Monavari, S.M.; Kargari, N.; Taghavi, L.; Pirasteh, S. Sustainability of Agroecosystems by Indices: A Comparative Study between Indicators of Ecological Footprint Sustainability and Emergy Analysis; a Case Study in Dez Catchment, Iran. Ecol. Model. 2022, 474, 110165. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Y.; Wang, Y.; Li, Z.; Hou, Y. Spatiotemporal Evolution and Influencing Mechanisms of Ecosystem Service Value in the Tarim River Basin, Northwest China. Remote Sens. 2023, 15, 591. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J. The Value of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhang, C.X.; Zhang, C.S.; Xiao, Y.; Lu, C.X. The Value of Ecosystem Services in China. Resour. Sci. 2015, 37, 1740–1746. [Google Scholar]
- Wu, C.; Chen, B.; Huang, X.; Wei, Y.D. Effect of Land-Use Change and Optimization on the Ecosystem Service Values of Jiangsu Province, China. Ecol. Indic. 2020, 117, 106507. [Google Scholar] [CrossRef]
- Li, N.; Wang, J.; Wang, H.; Fu, B.; Chen, J.; He, W. Impacts of Land Use Change on Ecosystem Service Value in Lijiang River Basin, China. Environ. Sci. Pollut. Res. 2021, 28, 46100–46115. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Xie, B.; Zhang, D. Spatial–Temporal Evolution of ESV and Its Response to Land Use Change in the Yellow River Basin, China. Sci. Rep. 2022, 12, 13103. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Yi, P.; Xia, J.; He, W.; Gao, X. Temporal and Spatial Analysis of the Ecosystem Service Values in the Three Gorges Reservoir Area of China Based on Land Use Change. Environ. Sci. Pollut. Res. 2022, 29, 26549–26563. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Hu, C.; Zhang, Y. Multi-Scenario Simulation of the Impact of Land Use Change on the Ecosystem Service Value in the Suzhou-Wuxi-Changzhou Metropolitan Area, China. Chin. Geogr. Sci. 2024, 34, 79–92. [Google Scholar] [CrossRef]
- Na, L.; Zhao, Y.; Feng, C.-C.; Guo, L. Regional Ecological Risk Assessment Based on Multi-Scenario Simulation of Land Use Changes and Ecosystem Service Values in Inner Mongolia, China. Ecol. Indic. 2023, 155, 111013. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, Y.; Long, L.; Hu, P.; Huang, M.; Xie, W.; Chen, Y.; Chen, X. Simulation of Land Use Trends and Assessment of Scale Effects on Ecosystem Service Values in the Huaihe River Basin, China. Environ. Sci. Pollut. Res. 2023, 30, 58630–58653. [Google Scholar] [CrossRef] [PubMed]
- Cai, G.; Xiong, J.; Wen, L.; Weng, A.; Lin, Y.; Li, B. Predicting the Ecosystem Service Values and Constructing Ecological Security Patterns in Future Changing Land Use Patterns. Ecol. Indic. 2023, 154, 110787. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, C.; Su, Y.; Duan, H.; Wu, X.; Lu, R.; Su, Q.; Wu, Y.; Chu, Z. Study on Spatiotemporal Evolution and Driving Forces of Habitat Quality in the Basin along the Yangtze River in Anhui Province Based on InVEST Model. Land 2023, 12, 1092. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, L.; Tao, J.; Zhang, P. Habitat Quality Evaluation before and after Unused Land Development Based on InVEST Model: A Case Study of Tang County. Chin. J. Eco-Agric. 2020, 28, 1093–1102. [Google Scholar]
- Xiao, P.; Zhou, Y.; Li, M.; Xu, J. Spatiotemporal Patterns of Habitat Quality and Its Topographic Gradient Effects of Hubei Province Based on the InVEST Model. Environ. Dev. Sustain. 2023, 25, 6419–6448. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, X.; Zhou, M.; He, S.; Gan, M.; Yang, L.; Wang, K. Impacts of Urbanization and Landscape Pattern on Habitat Quality Using OLS and GWR Models in Hangzhou, China. Ecol. Indic. 2020, 117, 106654. [Google Scholar] [CrossRef]
- Zhang, X.; Liao, L.; Xu, Z.; Zhang, J.; Chi, M.; Lan, S.; Gan, Q. Interactive Effects on Habitat Quality Using InVEST and GeoDetector Models in Wenzhou, China. Land 2022, 11, 630. [Google Scholar] [CrossRef]
- He, N.; Guo, W.; Wang, H.; Yu, L.; Cheng, S.; Huang, L.; Jiao, X.; Chen, W.; Zhou, H. Temporal and Spatial Variations in Landscape Habitat Quality under Multiple Land-Use/Land-Cover Scenarios Based on the PLUS-InVEST Model in the Yangtze River Basin, China. Land 2023, 12, 1338. [Google Scholar] [CrossRef]
- Hu, N.; Xu, D.; Zou, N.; Fan, S.; Wang, P.; Li, Y. Multi-Scenario Simulations of Land Use and Habitat Quality Based on a PLUS-InVEST Model: A Case Study of Baoding, China. Sustainability 2023, 15, 557. [Google Scholar] [CrossRef]
- Liu, Y.; Qu, B.; Jiang, E.; Hao, L.; Zhu, Y.; Jing, Y. Allocating Payments for Ecosystem Services under Future Multiple Scenarios in the Yellow River Basin, China. Ecol. Indic. 2023, 157, 111232. [Google Scholar] [CrossRef]
- Su, Y.; Ma, X.; Feng, Q.; Liu, W.; Zhu, M.; Niu, J.; Liu, G.; Shi, L. Patterns and Controls of Ecosystem Service Values under Different Land-Use Change Scenarios in a Mining-Dominated Basin of Northern China. Ecol. Indic. 2023, 151, 110321. [Google Scholar] [CrossRef]
- Li, X.; Liu, Z.; Li, S.; Li, Y. Multi-Scenario Simulation Analysis of Land Use Impacts on Habitat Quality in Tianjin Based on the PLUS Model Coupled with the InVEST Model. Sustainability 2022, 14, 6923. [Google Scholar] [CrossRef]
- Zhang, S.; Zhong, Q.; Cheng, D.; Xu, C.; Chang, Y.; Lin, Y.; Li, B. Landscape Ecological Risk Projection Based on the PLUS Model under the Localized Shared Socioeconomic Pathways in the Fujian Delta Region. Ecol. Indic. 2022, 136, 108642. [Google Scholar] [CrossRef]
- Zhang, X.; Ren, W.; Peng, H. Urban Land Use Change Simulation and Spatial Responses of Ecosystem Service Value under Multiple Scenarios: A Case Study of Wuhan, China. Ecol. Indic. 2022, 144, 109526. [Google Scholar] [CrossRef]
- He, N.; Zhou, Y.; Wang, L.; Li, Q.; Zuo, Q.; Liu, J. Spatiotemporal Differentiation and the Coupling Analysis of Ecosystem Service Value with Land Use Change in Hubei Province, China. Ecol. Indic. 2022, 145, 109693. [Google Scholar] [CrossRef]
- Zhang, X.; Song, W.; Lang, Y.; Feng, X.; Yuan, Q.; Wang, J. Land Use Changes in the Coastal Zone of China’s Hebei Province and the Corresponding Impacts on Habitat Quality. Land Use Policy 2020, 99, 104957. [Google Scholar] [CrossRef]
- Nie, Y.; Zhang, X.; Yang, Y.; Liu, Z.; He, C.; Chen, X.; Lu, T. Assessing the Impacts of Historical and Future Land-Use/Cover Change on Habitat Quality in the Urbanizing Lhasa River Basin on the Tibetan Plateau. Ecol. Indic. 2023, 148, 110147. [Google Scholar] [CrossRef]
- Lohse, K.A.; Newburn, D.A.; Opperman, J.J.; Merenlender, A.M. Forecasting Relative Impacts of Land Use on Anadromous Fish Habitat to Guide Conservation Planning. Ecol. Appl. 2008, 18, 467–482. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Abudureheman, M.; Halike, A.; Yao, K.; Yao, L.; Tang, H.; Tuheti, B. Temporal and Spatial Variation Analysis of Habitat Quality on the PLUS-InVEST Model for Ebinur Lake Basin, China. Ecol. Indic. 2022, 145, 109632. [Google Scholar] [CrossRef]
- Xie, L.; Wang, H.; Liu, S. The Ecosystem Service Values Simulation and Driving Force Analysis Based on Land Use/Land Cover: A Case Study in Inland Rivers in Arid Areas of the Aksu River Basin, China. Ecol. Indic. 2022, 138, 108828. [Google Scholar] [CrossRef]
- He, J.; Huang, J.; Li, C. The Evaluation for the Impact of Land Use Change on Habitat Quality: A Joint Contribution of Cellular Automata Scenario Simulation and Habitat Quality Assessment Model. Ecol. Model. 2017, 366, 58–67. [Google Scholar] [CrossRef]
- Wang, P.; Li, R.; Liu, D.; Wu, Y. Dynamic Characteristics and Responses of Ecosystem Services under Land Use/Land Cover Change Scenarios in the Huangshui River Basin, China. Ecol. Indic. 2022, 144, 109539. [Google Scholar] [CrossRef]
- Wang, B.; Oguchi, T.; Liang, X. Evaluating Future Habitat Quality Responding to Land Use Change under Different City Compaction Scenarios in Southern China. Cities 2023, 140, 104410. [Google Scholar] [CrossRef]
- Yin, Z.; Feng, Q.; Zhu, R.; Wang, L.; Chen, Z.; Fang, C.; Lu, R. Analysis and Prediction of the Impact of Land Use/Cover Change on Ecosystem Services Value in Gansu Province, China. Ecol. Indic. 2023, 154, 110868. [Google Scholar] [CrossRef]
- Song, W.; Deng, X. Land-Use/Land-Cover Change and Ecosystem Service Provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef]
- Shirmohammadi, B.; Malekian, A.; Salajegheh, A.; Taheri, B.; Azarnivand, H.; Malek, Z.; Verburg, P.H. Scenario Analysis for Integrated Water Resources Management under Future Land Use Change in the Urmia Lake Region, Iran. Land Use Policy 2020, 90, 104299. [Google Scholar] [CrossRef]
- Sang, L.; Zhang, C.; Yang, J.; Zhu, D.; Yun, W. Simulation of Land Use Spatial Pattern of Towns and Villages Based on CA–Markov Model. Math. Comput. Model. 2011, 54, 938–943. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A Future Land Use Simulation Model (FLUS) for Simulating Multiple Land Use Scenarios by Coupling Human and Natural Effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Fang, C. China’s Urban Agglomeration and Metropolitan Area Construction under the New Development Pattern. Econ. Geogr. 2021, 41, 1–7. [Google Scholar]
- Lin, X.; Xu, M.; Cao, C.; P. Singh, R.; Chen, W.; Ju, H. Land-Use/Land-Cover Changes and Their Influence on the Ecosystem in Chengdu City, China during the Period of 1992–2018. Sustainability 2018, 10, 3580. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, W.; Zhang, J. Assessment of Land Ecological Security from 2000 to 2020 in the Chengdu Plain Region of China. Land 2023, 12, 1448. [Google Scholar] [CrossRef]
- Li, Y.; Zhan, J.; Zhang, F.; Zhang, M.; Chen, D. The Study on Ecological Sustainable Development in Chengdu. Phys. Chem. Earth Parts A/B/C 2017, 101, 112–120. [Google Scholar] [CrossRef]
- He, J.; Hu, S. Ecological Efficiency and Its Determining Factors in an Urban Agglomeration in China: The Chengdu-Chongqing Urban Agglomeration. Urban Clim. 2022, 41, 101071. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the Drivers of Sustainable Land Expansion Using a Patch-Generating Land Use Simulation (PLUS) Model: A Case Study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Gao, L.; Tao, F.; Liu, R.; Wang, Z.; Leng, H.; Zhou, T. Multi-Scenario Simulation and Ecological Risk Analysis of Land Use Based on the PLUS Model: A Case Study of Nanjing. Sustain. Cities Soc. 2022, 85, 104055. [Google Scholar] [CrossRef]
- Huang, X.; Liu, J.; Peng, S.; Huang, B. The Impact of Multi-Scenario Land Use Change on the Water Conservation in Central Yunnan Urban Agglomeration, China. Ecol. Indic. 2023, 147, 109922. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, P.; Xia, J.; Wang, W.; Cai, W.; Chen, N.; Hu, S.; Luo, X.; Li, J.; Zhan, C. Land Use/Land Cover Prediction and Analysis of the Middle Reaches of the Yangtze River under Different Scenarios. Sci. Total Environ. 2022, 833, 155238. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zeng, J.; Chen, W. Impact of Urban Expansion on Carbon Storage under Multi-Scenario Simulations in Wuhan, China. Environ. Sci. Pollut. Res. 2022, 29, 45507–45526. [Google Scholar] [CrossRef]
- Luo, S.; Hu, X.; Sun, Y.; Yan, C.; Zhang, X. Multi-Scenario Land Use Change and Its Impact on Carbon Storage Based on Coupled Plus-Invest Model. Chin. J. Eco-Agric. 2023, 31, 300–314. [Google Scholar]
- Nie, W.; Xu, B.; Ma, S.; Yang, F.; Shi, Y.; Liu, B.; Hao, N.; Wu, R.; Lin, W.; Bao, Z. Coupling an Ecological Network with Multi-Scenario Land Use Simulation: An Ecological Spatial Constraint Approach. Remote Sens. 2022, 14, 6099. [Google Scholar] [CrossRef]
- Chen, W.; Wang, G.; Gu, T.; Fang, C.; Pan, S.; Zeng, J.; Wu, J. Simulating the Impact of Urban Expansion on Ecosystem Services in Chinese Urban Agglomerations: A Multi-Scenario Perspective. Environ. Impact Assess. Rev. 2023, 103, 107275. [Google Scholar] [CrossRef]
- Song, W.; Cao, S.; Du, M.; Lu, L. Distinctive Roles of Land-Use Efficiency in Sustainable Development Goals: An Investigation of Trade-Offs and Synergies in China. J. Clean. Prod. 2023, 382, 134889. [Google Scholar] [CrossRef]
- Yu, B.; Zang, Y.; Wu, C.; Zhao, Z. Spatiotemporal Dynamics of Wetlands and Their Future Multi-Scenario Simulation in the Yellow River Delta, China. J. Environ. Manag. 2024, 353, 120193. [Google Scholar] [CrossRef]
- Li, Y.; Yao, S.; Jiang, H.; Wang, H.; Ran, Q.; Gao, X.; Ding, X.; Ge, D. Spatial-Temporal Evolution and Prediction of Carbon Storage: An Integrated Framework Based on the MOP–PLUS–InVEST Model and an Applied Case Study in Hangzhou, East China. Land 2022, 11, 2213. [Google Scholar] [CrossRef]
- Lei, J.; Chen, Y.; Li, L.; Chen, Z.; Chen, X.; Wu, T.; Li, Y. Spatiotemporal Change of Habitat Quality in Hainan Island of China Based on Changes in Land Use. Ecol. Indic. 2022, 145, 109707. [Google Scholar] [CrossRef]
- Tang, J.; Zhou, L.; Dang, X.; Hu, F.; Yuan, B.; Yuan, Z.; Wei, L. Impacts and Predictions of Urban Expansion on Habitat Quality in the Densely Populated Areas: A Case Study of the Yellow River Basin, China. Ecol. Indic. 2023, 151, 110320. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhen, L.; Zhang, L. Dynamic Changes in the Value of China’s Ecosystem Services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Zhou, Y.; Shi, Y.; Zhu, X. Investigation of a Coupling Model of Coordination between Urbanization and the Environment. J. Environ. Manag. 2012, 98, 127–133. [Google Scholar] [CrossRef]
- Yang, C.; Zeng, W.; Yang, X. Coupling Coordination Evaluation and Sustainable Development Pattern of Geo-Ecological Environment and Urbanization in Chongqing Municipality, China. Sustain. Cities Soc. 2020, 61, 102271. [Google Scholar] [CrossRef]
- Meng, B.; Wang, X.; Zhang, Z.; Huang, P. Spatio-Temporal Pattern and Driving Force Evolution of Cultivated Land Occupied by Urban Expansion in the Chengdu Metropolitan Area. Land 2022, 11, 1458. [Google Scholar] [CrossRef]
- Wang, A.; Liao, X.; Tong, Z.; Du, W.; Zhang, J.; Liu, X.; Liu, M. Spatial-Temporal Dynamic Evaluation of the Ecosystem Service Value from the Perspective of “Production-Living-Ecological” Spaces: A Case Study in Dongliao River Basin, China. J. Clean. Prod. 2022, 333, 130218. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, D.; Wu, S.; Mo, L.; Tong, G.; Yan, D. Urban Sprawl Decreases the Value of Ecosystem Services and Intensifies the Supply Scarcity of Ecosystem Services in China. Sci. Total Environ. 2019, 697, 134170. [Google Scholar] [CrossRef]
- Zeng, C.; Liu, Y.; Stein, A.; Jiao, L. Characterization and Spatial Modeling of Urban Sprawl in the Wuhan Metropolitan Area, China. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 10–24. [Google Scholar] [CrossRef]
- Yang, Y. Evolution of Habitat Quality and Association with Land-Use Changes in Mountainous Areas: A Case Study of the Taihang Mountains in Hebei Province, China. Ecol. Indic. 2021, 129, 107967. [Google Scholar] [CrossRef]
- Li, T.; Bao, R.; Li, L.; Tang, M.; Deng, H. Temporal and Spatial Changes of Habitat Quality and Their Potential Driving Factors in Southwest China. Land 2023, 12, 346. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, J.; Li, Y. Exploring the Spatial and Temporal Driving Mechanisms of Landscape Patterns on Habitat Quality in a City Undergoing Rapid Urbanization Based on GTWR and MGWR: The Case of Nanjing, China. Ecol. Indic. 2022, 143, 109333. [Google Scholar] [CrossRef]
- Yang, X.; Yang, W.; Li, Y.; Hu, B. Land Use Land Cover Change Analysis after the Earthquake of Wenchuan. In Proceedings of the 2010 International Conference on Multimedia Technology, Ningbo, China, 29–31 October 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–4. [Google Scholar]
- Fangbo, L.; Yanting, Z. Measurement and Spatial Difference Analysis of Innovation-Driven Urban Development Levels in Sichuan Province. Contemp. Soc. Sci. 2022, 2022, 13. [Google Scholar]
- Xiao, Y.; Li, Y.; Huang, H. Conflict or Coordination? Assessment of Coordinated Development between Socioeconomic and Ecological Environment in Resource-Based Cities: Evidence from Sichuan Province of China. Environ. Sci. Pollut. Res. 2021, 28, 66327–66339. [Google Scholar] [CrossRef]
- Zhao, Y.; He, L.; Bai, W.; He, Z.; Luo, F.; Wang, Z. Prediction of Ecological Security Patterns Based on Urban Expansion: A Case Study of Chengdu. Ecol. Indic. 2024, 158, 111467. [Google Scholar] [CrossRef]
- Sichuan Provincial People’s Government S.P.P.G. Six Major Areas with 50 Measures! Striving for More “Chengdu Blue”. Available online: https://www.sc.gov.cn/10462/11857/13305/13370/2023/4/4/964775e514af47a7ab8baafabeef4172.shtml (accessed on 7 March 2024).
- Zhao, S.; Da, L.; Tang, Z.; Fang, H.; Song, K.; Fang, J. Ecological Consequences of Rapid Urban Expansion: Shanghai, China. Front. Ecol. Environ. 2006, 4, 341–346. [Google Scholar] [CrossRef]
- Lin, Z. Ecological Urbanism in East Asia: A Comparative Assessment of Two Eco-Cities in Japan and China. Landsc. Urban Plan. 2018, 179, 90–102. [Google Scholar] [CrossRef]
- Li, X.; Suoerdahan, G.; Shi, Z.; Xing, Z.; Ren, Y.; Yang, R. Spatial–Temporal Impacts of Urban Sprawl on Ecosystem Services: Implications for Urban Planning in the Process of Rapid Urbanization. Land 2021, 10, 1210. [Google Scholar] [CrossRef]
- Li, W.; Zhou, W.; Bai, Y.; Pickett, S.T.; Han, L. The Smart Growth of Chinese Cities: Opportunities Offered by Vacant Land. Land Degrad. Dev. 2018, 29, 3512–3520. [Google Scholar] [CrossRef]
- Xiong, C.; Zhang, Y.; Liu, X.; Luan, Q.; Wei, S. Urban Vacant Land in Rapidly Urbanized Areas: Status, Micro-Level Drivers, and Implications. J. Chin. Gov. 2021, 6, 554–577. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, L.; Xia, J.; Duan, K. Spatial-Temporal Evolution and Its Influencing Factors on Urban Land Use Efficiency in China’s Yangtze River Economic Belt. Land 2022, 12, 76. [Google Scholar] [CrossRef]
- Zhu, D.; Wang, Y.; Peng, S.; Zhang, F. Influence Mechanism of Polycentric Spatial Structure on Urban Land Use Efficiency: A Moderated Mediation Model. Int. J. Environ. Res. Public Health 2022, 19, 16478. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Wen, Z.; Chen, S.; Ding, S.; Zhang, M. Quantifying Land Use/Land Cover and Landscape Pattern Changes and Impacts on Ecosystem Services. Int. J. Environ. Res. Public Health 2020, 17, 126. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Hou, X.; Wang, Z.; Shen, Y. Study the Effect of Industrial Structure Optimization on Urban Land-Use Efficiency in China. Land Use Policy 2021, 105, 105390. [Google Scholar] [CrossRef]
- Loo, B.P.; Comtois, C. Sustainable Railway Futures: Issues and Challenges; Routledge: London, UK, 2015. [Google Scholar]
- Salahi Moghadam, A. A Multidimensional and Dynamic Analysis of Urban Spatial Structure: A Case-Study of the Sydney Metropolitan Area, 1981–2006. Ph.D. Thesis, UNSW Sydney, Kensington, Australia, 2013. [Google Scholar]
- Rastvortseva, S.N.; Manaeva, I.V. Modern Development of Small and Medium-Sized Cities: Trends and Drivers. Ekon. I Sotsialnye Peremeny 2022, 15, 110–127. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Z.; Chen, Y.; Fang, C. Factors Influencing Ecosystem Services in the Pearl River Delta, China: Spatiotemporal Differentiation and Varying Importance. Resour. Conserv. Recycl. 2021, 168, 105477. [Google Scholar] [CrossRef]
Data Types | Data Name | Abbreviations | Data Description | Data Origins | Reference |
---|---|---|---|---|---|
Land use data | Land use | LU | Land use data for 2000, 2010, and 2020 within the study area, reflecting the type of land use within the unit space. | The GlobeLand30 data (www.globallandcover.com, accessed 24 June 2023) | [26,51,52] |
Physical geography data | Elevation | DEM | Distribution of surface heights within the study area, reflecting the elevation of the surface per unit of space. | The geospatial data cloud platform (https://www.gscloud.cn/#page1/1, accessed 25 June 2023) | [26,51,52] |
Slope | SLOPE | Calculated from elevation data with the help of Arcgis 10.8, responding to the value of the slope per unit of space. | Using DEM elevation data and the slope analysis tool in ArcGIS 10.8, the slope information was obtained. | [26,51,52] | |
Mean annual temperature | TEMP | Annual average surface temperature within the study area, reflecting the value of surface temperature per unit of space. | Earth data open access for open science (https://ladsweb.modaps.eosdis.nasa.gov/, accessed 26 June 2023) | [26,51,52] | |
Normalized Difference Vegetation Index | NDVI | Vegetation cover on the ground surface within the study area, reflecting the amount of vegetation cover per unit of space. | The national ecological data center resource sharing service platform (http://www.nesdc.org.cn/, accessed 26 June 2023) | [26,51,52] | |
Distance from water | WATER | Calculated from the watershed data in OpenStreetMap with the help of Acrgis 10.8, responding to the spatial distance of the unit from watersheds. | OpenStreetMap (https://www.openstreetmap.org/, accessed 26 June 2023) | [26,51,52] | |
Socio-economic data | Population | POP | Number of people within the study area, responding to the number of people per unit of space. | Worldpop (https://www.worldpop.org/, accessed 27 June 2023) | [26,51,52] |
Night light | LIGHT | Night-time light magnitude within the study area, responding to night-time light values per unit of space. | The Resource and Environmental Science and Data Center of the Institute of Geographical Sciences and Resources, Chinese Academy of Sciences (https://www.resdc.cn/, accessed 25 June 2023) | [26,51,52] | |
Gross domestic product | GDP | GDP values within the study area, responding to GDP values per unit of space. | The Resource and Environmental Science and Data Center of the Institute of Geographical Sciences and Resources, Chinese Academy of Sciences (https://www.resdc.cn/, accessed 25 June 2023) | [26,51,52] | |
Distance to road | ROAD | Calculated from the road data in OpenStreetMap with the help of Arcgis 10.8, responding to the distance from the road per unit of space. | OpenStreetMap (https://www.openstreetmap.org/, accessed 26 June 2023) | [26,51,52] | |
Distance to railroad | RAIL | Calculated from the railroad data in OpenStreetMap with the help of Arcgis 10.8, responding to the distance from the railroad per unit of space. | OpenStreetMap (https://www.openstreetmap.org/, accessed 26 June 2023) | [26,51,52] |
Land Type | Cropland | Forest Land | Grassland | Waters | Unused Land | Building Land |
---|---|---|---|---|---|---|
Weights | 0.129 | 0.113 | 0.097 | 0.111 | 0.048 | 0.072 |
Threat Factor | Maximum Impact Distance/km | Weighting | Distance Decay Function |
---|---|---|---|
Cropland | 1 | 0.2 | Linear |
Building land | 8 | 0.6 | Exponential |
Unused land | 3 | 0.5 | Exponential |
Land Type | Habitat Suitability | Building Land | Cropland | Unused Land |
---|---|---|---|---|
Cropland | 0.3 | 0.6 | 0 | 0.5 |
Forest land | 1 | 0.5 | 0.6 | 0 |
Grassland | 0.7 | 0.6 | 0.8 | 0.4 |
Waters | 0.7 | 0.8 | 0.7 | 0.4 |
Unused land | 0.2 | 0.7 | 0.1 | 0 |
Building land | 0 | 0 | 0 | 0 |
Value of Ecosystem Services | Cropland | Forest Land | Grassland | Waters | Unused Land | Building Land | |
---|---|---|---|---|---|---|---|
Supply Services | Food production | 2160.55 | 737.13 | 965.89 | 2033.46 | 0.00 | 0.00 |
Raw material production | 1016.73 | 1677.61 | 1423.42 | 584.62 | 0.00 | 0.00 | |
Water supply | 50.84 | 864.22 | 787.97 | 21,071.74 | 0.00 | 0.00 | |
Regulating services | Gas regulation | 1703.02 | 5515.76 | 5007.40 | 1957.21 | 50.84 | 0.00 |
Climate regulation | 915.06 | 16,521.87 | 13,242.91 | 5820.78 | 0.00 | 0.00 | |
Purification of the environment | 254.18 | 4905.72 | 4371.94 | 14,107.14 | 25.42 | 0.00 | |
Hydrological regulation | 686.29 | 12,048.26 | 9709.78 | 259,876.31 | 76.25 | 0.00 | |
Support services | Soil conservation | 2618.08 | 6735.84 | 6100.38 | 2363.90 | 50.84 | 0.00 |
Nutrient maintenance | 305.02 | 508.37 | 457.53 | 177.93 | 0.00 | 0.00 | |
Biodiversity | 330.44 | 6125.80 | 5541.18 | 6481.66 | 50.84 | 0.00 | |
Cultural services | Aesthetic landscapes | 152.51 | 2694.34 | 2440.15 | 4804.05 | 25.42 | 0.00 |
Value of CC | Level of CC |
---|---|
0 < D ≤ 0.1 | Extreme dissonance |
0.1 < D ≤ 0.2 | Severe dissonance |
0.2 < D ≤ 0.3 | Moderate dissonance |
0.3 < D ≤ 0.4 | Mild dissonance |
0.4 < D ≤ 0.5 | On the verge of dissonance |
0.5 < D ≤ 0.6 | Grudging coordination |
0.6 < D ≤ 0.7 | Primary coordination |
0.7 < D ≤ 0.8 | Intermediate coordination |
0.8 < D ≤ 0.9 | Good coordination |
0.9 < D ≤ 1 | Quality coordination |
Region | Year | 2000 | 2010 | 2020 | NDS | EDS | UDS | DEBS |
---|---|---|---|---|---|---|---|---|
Chengdu | Coordination Index T Value | 0.3618 | 0.3456 | 0.3533 | 0.3352 | 0.3358 | 0.3342 | 0.3355 |
Coupling Degree C Value | 0.9668 | 0.9645 | 0.9642 | 0.9654 | 0.9655 | 0.9657 | 0.9657 | |
CC Value | 0.5914 | 0.5773 | 0.5837 | 0.5689 | 0.5694 | 0.5681 | 0.5692 | |
CC Degree | Gc | Gc | Gc | Gc | Gc | Gc | Gc | |
Deyang | Coordination Index T Value | 0.2193 | 0.2215 | 0.2217 | 0.2165 | 0.2168 | 0.2167 | 0.2166 |
Coupling Degree C Value | 0.9813 | 0.9822 | 0.9816 | 0.9818 | 0.9818 | 0.9817 | 0.9818 | |
CC Value | 0.4639 | 0.4664 | 0.4665 | 0.461 | 0.4613 | 0.4612 | 0.4611 | |
CC Degree | Od | Od | Od | Od | Od | Od | Od | |
Meishan | Coordination Index T Value | 0.2615 | 0.2637 | 0.2599 | 0.2537 | 0.2525 | 0.2542 | 0.2529 |
Coupling Degree C Value | 0.9988 | 0.9991 | 0.9988 | 0.999 | 0.999 | 0.9991 | 0.999 | |
CC Value | 0.5111 | 0.5133 | 0.5095 | 0.5034 | 0.5023 | 0.504 | 0.5026 | |
CC Degree | Gc | Gc | Gc | Gc | Gc | Gc | Gc | |
Ziyang | Coordination Index T Value | 0.1579 | 0.1697 | 0.1655 | 0.195 | 0.1952 | 0.1954 | 0.1955 |
Coupling Degree C Value | 0.9712 | 0.9743 | 0.9726 | 0.9838 | 0.9839 | 0.984 | 0.9841 | |
CC Value | 0.3915 | 0.4066 | 0.4012 | 0.438 | 0.4383 | 0.4385 | 0.4386 | |
CC Degree | Md | Od | Od | Od | Od | Od | Od |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, G.; Feng, S.; Hu, C. A Study of the Spatiotemporal Evolution Patterns and Coupling Coordination between Ecosystem Service Values and Habitat Quality in Diverse Scenarios: The Case of Chengdu Metropolitan Area, China. Sustainability 2024, 16, 3741. https://doi.org/10.3390/su16093741
Huang G, Feng S, Hu C. A Study of the Spatiotemporal Evolution Patterns and Coupling Coordination between Ecosystem Service Values and Habitat Quality in Diverse Scenarios: The Case of Chengdu Metropolitan Area, China. Sustainability. 2024; 16(9):3741. https://doi.org/10.3390/su16093741
Chicago/Turabian StyleHuang, Gaoliu, Shiming Feng, and Chunguang Hu. 2024. "A Study of the Spatiotemporal Evolution Patterns and Coupling Coordination between Ecosystem Service Values and Habitat Quality in Diverse Scenarios: The Case of Chengdu Metropolitan Area, China" Sustainability 16, no. 9: 3741. https://doi.org/10.3390/su16093741
APA StyleHuang, G., Feng, S., & Hu, C. (2024). A Study of the Spatiotemporal Evolution Patterns and Coupling Coordination between Ecosystem Service Values and Habitat Quality in Diverse Scenarios: The Case of Chengdu Metropolitan Area, China. Sustainability, 16(9), 3741. https://doi.org/10.3390/su16093741