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Abstract: The ability of AI to process vast datasets can enhance creativity, but its rigid
knowledge base and lack of reflective thinking limit sustainable design. Generative De-
sign Thinking (GDT) integrates human cognition and machine learning to enhance design
automation. This study aims to explore the cognitive mechanisms underlying GDT and
their impact on design efficiency. Using behavioral coding and quantitative analysis, we
developed a three-tier cognitive model comprising a macro-cycle (knowledge acquisition
and expression), meso-cycle (creative generation, intelligent evaluation, and feedback ad-
justment), and micro-cycle (knowledge base and model optimization). The findings reveal
that increased task complexity elevates cognitive load, supporting the hypothesis that
designers need to allocate more cognitive resources for complex problems. Knowledge base
optimization significantly impacts design efficiency more than generative model refinement.
Moreover, creative generation, evaluation, and feedback adjustment are interdependent,
highlighting the importance of a dynamic knowledge base for creativity. This study chal-
lenges traditional design automation approaches by advocating for an adaptive framework
that balances cognitive processes and machine capabilities. The results suggest that improv-
ing knowledge management and reducing cognitive load can enhance design outcomes.
Future research should focus on developing flexible, real-time knowledge repositories and
optimizing generative models for interdisciplinary and sustainable design contexts.

Keywords: generative design thinking; cognitive model; sustainable design innovation

1. Introduction
The design process rarely leads directly to optimal results. Instead, it typically goes

through several phases of internal and external information exchange, ultimately leading
to the final design [1]. This progression is often characterized by a fuzzy, iterative cycle
involving diffusion, interaction, and synthesis, resembling a spiral cognitive process. Since
the early 2000s, design thinking has become widely adopted in business and engineering
as a framework for innovation; however, the rapid advances in artificial intelligence (AI)
over the last decade—particularly the breakthroughs in generative AI since 2020—present
both significant challenges and opportunities for traditional design thinking methods [2].
As massive data sources increasingly overlap with traditional manual analysis, the role
of machine intelligence in design has become increasingly important [3]. AI technolo-
gies are increasingly integrated into human design activities because of their ability to
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solve complex, ambiguous and uncertain design problems by processing large, complex
datasets [4,5].

AI addresses design challenges by conceptualizing them as interconnected entities
governed by logical relationships and solving them through algorithmic search processes.
Despite its clear advantages, such as the ability to uncover hidden patterns within design
spaces and perform sophisticated feature extraction, AI has significant limitations. For
example, the rigidity of an AI knowledge base limits its ability to generate knowledge
sustainably and makes it difficult for it to pose or think about new design challenges.
Dissimilar to human cognition, AI lacks retrospective thinking, which limits its ability to
reflect on the underlying reasons behind design decisions—a critical deficiency in today’s
AI-driven design. As shown in Table 1, when AI technology is used in design activities,
a dynamic interaction and tension arises between the emotional, intuitive thinking of
designers and the rational, precise thinking that is characteristic of AI. This interaction
is evident in the longitudinal output process to achieve the same design goal, where the
two mindsets—the fuzzy, creative approach of the designer and the systematic precision of
the AI—align and complement each other, leading to better design results. This tension
further manifests itself in the horizontal thinking of human designers as opposed to the
vertical, algorithm-driven thinking of AI. The comprehensive, exploratory nature of human
design goals often does not fit seamlessly with the targeted, expansive search capabilities
of AI.

Table 1. Comparison of Different Cognitive Approaches in Design Thinking.

Mindset Design Process Thinking Characteristics

Human Mind Association–Analogy–Reflection Sensual Diffusion
Machine Thinking Abstraction–Clustering–Iterative Learning Rational Aggregation

In this regard, a number of studies have been conducted by scientists. Early on,
North [6] proposed that there is a division of labor between human and AI cognition, where
each is responsible for tasks that best suit their abilities. Schon and Jarrah et al. [7,8] suggest
that computers serve as a means to improve human intelligence and can play a supportive,
supportive role. Subsequently, Yang et al. [9] examined the limitations and challenges
of AI in design activities, while Jabi [10] addressed issues surrounding the relationship
between design intent and response. The cognitive motivation model of Brown [11] and
Paulus [12] and the associative memory model of Nijstad [13] underline the positive effects
of collaborative divergent thinking between humans and machines on design creativity.
Harvey [14], Cropley [15] and Kolfschoten [16] have explored collaborative convergent
thinking between humans and machines; however, this process lacks sufficient structure
and facilitation, and universal tools and methods have yet to be established.

Traditional design methods and tools are increasingly unable to meet the demands
of the Smart Age, which requires designers and teams to demonstrate greater levels of
creativity, adaptability, integration and control when tackling complex and systemic prob-
lems. Design activities have evolved from leadership by “individual” teams of designers
to multidisciplinary, collaborative innovation processes, creating new requirements for
the study of design thinking and cognitive process analysis. Historically, design research
has focused on summarizing practical experiences and exploring designers’ intuition and
inspiration; however, given significant societal changes and the changing technological
landscape, research has shifted from focusing on the design object itself to examining the
relationships and causes underlying design processes. Design research increasingly seeks
to understand the cognitive mechanisms involved in design activities, particularly through
quantitative analysis of design thought processes. This includes conducting psychological
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experiments, collecting and analyzing data, and attempting to explain the complex cogni-
tive phenomena inherent in the design process. Only through a deeper exploration of the
nature of design and related phenomena can we better understand the conceptualization
of design processes, the development of solutions, the conditions for creativity, and the
impact of process content and structure on design outcomes.

In the rapidly evolving landscape of design and technology, several studies have laid
the groundwork for understanding the integration of generative AI into design processes.
Brown et al. [17] explored the impact of generative design on students’ divergent and
convergent thinking, offering insights into its role in mechanical design education; however,
their work may not provide a comprehensive cognitive model that integrates human and
AI cognition. Saadi and Yang [18] reframed the designer’s role in early-stage design,
highlighting collaboration with computational tools, but may lack empirical validation in
real-world settings. Koolman et al. [19] compared traditional, parametric, and generative
design thinking among engineering students yet may not address sustainability or offer a
unified cognitive framework. Monje and Popova [20,21] discussed co-creation processes
but might not detail a cognitive model or empirical validation.

Despite the integration of AI into design activities, significant differences still exist
between design thinking and algorithmic thinking, leading to several challenges in current
human–computer collaborative design: (1) Designers may struggle to understand the
logic behind AI-generated designs, particularly if the AI relies on complex data and preset
rules. This lack of transparency can limit the versatility of the design process, as designers
may find it difficult to tweak or modify AI decisions effectively. (2) The efficiency of
human–computer collaboration is compromised by the time-consuming decision-making
and evaluation processes that result from repeated interactions between designers and
algorithms. (3) Generative design results may not fully meet industry standards and
user requirements because inconsistencies between aesthetics and functionality bring
additional optimization and customization tasks for designers. (4) The differing approaches
of design thinking (creativity, empathy, iteration) and algorithmic thinking (logic, data,
rules) can create misunderstandings or misalignments in the design process. (5) There
is a lack of a unified framework that integrates design thinking, AI, and sustainable
development, making it challenging to implement AI in a way that considers environmental
and social impacts.

Although AI has powerful analysis, learning and synthesis capabilities, it still needs to
adhere to the basic principles of creative thinking to increase its advantages while working
around its limitations; therefore, current research lacks a comprehensive theoretical frame-
work that fully integrates design thinking, AI and sustainable development. To fill this
gap, this article proposes a new theory of generative design thinking. This theory not only
systematically integrates interdisciplinary elements but also places particular emphasis on
practicality and support for sustainable development goals. Compared with existing stud-
ies, this theory offers greater interdisciplinary integration, broader application potential,
and greater flexibility in addressing complex design challenges. This manuscript is divided
into four different sections. Based on relevant assumptions from the existing literature,
the concept, principles and framework of generative design thinking are first articulated,
and six sub-projects are proposed. Second, empirical projects from design practice are
selected for analysis, using attentional feedback to collect data. Third, structural equation
modeling, a robust quantitative method, is used to analyze collected data. Finally, through
empirical analysis of three case studies from different design domains, the effectiveness
of the generative design thinking model in enhancing design efficiency and sustainability
is validated.
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2. Relevant Theories
2.1. Bidirectional Recognition of Design Thinking

The concept of design thinking has been defined in various ways throughout the
literature [22–26]. Hassi and Laakso [27] identified three key dimensions of design thinking:
practice, cognitive approach and mindfulness. The scientific discourse on the topic of
design thinking describes the theoretical foundations, cognitive approaches and method-
ological paradigms that are inherent in the design discipline. The core and substance of
design thinking lies in its reliance on abductive reasoning, which is characterized by the
pursuit of target values through entities and operating mechanisms that are not explic-
itly defined. Historical models of design thinking, exemplified by the Double Diamond
Model, are presented as universal framework templates rather than stand-alone structural
configurations. From a systemic perspective, the Earth’s ecosystem functions as a subsys-
tem within the cosmic system. It includes the natural and objective processes of resource
acquisition and transformation (top-down design thinking) as well as human-controlled
bottom-up processes of resource manipulation. In the context of sustainable development,
the Earth can be seen as a great designer as its interconnected social services adapt and
evolve resource flows, facilitated by the role of each individual in this system. This iterative
process promotes the continuous generation of adaptive solutions through design thinking
methods and thus responds to the challenges of sustainable resource management.

Nature, as a fine-tuned system of labor division, creates a top-down network of
resource transformation. For any system, the efficiency of this transformation process
determines its future sustainability and competitive edge. For example, resource depletion
in urban areas disrupts the efficiency of those dependent on the urban system for resource
conversion, while manual craftsmanship cannot compete with the large-scale resource
transformation enabled by mechanized production. Sustainable development, therefore,
hinges on the self-organization and optimization of resource acquisition and conversion
processes—a core principle in design thinking.

Despite the increasing use of AI tools in design to increase creative efficiency, designers
still struggle to understand the functionality of AI and its role in developing sustainable
and innovative solutions.

2.2. Cognitive Theories

Cognitive theories explain how individuals acquire, process, and store information
through mental processes such as perception, thinking, memory, and problem-solving.
These theories focus on how the brain governs behavior and emotions, exploring the
interaction of various mental processes. Cognitive theory provides a foundation for investi-
gating the retrospective logic inherent in design thinking. Design cognition refers to the
mental processes and representations involved in design [28]. Different scholars approach
design cognition research from various angles. For instance, Dinar et al. [29] advocate for
more robust hypothesis testing and quantitative methods for large sample sizes, while
Hu et al. [30] emphasize applying existing cognitive psychology and neuropsychology
theories to design.

Historically, design has been viewed as a contextualized, exploratory, and evolving
process, as seen in models such as the Function–Behaviour–Structure (FBS) model [31]. In
terms of measuring and assessing design cognition, traditional methods such as verbal
protocol analysis [32] have dominated the field; however, newer methods—such as behav-
ioral experiments, psychometrics, neuroscience, and computational modeling—are gaining
traction. Current design cognition research methods span a wide spectrum, from controlled
experiments to naturalistic settings, from micro- to macro-level time scales, and from case
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studies to experimental data collection, incorporating both qualitative and quantitative
analysis strategies.

Recent studies [33] suggest design cognition can be measured through various ap-
proaches, including analyzing design processes and outcomes, physiological measures
such as eye-tracking, galvanic skin responses, and heart rate, as well as neurophysiological
measures such as brain imaging (fMRI and fNIRS) and EEG.

2.3. Generative Design

Generative Design (GD) is a novel design methodology that integrates technologies
such as artificial intelligence, big data, and smart manufacturing. Dissimilar to traditional
computer-aided design, Mitchell [34] describes generative design systems as tools that pro-
duce potential solutions to predefined problems. Fischer [35] defines GD as a methodology
in which designers interact with a predefined generative system throughout the design
process. Frazer [36] compares GD to evolutionary processes in nature, shaping virtual
space design, while Krause [37] describes GD systems as autonomous agents capable of
evolving design spaces.

Caldas [38] views GD systems as mechanisms that explore solutions in the design
space, aiming to meet both formal and performance criteria. These systems introduce a
methodology and philosophy that interpret the world as a series of dynamic processes and
their outcomes. In the design field, generative design holds the potential to revolutionize
methodologies within the next 5–10 years [39], enhancing designers’ creativity while
redefining the role of human-AI collaboration.

For AI, generative design provides an ideal platform to demonstrate how human
experts and AI systems can collaborate on complex creative tasks. Its importance is espe-
cially pronounced in the context of sustainability. To meet the United Nations Sustainable
Development Goals (SDGs) by 2030, a significant number of innovative and sustainable
solutions must be developed.

From a cognitive psychology perspective, generative design involves an iterative
process of searching and solving within a design space [40]. Bernal et al. [41] argue that
GD enables designers to break free from stereotypical thinking and functional fixations,
allowing them to explore a broader range of solutions. Oxman [42] suggests that designers
produce design outcomes by adjusting algorithmic and constraint models. Oxman’s stud-
ies [43,44] emphasize that the generative design process involves interpreting knowledge
structures, sequencing design information acquisition, and applying logical reasoning. Sass
and Oxman [45] identified key generative design techniques, such as cellular automata,
genetic algorithms, shape grammars, and swarm intelligence, which led to the development
of integrated generative design systems.

A crucial aspect of generative design is the need for an interaction module that enables
designers to control and modify generative mechanisms to arrive at viable solutions.
This study examines cognitive models within generative design systems to explore how
designers represent, generate, and evaluate solutions during the generative design process,
aiming to characterize implicit design cognition quantitatively.

3. Cognitively-Driven Generative Design Thinking Models
3.1. Generative Design Cognitive Modeling

Generative design is a process where designers define design objects through computer
programs or algorithmic rules. Its cognitive process involves correlating and visualizing
exploratory information within the design space, characterized by dynamic, diverse, and
evolving patterns. This collaborative approach exemplifies sustainable design methodolo-
gies in the era of digital intelligence.
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The cognitive model underlying generative product design forms the logical foun-
dation of generative design thinking. It highlights the heuristic exploration and iterative
development of novel solutions, as opposed to strictly adhering to predefined rules or past
experiences. As illustrated in Figure 1, the cognitive model of generative design can be
summarized into the following key elements:

1. Tacit Knowledge Activation;
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Designers activate both explicit and tacit knowledge based on an initial understanding
of the problem. Through mechanisms such as focused attention and analogical mapping,
they expand their cognitive space, which facilitates the activation of relevant knowledge
for creative exploration.

2. Discovery Knowledge Generation;

In the iterative cycle of design cognition, designers continuously discover new tacit
knowledge by constructing mediating representations and exploring potential connections.
This emergent knowledge is integrated into mental models, promoting the generation of
innovative solutions.

3. Conceptual Semantic Construction;

Designers externalize tacit knowledge through representations and construct semantic
meanings for new concepts. By leveraging visual reasoning and structural mapping, these
concepts are linked to real-world properties, thus taking on a concrete form.

4. Horizontal Transferability;

Generative cognition encourages the cross-domain migration of knowledge. Designers
can integrate knowledge from different fields into the current design context, fostering
innovation and expanding the range of potential solutions.

5. Human–Computer Collaboration and Feedback;

In modern generative design, human–computer collaboration plays a crucial role. AI
systems generate diverse design options through data-driven approaches, while designers
apply experience and insights to screen, refine, and optimize these options, leading to the
final solution through iterative feedback.

6. Double Helix Driving Mechanism.

The cognitive process follows a double-helix structure, driven alternately by human
intuition and machine computation. In the diffusion phase, cognitive activities focus
on expanding the design space, while in the convergence phase, potential solutions are
screened, refined, and materialized.
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In summary, the generative design cognitive model emphasizes flexibility, discovery,
and creativity. It aims to transcend the limitations of empirical approaches and foster
innovative design solutions through the generation of knowledge and the activation of
designers’ initiatives. Dissimilar to traditional rule-based design, this model values tacit
knowledge and features feedback, dispersion, and iteration, providing a new cognitive
paradigm for solving complex, open-ended problems.

This cognitive model outlines the underlying mechanisms of design cognition and
offers a theoretical foundation and operational framework for generative design thinking.
It relies on artificial intelligence to assist designers in exploring and generating innova-
tive solutions, making it increasingly relevant in design education and practice. This
model enhances design efficiency and aligns with sustainability goals, which are critical in
contemporary design practices.

The core elements of the generative design cognitive model include data-driven
decision-making, sustainability, and collaboration. AI algorithms facilitate an in-depth
understanding of user needs, enabling designers to make well-informed design decisions.
Moreover, AI enhances sustainability by optimizing material usage, reducing energy con-
sumption, and promoting environmentally conscious solutions. The integration of human
creativity with machine learning fosters a collaborative environment that drives innovation
and advances the design process.

Generative design is not just a methodology for addressing complex design problems;
it introduces a unique design thinking paradigm. This mode combines computational
processes, natural language technology, and digital design principles, offering a powerful
framework for exploring and solving design challenges.

3.2. Generative Design Thinking (GDTM)

The development of the Generative Design Thinking Model (GDTM) represents an
evolution in the cognitive process of design, transitioning from traditional pen-and-paper
sketching to digital drawing and algorithmic rules. Core cognitive concepts, such as
solution space exploration, representation, reflection, modification, refinement, adaptation,
and mediation, are integral to various design thinking models.

Intelligent systems and generative design technologies strongly depend on pre-existing
knowledge and fixed rules, with reasoning and decision-making processes largely anchored
in internal knowledge bases and predefined logic. This reliance, however, often constrains
their ability to produce innovative solutions that extend beyond the established solution
space. To bridge the inherent limitations between intelligent systems and generative
design, two main challenges emerge: fostering openness to innovation and enhancing
computational capabilities. This section thus proposes a unified generative design thinking
framework, incorporating classical design thinking models. Addressing these challenges
involves preserving essential knowledge while encouraging the integration of external,
innovative elements to transcend cognitive stereotypes. Additionally, advancing generative
design requires developing a complex computational process that combines generation,
evaluation, and evolution to improve computational efficacy.

The generative design thinking framework synthesizes innovative thinking with
computational logic to address these challenges. This model combines “solution-based
problem solving” and “data-driven algorithmic solving,” blending design intuition with
machine reasoning for a synergistic integration of human and machine cognition. The
double-diamond approach, emphasizing “divergence with convergence” and “continuous
evolution,” empowers intelligent systems to innovate and explore uncharted design spaces
while leveraging existing knowledge to generate novel solutions.
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Von Neumann’s thinking contributes to the notion of “modular decomposition and
logical calculation,” which decomposes complex problems into manageable logical units.
These units are subsequently processed through orderly collaboration among modules.
In the generative design thinking model, computable modules such as knowledge bases,
generation, evaluation, and evolution are defined. Each module’s computational logic and
interactive interface are systematically integrated, thereby empowering the overall system
with robust computational capabilities.

3.2.1. Double-Diamond Design Modeling

The Double Diamond model is widely used in the design field. It includes a discovery
phase involving divergent thinking and a definition phase involving convergent thinking.
The discovery phase openly explores phenomena and perspectives to define the design
scope and objectives. The definition phase clarifies the core design issues and requirements.
Brainstorming is conducted during the development phase to generate design solution
prototypes. The delivery phase iteratively tests and refines the prototypes, leading to the
final design outcome.

The Double Diamond model emphasizes the alternating application of divergent and
convergent thinking, as well as the dual exploration of problem and solution spaces. This
streamlined framework covers the entire trajectory from problem discovery to solution de-
livery, providing a holistic structure for generative design thinking. The model’s emphasis
on alternating divergent and convergent thinking aligns with the cognitive characteristics
of generative design thinking.

The four stages—discovery, definition, development, and delivery—offer a modular
framework that supports the integration of automated methods into each phase of the
generative design process. As a simple yet versatile design process model, the Double
Diamond framework enables the integration of information processing and optimization
modules, positioning it as a paradigm for generative design in the AI era.

In summary, the integration of the Double Diamond model establishes a robust theo-
retical framework for generative design thinking. This approach retains the fundamental
structure and process of the Double Diamond model while optimizing and reconstructing
it through digital methods to make the design process more systematic and scientific, as
illustrated in Figure 2.
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The Double Diamond thinking model provides for the coexistence of various gen-
erative strategies, such as rule-based, example-based, and human–computer interaction
approaches. In the evaluation stage, the model also offers a multi-criteria evaluation system,
comprehensively considering multiple dimensions, including functionality, aesthetics, and
manufacturability, to ensure the distinctiveness of the generated design solutions. Further-
more, it provides a continuous cycle of “innovation-evaluation-evolution”, highlighting



Sustainability 2025, 17, 372 9 of 28

the dynamic evolution inherent in improving generative design thinking; however, the
Double Diamond framework needs to be enhanced through digitization, parameterization,
and automation to align with the cognitive processes of generative design. Consequently,
integrating a design model that incorporates computational thinking is essential. The von
Neumann model introduces a core digital module into the framework.

3.2.2. Von Neumann’s Model of Thinking

The Von Neumann architecture, as initially conceptualized by John von Neumann
in 1945, delineates the core components of a computer system. This architecture com-
prises input devices for data ingestion, storage devices for retaining both input data and
intermediate computation results, an arithmetic and logic unit (ALU) for performing arith-
metic and logical operations, a control unit for managing the computational processes and
orchestrating the internal components, and output devices for presenting the results of
computations. This framework has become the cornerstone of modern computer design,
standardizing the processing of data and instructions within a computational system.

This model abstracts the input-processing-output information flow of a computer
system and highlights the role of the control unit, aligning with the need for problem
definition and solution management in design. The five components of the von Neumann
model offer a modular structure for generative design thinking, where intelligent design
methods can be embedded into each module, as illustrated in Figure 3.
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The core of the von Neumann thinking model lies in “modular decomposition” and
“logical computation,” breaking down complex problems into manageable sub-problems
that can be solved collaboratively by simple logical units. Modular decomposition refers to
dividing the innovative design process into modules such as knowledge base, generation,
evaluation, and evolution, with each module responsible for specific computational tasks.
Logical computation involves each module performing logical operations through rules,
algorithms, and models, with input and output exchanged according to standardized pro-
tocols. System integration is achieved by linking and coordinating the modules according
to a defined process, forming a unified computational system for innovative design.

The generative design thinking model is a process framework built upon the Double
Diamond design model and the von Neumann computing system model. The Double
Diamond model provides the overall thinking logic of “innovative divergence” and “con-
tinuous evolution” for the generative design thinking model, while the von Neumann
thinking model offers the technical pathway of “modular decomposition” and “logical
computation”. This integration is illustrated in Figure 4.
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The essence of this model can be summarized as comprising three core modules:
input, processing, and output. These modules are introduced at each stage of the de-
sign process—discovery, definition, development, and delivery—facilitating the flow of
information through input, processing, and output. It constructs a spiral framework that
encompasses sharp discovery, clear definition, diverse development, and lean delivery,
enhancing design efficiency through parameterization, modularization, and modeling
while preserving design creativity. This model fully leverages digital methods to enhance
the systematization, collaboration, innovation, and intelligence of the design process.

3.2.3. Generative Design Thinking Model Structure

In generative product design, designers now conceptualize data structures and algo-
rithmic rules rather than merely visualizing form, function, materials, or human interaction.
With adaptive variation, continuous differentiation, and dynamic parameterization, gener-
ative design introduces novel cognitive and aesthetic approaches that permeate fields such
as architecture, fashion, and product design.

The Chain of Thought (CoT) method, widely applied in intelligent systems, facilitates
reasoning in generative design by decomposing complex tasks into logical stages: problem
decomposition, sequential reasoning, chain integration, and synthesis. This approach
enables the deconstruction of the generative design model as follows:

1. Goal Definition;

Establish the generative design model’s purpose. Objective: A model capable of
autonomously producing innovative solutions tailored to specific requirements.

2. Problem Decomposition;

Break down the model into essential modules: a knowledge base for domain knowl-
edge, generation for ideation, evaluation for quality assessment, and evolution for continu-
ous improvement.

3. Sequential Reasoning;

Reason through each module’s function:
(a) Knowledge Base: Stores design principles and precedents; structured with tech-

niques such as knowledge graphs;
(b) Generation: Produces ideas by recombining knowledge, utilizing models such

as GANs;
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(c) Evaluation: Assesses ideas based on criteria such as innovation, feasibility,
and aesthetics;

(d) Evolution: Optimizes ideas iteratively using feedback-driven refinement.

4. Chain Integration;

Modules are interlinked—knowledge feeds generation, evaluation scores ideas, and
evolution refines them, creating a feedback loop.

5. Synthesis.

This modular approach structures the generative design process into knowledge,
generation, evaluation, and evolution, fostering iterative improvement and leading to a
robust, closed-loop digital design framework (Figure 5).
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The primary components of the proposed mechanism can be summarized as follows:

1. Multimodal Knowledge Acquisition and Integration;

This forms the foundational knowledge base of the entire system. The system must
acquire domain-specific knowledge related to design from multiple sources, including text,
images, and videos. This encompasses design principles, industry standards, and reference
cases. By employing technologies such as knowledge graphs, the system effectively rep-
resents and integrates multimodal knowledge, resulting in a structured and computable
knowledge repository.

2. Knowledge-Based Creative Generation;

Building upon the comprehensive knowledge acquisition and integration, the system
utilizes deep generative models, such as Generative Adversarial Networks (GANs), to
encode the information contained within the knowledge repository. Through operations
such as recombination and transformation, the system generates entirely new design
concepts and preliminary prototype solutions. The key to this creative generation phase
lies in transcending the limitations of existing knowledge to produce innovative ideas.

3. Multidimensional Intelligent Evaluation and Feedback;

The system conducts a comprehensive evaluation of the generated design proposals
across multiple dimensions, including innovation, feasibility, cost, and aesthetics. This
evaluation may be based on predefined rules or trained machine learning models. The
purpose of this assessment is to ensure design quality while providing feedback that guides
improvements in the preceding phases.

4. Iterative Optimization Based on Evaluation Feedback.

Based on the feedback received from the evaluation, the system targets optimizations
in both the knowledge repository and the creative generation phases. For instance, if
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the evaluation indicates that a design lacks innovation, the system can enhance its cre-
ativity by incorporating novel knowledge or adjusting the parameters of the generative
model. Through continuous iteration, the system progressively develops higher-quality
design solutions.

This closed-loop mechanism of “knowledge-driven creative generation and evaluative
optimization” integrates AI capabilities such as knowledge representation, generative mod-
eling, and intelligent evaluation. With a modular division of labor and close collaboration,
the mechanism enhances the efficiency and interpretability of the generative design process.
This Chain of Thought framework captures the model’s core mechanisms, illustrating its
systematic integration and iterative progression within the generative design process. Fur-
thermore, the chain of thought reasoning method structures and clarifies the construction
of complex systems. Ultimately, the generative design thinking model’s mechanism offers
robust support for genuine AI-assisted design.

Building upon the systematic mechanism of the generative design thinking model,
its role in guiding the design process is multifaceted and ensures a structured yet flexible
workflow. The model serves as a roadmap for designers, enabling a seamless transition
between different phases of the design process through its chain-of-thought reasoning
structure. The integration of this mechanism into the design process, as illustrated in the
provided image (Figure 6), demonstrates how each component collaboratively enhances
the design outcomes.
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1. Definition of Design Goals and Requirements;

The generative design thinking model starts by supporting the identification and
extraction of design requirements. Leveraging multimodal knowledge acquisition, the
model synthesizes information from user needs, market trends, and technical constraints to
form clear and actionable design goals. Through its integration of knowledge representation
techniques, this is not just limited to explicit knowledge (e.g., design rules, technical
specifications) but also tacit knowledge (e.g., design intuition, historical design solutions).
This phase helps designers frame the problem in a broader context by drawing on external
knowledge bases (such as industry standards, research papers, or past design projects).
The model translates these requirements into computable parameters that serve as the
foundation for subsequent phases.

2. Expansion and Exploration of the Design Space;

By utilizing the creative generation mechanism, the model enables the exploration
of a vast design space. Generative algorithms such as GANs or other machine learning
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techniques recombine and transform existing knowledge into innovative design solutions.
During this phase, the model emphasizes knowledge fusion, allowing diverse and even
contradictory design principles or elements to coexist, thereby fostering creativity and
diversity in design outcomes.

GDTM facilitates a divergent thinking process where multiple solutions are generated
rapidly. This allows designers to break free from traditional, constraint-driven ideation and
consider a broader range of possibilities. The integration of human input ensures that these
AI-generated designs remain grounded in practical needs and creativity.

3. Intelligent Evaluation and Decision-Making;

As design solutions are generated, the model guides an intelligent evaluation process,
where each design alternative is assessed across multiple dimensions, including feasibility,
innovation, cost-efficiency, and aesthetics. The feedback loop embedded in the model
ensures that any shortcomings in the solutions are addressed iteratively, refining both the
creative process and the knowledge repository.

GDTM does not simply rely on AI evaluations. It involves human designers in the
feedback process, enabling them to review, refine, and suggest modifications to the AI-
generated designs based on their expert judgment. This human–computer collaboration
ensures that the design remains aligned with the user’s goals, market trends, and environ-
mental considerations.

4. Continuous Optimization and Refinement;

The iterative nature of the model allows designers to improve their concepts pro-
gressively. Feedback is used not only to enhance individual design iterations but also to
optimize the underlying knowledge base and generative algorithms. This ensures that
the system evolves over time, becoming increasingly adept at producing high-quality,
innovative design solutions.

This iterative loop—“innovate, evaluate, refine”—ensures that the final design is opti-
mal. Over multiple cycles, GDTM gradually evolves the design towards its most effective
form, incorporating insights from both machine computation and human creativity.

5. Final Design Output and Reflection.

In the final stage, the generative design thinking model ensures that the design output
aligns with the defined goals and requirements. Moreover, the system provides a structured
reflection mechanism, enabling designers to analyze the efficiency and effectiveness of the
entire process, thus creating a feedback loop for future projects.

By integrating the above phases, the generative design thinking model not only
facilitates the design process but also empowers designers to achieve a balance between
innovation, practicality, and efficiency. Its systematic approach bridges the gap between
creative ideation and structured decision-making, paving the way for more effective and
impactful design practices.

The Generative Design Thinking Model (GDTM) integrates human cognitive pro-
cesses with AI-driven computational systems to enhance the design process. It posits that
design creativity is amplified through continuous interaction between human intuition
and computational feedback, enabling designers to explore innovative solutions beyond
traditional constraints. Central to GDTM is the iterative cycle of knowledge acquisition,
idea generation, intelligent evaluation, and feedback refinement, which together optimize
design outcomes. This model is particularly applicable in open-ended design tasks across
diverse fields such as product design, architecture, and urban planning, where iterative
feedback and complex problem-solving are critical; however, its effectiveness is diminished
in highly constrained tasks or those with rigid predefined requirements. Moreover, GDTM
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focuses primarily on cognitive aspects, with less consideration for external factors such as
market demands or material constraints.

The causal framework of GDTM is based on a dynamic feedback loop between human
designers and AI systems. It begins with tacit knowledge acquisition, which informs the
generation of design alternatives evaluated through computational models. This evaluation,
combined with human judgment, drives successive iterations, refining the design toward
optimal solutions. The model’s success depends on the quality of input data, as biased
or incomplete data can compromise outcomes. Additionally, GDTM requires significant
computational resources, posing challenges for smaller teams or projects with limited
budgets. A key limitation is the balance between human creativity and machine-generated
solutions, where over-reliance on AI may dilute the intuitive and emotional aspects of
design. Despite these challenges, GDTM offers substantial potential to enhance design
efficiency and innovation, particularly in complex, open-ended design environments.

4. Materials and Methods
This study explores the cognitive pathways in generative design by analyzing the

primary cognitive processes utilized by designers. Using qualitative content analysis,
this research aims to identify key cognitive modules and their interrelations within the
generative design framework. We hypothesize that the identified modules and processes
form significant pathways that influence overall design efficiency and creativity. By select-
ing representative generative design cases from social media platforms, we established a
comprehensive coding scheme, including primary and secondary categories, to facilitate
detailed behavioral analysis. Regression analysis was employed to validate the findings,
ensuring the accuracy and robustness of these data.

4.1. Hypotheses Formulation

Based on core cognitive activities observed in the generative design process, we
propose the following hypotheses to verify the interdependencies among the key cognitive
modules empirically:

1. H1: Time spent in generative design thinking is significantly related to knowledge
acquisition and expression within design rules;

2. H2: Iterative optimization is significantly associated with knowledge acquisition and
expression within design rules;

3. H3: The processes of ideation, intelligent evaluation, and feedback adjustment are
significantly related to the cognitive pathway in generative design thinking;

4. H4: Iterative optimization has a significant relationship with the ideation process;
5. H5: Iterative optimization is significantly associated with intelligent evaluation;
6. H6: Iterative optimization is significantly associated with feedback adjustment.

4.2. Sample Selection

The selection of videos for this study was conducted according to a set of rigorous
criteria to ensure the representativeness, relevance, and quality of the sample.

The sample selection criteria included:

1. Thematic Relevance to Generative Design: Only videos that directly addressed gener-
ative design processes were included in this study. This ensured that the sample was
aligned with the research focus on cognitive pathways in generative design thinking.
The selected videos needed to clearly demonstrate how generative design principles
were applied, whether in product design, architecture, or urban planning;

2. High Engagement and Popularity: To ensure the relevance of the selected videos
within the design community, only those that ranked within the top 10 for generative
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design content on each social media platform (YouTube, Facebook, and Bilibili) were
considered. This criterion ensured that the selected videos had substantial reach and
were regarded as high-quality content by the community;

3. Consistency in Content Production: The video sources were required to have consis-
tently posted generative design-related content over a period of at least two years.
This criterion guaranteed that the selected videos were part of a sustained engage-
ment with the field rather than isolated instances of content production. Additionally,
each selected account was required to have uploaded at least 100 generative design
case examples;

4. Content Quality and Format Consistency: The selected videos had to maintain high
content quality, both in terms of visual clarity and technical precision (e.g., clear design
explanations and high-quality visuals). Furthermore, the format of the videos needed
to be consistent across cases, ensuring easier comparison during the subsequent
coding process. This was critical for ensuring uniformity in collected data.

Alongside the inclusion criteria, a set of exclusion criteria was applied to ensure that
irrelevant or low-quality data were excluded. The exclusion criteria are as follows:

1. Irrelevant Content: Any video that did not focus directly on generative design or was
unrelated to design thinking processes was excluded. For instance, videos that were
purely promotional or lacked clear demonstrations of the generative design process
were not considered;

2. Low Viewer Engagement or Inactive Accounts: Videos from accounts that exhibited
low engagement (e.g., fewer than 1000 views per video or limited interaction, such as
comments or shares) were excluded. Additionally, accounts that had been inactive for
more than six months were excluded to ensure the selection of active, continuously
producing content creators;

3. Lack of Product Type Diversity: Although the research aimed to explore various
applications of generative design, videos focused exclusively on a narrow range of
products (e.g., only lighting or electronics) were excluded. This ensured that the final
sample included a broader range of generative design applications, enhancing the
diversity and applicability of the findings;

4. Insufficient Case Examples or Poor Content Quality: Videos where the creator had
uploaded fewer than 10 generative design cases or where the content quality was
subpar (e.g., low-resolution visuals, unclear explanations, or poor audio quality) were
excluded. This helped to ensure that only high-quality videos were included in the
sample, providing the most relevant and clear data for the analysis.

Following the inclusion and exclusion criteria, a final set of 30 generative design case
videos was selected from the GH parametric design account on YouTube. This account met
all necessary criteria, including:

1. Active since 29 December 2019;
2. Over 11,600 subscribers and 607,085 views;
3. More than 200 generative design case videos published.

The 30 selected videos were categorized into three groups based on their product types:

1. Group A: Videos A-S01 to A-S10 include generative design cases from fields such as
lighting products, furniture, and interior design (10 videos);

2. Group B: Videos B-S01 to B-S10 include generative design cases from fields such as
electronic products and consumer goods (10 videos);

3. Group C: Videos C-S01 to C-S10 include generative design cases from fields such as
architectural design, mechanical components, and automotive parts (10 videos).
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4.3. Classification and Coding

To systematically analyze the design activities within each case, a coding framework
was developed based on the cognitive structure of generative design. This framework
consists of primary and secondary categories, as outlined in Table 2.

Table 2. Classification and Coding Scheme.

Primary Category Secondary Category Description Code

Goal Input Initial input information in the
design process G-I

Rules
Knowledge Acquisition and Integration Learning and synthesizing

design rules R-KA

Knowledge Expression Application and expression of
design rules R-KE

Process
Ideation Creative ideation and

generation of design concepts P-IG

Intelligent Evaluation Automated assessment of
design outcomes P-IE

Feedback Adjustment Feedback and refinement based
on evaluations P-FA

Optimization Knowledge Base Optimization Enhancement and expansion of
the knowledge base O-KBO

Model Optimization Optimization of model accuracy
and efficiency O-MO

Result Output Final output generated from the
design process R-O

Items used by coders to analyze the videos:

1. Goal (Input): Coders analyze the initial input information involved at the be-
ginning of the design process, including design requirements, constraints, and
design parameters;

2. Rules (Knowledge Acquisition and Integration): Coders identify moments in the
video when designers acquire or integrate design knowledge, including learning and
synthesizing algorithms, design rules, or product-specific constraints;

3. Rules (Knowledge Expression): Coders examine how designers apply the acquired
knowledge within the design process, evaluating how they express and implement
these rules in their work;

4. Process (Ideation): Coders analyze how designers engage in creative ideation, identi-
fying moments when new design concepts are generated, different design alternatives
are explored, or brainstorming occurs;

5. Process (Intelligent Evaluation): Coders identify how designers use automated evalu-
ation tools (such as simulations or optimization algorithms) to assess design outcomes
at various stages;

6. Process (Feedback Adjustment): Coders analyze how designers adjust their designs
based on evaluation results or external feedback (e.g., client or colleague input);

7. Optimization (Knowledge Base Optimization): Coders assess how designers update
or expand the knowledge base, incorporating new information or refining previous
design models;

8. Optimization (Model Optimization): Coders examine how designers optimize the gen-
erative model’s accuracy or efficiency, including fine-tuning algorithms or adjusting
model parameters;
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9. Result (Output): Coders identify the final design output of the process, evaluating
whether it meets the initial goals and reflecting the cognitive activities throughout the
entire design process.

This coding system enables a detailed analysis of cognitive actions throughout the
generative design process, ensuring clarity and consistency in data interpretation.

4.4. Reliability Testing

To ensure consistency and reliability of the coding framework, a rigorous two-phase
reliability assessment was conducted.

In the first phase, two researchers with extensive expertise in cognitive studies inde-
pendently transcribed, segmented and coded collected data. After this initial coding, a
second independent assessment was conducted to verify consistency.

In the second phase, a postdoctoral researcher with a background in computational
design and cognition re-coded these data following a three-month interval to minimize
potential recall bias and to independently validate the initial coding results. Inter-rater reli-
ability was assessed using Cohen’s Kappa coefficient, resulting in a value of 0.82, indicating
substantial agreement across coders and a high level of reliability in the coding process.

Furthermore, the internal consistency of the coding framework was evaluated by
analyzing Cronbach’s alpha coefficient for data collected across 30 stimulus samples. The
Cronbach’s alpha coefficient was 0.86, demonstrating satisfactory internal consistency, thus
supporting the robustness of the coding framework applied in this study.

5. Results
5.1. Research Hypothesis H1

Regression analysis was conducted to examine the relationship between generative
design thinking duration (X1) and the frequency of knowledge acquisition and expression
(Y) within design rules. The results indicated a significant association, with design think-
ing duration positively predicting the iterative transitions of knowledge acquisition and
expression (β = 0.422, p < 0.05). Specifically, as the duration of the design thinking process
increased, the frequency of knowledge acquisition and expression transitions also increased
(Table 3). This finding suggests that in generative design, designers continuously engage in
a cognitive process that involves drawing on both external resources and past experiences.
The longer the design thinking process, the higher the frequency of these transitions, which
likely reflects the complexity of the design goals. These results support Hypothesis H1:
generative design thinking duration (X1) is significantly related to knowledge acquisition
and expression (Y) within design rules.

Table 3. Linear Regression Analysis of Design Thinking Duration and Frequency of Knowledge
Acquisition and Expression.

B Standard Error Beta p R2 Adj R2 F

Constant 24.208 9.302 - 0.015 **
0.178 0.149 6.073

Duration 0.022 0.009 0.422 0.020 **

Dependent Variable: Frequency of Knowledge Acquisition and Expression
** p < 0.05.

5.2. Research Hypothesis H2

Regression analysis was employed to examine the relationship between knowledge
base optimization (X1), generative model optimization (X2), and the frequency of knowl-
edge acquisition and expression (Y) within design rules. The results revealed a significant
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positive association between knowledge base optimization and the frequency of knowledge
acquisition and expression transitions (β = 0.566, p < 0.001), indicating that more frequent
iterations in the knowledge base are associated with increased design rule transitions.
Additionally, generative model optimization was also significantly related to knowledge
acquisition and expression frequency (β = 0.341, p < 0.05), with higher model optimization
iterations corresponding to greater transition frequency within design rules (Table 4).

Table 4. Linear Regression Analysis of Knowledge Base Optimization and Generative Model Opti-
mization on the Frequency of Knowledge Acquisition and Expression within Design Rules.

B Standard Error Beta p R2 Adj R2 F

Constant 22.106 4.101 - <0.001

0.613 0.585 21.429
Knowledge Base

Optimization 1.573 0.373 0.566 <0.001

Generative Model
Optimization 0.881 0.347 0.341 0.017 **

Dependent Variable: Frequency of Knowledge Acquisition and Expression
** p < 0.05.

These findings suggest that designers prioritize knowledge base optimization during
the iterative process before advancing to generative model refinement. In generative design,
knowledge base and model optimization represent integral components within design
rules. The knowledge base aggregates both external and internal knowledge frameworks,
initiating a process that first diverges and then converges, ultimately feeding into model
adjustments. Through iterative refinement, this process supports a comprehensive improve-
ment of the generative design outcome; therefore, these results support Hypothesis H2,
which posits a significant relationship between generative model optimization frequency
and knowledge acquisition and expression within design rules.

5.3. Research Hypothesis H3

A regression analysis was conducted to examine the relationship between the average
duration of idea generation (X1), intelligent evaluation (X2), and feedback adjustment (X3)
with the average problem-solving duration (Y) in the generative design thinking process.
The results demonstrated a significant association between the duration of idea generation
and the problem-solving duration, with β = 0.63, p < 0.001, indicating that longer time
spent on idea generation correlates with an extended problem-solving process. Similarly,
the average duration of intelligent evaluation was significantly associated with problem-
solving time (β = 0.303, p < 0.01), as was the feedback adjustment duration (β = 0.233,
p < 0.05), both suggesting that extended time in these stages correlates with prolonged
problem-solving (Table 5).

These findings reveal that the problem-solving pathway in generative design thinking
is an iterative cycle of idea generation, intelligent evaluation, and feedback adjustment. As
the decision-making cycle repeats, time investment increases, reflecting the complexity of
the design task and the need for continual strategy adjustments. Thus, these results support
Hypothesis H3, which posits a significant relationship between the processes of idea
generation, intelligent evaluation, and feedback adjustment within the problem-solving
pathway in generative design thinking.
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Table 5. Linear Regression Analysis of Average Duration of Creative Generation, Intelligent Eval-
uation, and Feedback Adjustment on Average Duration of Problem-Solving Process in Generative
Design Thinking.

B Standard Error Beta p R2 Adj R2 F

Constant −0.963 1.932 - 0.622

0.89 0.877 70.076
Average Duration of
Creative Generation 0.528 0.069 0.63 0.000 ***

Intelligent Evaluation 0.524 0.141 0.303 0.001 ***

Feedback Adjustment 0.425 0.124 0.233 0.002 ***

Dependent Variable: Average Duration of Problem-Solving
*** p < 0.01.

5.4. Research Hypothesis H4

A regression analysis was conducted to examine the relationship between the number
of knowledge base optimization iterations (X1), generative model optimization iterations
(X2), and the frequency of idea generation occurrences (Y). The results indicate a significant
positive association between knowledge base optimization iterations and the frequency
of idea generation (β = 0.545, p < 0.01), suggesting that as the number of knowledge base
optimization iterations increases, the frequency of idea generation also rises (Table 6);
however, no significant relationship was observed between generative model optimization
iterations and the frequency of idea generation (β = 0.053, p > 0.05).

Table 6. Linear Regression of Knowledge Base Iteration Optimization and Generative Model Iteration
on Frequency of Creative Generation Process.

B Standard Error Beta p R2 Adj R2 F

Constant 14.919 3.287 - <0.001

0.325 0.275 6.502
Knowledge Base

Optimization Iterations 2.027 0.657 0.545 <0.001

Generative Model
Optimization Iterations 0.217 0.725 0.053 0.767

Dependent Variable: Frequency of Creative Generation Process

These findings highlight the impact of iterative optimization on the idea-generation
process in generative design thinking. For designers, each knowledge base optimization
expands and updates the system’s knowledge pool, offering richer material and inspiration
that foster creative ideation. This optimization process enhances the integration of domain
knowledge, promoting novel combinations and ideas that increase the frequency of idea
generation. Conversely, generative model optimization is more oriented toward enhancing
output quality, error reduction, or efficiency rather than directly increasing the frequency of
idea generation. These findings support Hypothesis H4, affirming a significant relationship
between iterative optimization and the idea generation process.

5.5. Research Hypothesis H5

Regression analysis was conducted to assess the relationship between the number of
knowledge base optimization iterations (X1), generative model optimization iterations (X2),
and the frequency of intelligent evaluations (Y). The results indicated a significant positive
relationship between knowledge base optimization iterations and the frequency of intelli-
gent evaluations (β = 0.36, p < 0.01), showing that increased iterations in the knowledge
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base lead to a higher frequency of intelligent evaluations. In contrast, a significant negative
relationship was found between generative model optimization iterations and intelligent
evaluation frequency (β = −0.64, p < 0.01), suggesting that more generative model opti-
mizations are associated with a reduced need for frequent intelligent evaluations (Table 7).

Table 7. Linear Regression of Knowledge Base and Generative Model Optimization Iterations on
Frequency of Intelligent Evaluation Process.

B Standard Error Beta p R2 Adj R2 F

Constant 42.202 6.39 - <0.001

0.877 0.868 96.622
Knowledge Base

Optimization Iterations 2.218 0.611 0.36 <0.001

Generative Model
Optimization Iterations −2.992 0.463 −0.64 <0.001

Dependent Variable: Frequency of Intelligent Evaluation Process

These findings underscore the impact of iterative optimization on the intelligent
evaluation process within generative design thinking. Specifically, each iteration in the
knowledge base may introduce new concepts, rules, or design patterns, thereby expanding
the solution space and increasing the diversity and innovativeness of potential design
solutions. This expansion necessitates more frequent intelligent evaluations to assess the
quality and feasibility of the newly generated ideas. On the other hand, as the generative
model undergoes further optimization, the resulting designs tend to meet quality and
design requirements more consistently, reducing the need for repeated evaluations. These
results validate Hypothesis H5, confirming a significant relationship between iterative
optimization and the intelligent evaluation process.

5.6. Research Hypothesis H6

A regression analysis was conducted to examine the relationship between the number
of knowledge base optimization iterations (X1), generative model optimization iterations
(X2), and the frequency of feedback adjustment occurrences (Y). The results revealed a
significant positive association between knowledge base optimization iterations and the
frequency of feedback adjustments (β = 0.547, p < 0.01), indicating that as the number
of knowledge base optimization iterations increases, feedback adjustments become more
frequent. Conversely, a significant negative association was found between generative
model optimization iterations and feedback adjustment frequency (β = −0.321, p < 0.05),
suggesting that more generative model optimizations correspond to a reduced frequency
of feedback adjustments (Table 8).

Table 8. Linear Regression of Knowledge Base and Generative Model Optimization Iterations on
Frequency of Feedback Adjustment Process.

B Standard Error Beta p R2 Adj R2 F

Constant 11.904 2.508 - <0.001

0.544 0.51 16.088
Knowledge Base

Optimization Iterations 2.841 0.737 0.547 <0.001

Generative Model
Optimization Iterations −1.624 0.717 −0.321 0.032 **

Dependent Variable: Frequency of Feedback Adjustment Process
** p < 0.05.
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These findings underscore the critical role of iterative optimization in the feedback
adjustment process within generative design thinking. Specifically, the positive correlation
between knowledge base optimizations and feedback adjustments indicates that, as the
knowledge base expands and refines, designers can identify a greater number of elements
needing adjustment, driven by an increasingly complex and nuanced understanding of
design requirements. This necessitates more frequent feedback adjustments to refine the
design. In contrast, as the generative model undergoes further optimization, design outputs
become progressively aligned with the desired specifications, reducing the need for frequent
feedback adjustments. These results support Hypothesis H6, confirming a significant
relationship between iterative optimization and the feedback adjustment process.

6. Empirical Analysis
Building upon the previous qualitative analysis of the cognitive model within Genera-

tive Design Thinking (GDT), which has provided a deeper understanding of the interre-
lations among its key components, this chapter shifts focus to an empirical investigation.
Specifically, it aims to assess the application of GDTM in real-world design scenarios, in-
cluding product design, architectural design, and urban planning. This study will evaluate
the impact of GDTM on design efficiency, design quality, and sustainability outcomes,
incorporating key sustainability metrics such as energy efficiency, resource utilization,
and environmental impact. This empirical approach seeks to validate the theoretical in-
sights gained from the earlier cognitive model analysis and further explore the practical
implications of GDTM in promoting sustainable design practices across multiple domains.

6.1. Participants Selection and Experimental Design

A total of 24 designers participated in this empirical study, distributed equally across
three design domains: product design, architectural design, and urban planning design.
Each domain included four participants from the experimental group (n = 12) and four
participants from the control group (n = 12). All participants had a minimum of 3 years of
professional experience in their respective domains.

The experimental design adopted a controlled comparative approach involving
two groups: the Experimental Group and the Control Group. In the Experimental Group,
participants applied the Generative Design Thinking Model (GDTM), which encompasses
several stages: knowledge acquisition, creative idea generation, intelligent evaluation,
feedback adjustment, and optimization. In contrast, the Control Group used traditional
design methods, such as CAD (version 2021) software and auto-design techniques.

Participants in both groups were assigned specific tasks relevant to their design
domains. In Product Design, they were tasked with designing an energy-efficient smart
appliance. In Architectural Design, participants were asked to create a green residential
building with a focus on energy efficiency and sustainability. Finally, in Urban Planning
Design, the task was to develop a sustainable urban community plan that integrated
residential, commercial, and green spaces.

6.2. Experimental Procedure

The experimental procedure involved four key phases: task assignment, design pro-
cess execution, data collection, and data analysis. In Phase 1, designers were assigned
domain-specific tasks in product design, architectural design, and urban planning. The
experimental group applied the Generative Design Thinking Model (GDTM), integrating
it with automated design tools for process optimization, while the control group utilized
traditional design methods such as CAD software. Phase 2 focused on the design process,
where the control group followed conventional workflows, and the experimental group
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engaged in iterative stages of goal definition, creative idea generation, evaluation, feedback
adjustment, and optimization, guided by the GDTM framework. After the design tasks
were completed in Phase 3, data were collected on design time, quality, and sustainability,
followed by regression analysis and statistical tests in Phase 4 to assess the impact of GDTM
on design efficiency and sustainability outcomes.

The application of GDTM in the experimental group was tailored to each design
domain. In product design, the process begins with defining functional requirements
and acquiring relevant knowledge, followed by the generation and evaluation of multiple
design alternatives. Feedback adjustments and knowledge base updates allowed for
continuous improvement. In architectural design, the focus was on creating energy-efficient
and sustainable designs, with iterative evaluations considering aesthetic, functional, and
environmental factors. For urban planning design, GDTM facilitated the development of
sustainable urban communities by optimizing design proposals based on sustainability
metrics such as resource utilization and environmental impact.

6.3. Experimental Results and Analysis

The empirical study aimed to evaluate the impact of the Generative Design Thinking
Model (GDTM) on design efficiency, design quality, and sustainability outcomes across
three domains: product design, architectural design, and urban planning. Below are
the detailed results and analysis for each domain based on data collected from both the
experimental and control groups.

1. Product Design: In terms of design efficiency, the experimental group completed the
product design task of creating an energy-efficient smart appliance in an average
of 12.5 h, while the control group took an average of 18.7 h. This difference of
6.2 h was statistically significant (p < 0.01), indicating that the application of the
Generative Design Thinking Model (GDTM) significantly improved design efficiency.
Regarding design quality, the experimental group’s designs were evaluated more
highly by experts, scoring an average of 8.5/10 compared with the control group’s
6.7/10. The 1.8-point difference was statistically significant (p < 0.05), suggesting that
GDTM enhanced creativity and sustainability integration in the designs. Last, the
sustainability outcomes showed that the experimental group achieved a sustainability
score of 8.1/10, compared with 6.2/10 for the control group. This difference was
driven by more efficient energy use (15% reduction in energy consumption) and better
resource utilization (18% improvement in material efficiency), with a statistically
significant result (p < 0.01);

2. Architectural Design: For design efficiency, the experimental group completed the
task of designing a green residential building in an average of 14.3 h, significantly
less than the control group’s 19.5 h, a difference of 5.2 h (p < 0.01). In terms of design
quality, the experimental group’s architectural designs scored an average of 9.2/10,
significantly higher than the control group’s 7.4/10 (p < 0.01). This higher score
was attributed to a stronger focus on sustainable design features and innovative
material use. The sustainability outcomes also favored the experimental group, with
a sustainability score of 8.7/10 compared with 7.0/10 for the control group. The
experimental group demonstrated a 20% reduction in energy consumption and a 12%
improvement in material reuse, both statistically significant (p < 0.01), highlighting
that GDTM contributed to more sustainable architectural designs;

3. Urban Planning Design: In design efficiency, the experimental group completed the
urban planning design for a sustainable community in 16.4 h on average, compared
with 22.1 h for the control group. This 5.7-h difference was statistically significant
(p < 0.01), indicating that GDTM improved efficiency in urban planning. The ex-
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perimental group’s design quality was also rated higher, with an average score of
8.0/10, compared with 6.6/10 for the control group (p < 0.05). The improvement
was particularly noticeable in terms of the innovative integration of green spaces
and efficient land use. Regarding sustainability outcomes, the experimental group
achieved a sustainability score of 8.3/10, compared with 6.5/10 for the control group.
The experimental group showed significant improvements in resource utilization,
with an 18% reduction in land use and a 14% reduction in carbon emissions, both
statistically significant (p < 0.01), suggesting that GDTM promoted more sustainable
urban planning practices;

4. Cross-Domain Analysis: Across the three design domains, the experimental group
consistently outperformed the control group in terms of design efficiency, design
quality, and sustainability outcomes. The design efficiency improvements ranged
from 5.2 to 6.2 h faster completion time in the experimental group across all domains.
In design quality, the experimental group achieved higher expert ratings, with a dif-
ference of 1.8 to 2.3 points, particularly in innovation, practicality, and sustainability
integration. Regarding sustainability outcomes, the experimental group demonstrated
significant improvements in energy efficiency, resource utilization, and environmen-
tal impact, with sustainability scores ranging from 8.1 to 8.7/10, compared with
6.2 to 7.0/10 for the control group. These results underscore the effectiveness of
GDTM in promoting efficient, high-quality, and sustainable design outcomes across
various domains.

7. Discussion
The findings of this study provide significant insights into the cognitive underpinnings

of generative design thinking (GDT), contributing to both theoretical and practical advance-
ments in design automation. Specifically, this study reveals a positive relationship between
the duration of cognitive engagement (X1) and the frequency of knowledge acquisition
and expression (Y), emphasizing the critical role of time allocation in supporting cognitive
processing throughout the design process. This aligns with existing research suggesting
that complex design tasks demand designers to engage with external resources and past
experiences more intensively [46]. This theoretical finding was substantially validated
through empirical testing, where the experimental group employing GDTM demonstrated
significantly improved design efficiency compared with traditional methods; however,
dissimilar to traditional design automation methods, which often rely on predefined algo-
rithms and models, this study highlights the dynamic nature of the cognitive load, which
increases proportionally with task complexity (Hypothesis H1), suggesting that designers
must allocate greater mental resources and adopt more intricate thought paths when ad-
dressing more complex design problems. This insight challenges existing static automation
models, proposing a more flexible and adaptive approach where human cognition and
machine learning processes continuously interact.

Furthermore, this study confirms a significant interaction between knowledge base
optimization (X1) and generative model refinement (X2) in influencing the frequency
of knowledge acquisition and expression (Y). Notably, knowledge base optimization
(β = 0.566, p < 0.001) demonstrates a more substantial effect than generative model refine-
ment (β = 0.341, p < 0.05), underscoring the importance of a dynamic, adaptive knowledge
repository over-reliance on static model refinements. This finding not only supports prior
research emphasizing the pivotal role of knowledge repositories in design tasks but also
introduces a novel perspective on the dynamic interrelationship between knowledge base
optimization and generative model enhancement [47]. This theoretical insight was rein-
forced through empirical validation, where the structured approach of GDTM to knowledge
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management led to higher-quality designs across product design, architectural design, and
urban planning applications. Dissimilar to traditional design automation methods, which
focus primarily on refining generative models, this study highlights that a robust, evolving
knowledge base is equally, if not more, critical for fostering creativity and supporting
decision-making. This insight provides a more nuanced approach to design automation,
where knowledge management plays a central role in enabling effective design iterations.

An analysis of the interconnected roles of creative generation, intelligent evaluation,
and feedback adjustment reveals a strong positive correlation, particularly between creative
generation duration and problem-solving time (β = 0.63, p < 0.001), validating Hypothesis
H3. This result illustrates that creativity generation functions not as an isolated phase
but as part of a cyclical decision-making process closely aligned with problem-solving
strategies. While Barnard [48] previously posited a similar interdependence, this study
reinforces this claim by providing quantitative support and highlighting the necessity of
adaptability in navigating complex tasks. The empirical results demonstrated that this
integrated approach led to higher-quality designs that better incorporated sustainability
principles across all tested domains.

Moreover, these data reveal a significant association between knowledge base opti-
mization iterations (X1) and the frequency of creative generation (Y), while generative
model optimization had no significant effect on the frequency of creative generation
(β = 0.053, p > 0.05). These results suggest that during the creative generation phase,
designers rely more heavily on a robust, enriched knowledge base rather than on the
refinement of generative models. This finding aligns with McInerney’s assertion that a
dynamically evolving knowledge base is critical for fostering creativity [49]. Dissimilar to
traditional design automation approaches that prioritize the optimization of generative
models, this study demonstrates that the iterative improvement of the knowledge base
plays a more significant role in enabling designers to generate creative ideas. This shift in
focus offers new directions for enhancing the efficiency of design automation systems.

Finally, the analysis of the relationship between intelligent evaluation and feedback
adjustment reveals compelling insights into the role of knowledge base optimization and
generative model refinement in design efficiency. Specifically, this study identifies a posi-
tive correlation between knowledge base optimization iterations and evaluation frequency
(β = 0.36, p < 0.01), indicating that a continuously updated and enriched knowledge base en-
hances the efficiency of intelligent evaluation processes. In contrast, the negative correlation
between generative model optimization iterations and evaluation frequency (β = −0.64,
p < 0.01) suggests that an over-reliance on frequent model adjustments may disrupt the
real-time evaluation process, hindering designers’ ability to make timely decisions. This
finding challenges traditional design automation approaches, which typically emphasize
extensive model refinements, by highlighting the critical importance of an adaptive and
evolving knowledge base in supporting evaluation and feedback adjustments. The results
underscore the necessity of balancing knowledge base optimization and generative model
refinement to maximize both design efficiency and evaluation accuracy in the generative
design process.

The empirical validation particularly highlighted the effectiveness of GDTM in
promoting sustainable design practices. The significant improvements in sustainabil-
ity scores across product design, architectural design, and urban planning demon-
strate that the model’s cognitive framework effectively supports the integration of sus-
tainability principles, including energy efficiency, resource conservation, and reduced
environmental impact.

However, this study has several limitations. First, the rigidity of AI knowledge bases
presents a significant challenge in the implementation of generative design thinking (GDT).
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While knowledge repositories are essential to generative design, many AI systems exhibit
limited flexibility, preventing them from quickly adapting to evolving design requirements.
As design tasks grow more complex, the need for a dynamic and continuously updated
knowledge base becomes increasingly apparent; however, current systems often lack the
capacity for real-time learning and self-updating, making it difficult to respond effectively
to changing design demands. This limitation emphasizes the need for future research to
develop more adaptable knowledge repositories capable of supporting fast-paced, real-time
design processes.

Second, inefficiencies in generative models also pose a challenge to the successful
application of GDT. While generative design tools can produce a large number of design
options quickly, the quality of these options may not always meet the required standards
due to a lack of integrated intelligent evaluation and feedback adjustment mechanisms.
This can result in the need for repeated iterations, which hinders efficiency and may lead
to suboptimal design outcomes. Future efforts should focus on improving the efficiency
of generative models, especially in balancing creative idea generation with intelligent
evaluation, to enhance both the speed and quality of the design process.

Additionally, the cognitive load on designers remains a significant issue in GDT imple-
mentation. The cognitive complexity of generative design thinking—requiring designers to
manage multiple tasks such as knowledge acquisition, rule application, idea generation,
and evaluation—can place considerable mental demands on designers. This cognitive
load can negatively impact the efficiency and quality of design outcomes, especially for
complex design tasks. Consequently, future research should investigate strategies to reduce
cognitive load and improve overall design efficiency without compromising creativity and
critical thinking.

Furthermore, the challenges of interdisciplinary collaboration are another critical
consideration. Generative design often requires input from multiple domains, particularly
in complex fields such as architecture and urban planning; however, effective integration of
diverse disciplinary knowledge remains a challenge, as it requires both technical expertise
and effective communication among team members. The successful application of GDT in
interdisciplinary projects depends on the development of collaborative frameworks that
facilitate knowledge-sharing and problem-solving across disciplines.

Last, the sustainability and ethical concerns associated with generative design are
important but often overlooked. As generative design tools become more prevalent, there is
an increasing need to address sustainability goals—such as environmental impact, resource
efficiency, and social responsibility—within the design process. Additionally, ethical issues
related to AI, such as data privacy, algorithmic biases, and transparency, must be considered
in the development and application of generative design systems. Future research should
explore how GDT can be applied in a way that promotes sustainable design practices
while mitigating potential ethical risks. Despite these limitations, this study contributes
scientifically valuable insights into the cognitive aspects of generative design. The findings
underscore the value of a dynamic knowledge repository and targeted time allocation in
facilitating creative problem-solving, suggesting that interventions aimed at optimizing
these aspects could be highly beneficial for design efficiency and innovation.

Future research should explore the long-term implications of these findings by exam-
ining how knowledge base updates and generative model iterations evolve over extended
design cycles. Additionally, studies could investigate the applicability of these insights
across different design fields, such as architecture or product development, to validate and
expand the relevance of the proposed cognitive model. Understanding how these factors
influence sustainable design and innovation in complex, multi-stage projects would further
enrich the field and provide actionable insights for practitioners and educators alike.



Sustainability 2025, 17, 372 26 of 28

8. Conclusions
This study introduces the concept of generative design thinking, developing a the-

oretical model to clarify its cognitive structure and problem-solving dynamics. Through
behavioral coding, we reframe design as a dynamic, iterative cycle of problem definition,
knowledge articulation, idea generation, and evaluation. Findings reveal that generative
design thinking is a reflective, multi-layered process within generative design practices,
encompassing three nested cycles: a macro-cycle (knowledge acquisition and expression), a
meso-cycle (idea generation, intelligent evaluation, feedback adjustment), and a micro-cycle
(knowledge base and model optimization). These cycles, particularly relevant in AI-driven
product design, mirror the complexity of tasks and indicate that more intricate goals de-
mand heightened integration and ideation as designers efficiently alternate between broad
and deep iterative strategies.

This study contributes theoretically and practically to sustainable design by clarifying
how designers cognitively engage with complex parameters, balance multidimensional
goals, and work with AI tools. Insights from this study could guide the development of
generative design tools that align more closely with human cognition, enhancing interaction
quality, design efficiency, and sustainable outcomes. Recognizing designers’ cognitive
strategies in sustainable contexts can further inform targeted training and methods to
support systematic thinking and long-term considerations.

Limitations include the indirect nature of designer-computer interactions, which
limits the full potential of generative tools. Additionally, future studies should address
the application of cognitive insights to practical sustainability challenges, explore varied
paradigms in design cognition, and refine generative methods to enhance direct, sustainable
design integration.
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