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Abstract: Clean water is vital for a sustainable environment, human wellness, and welfare,
supporting life and contributing to a healthier environment. Fuzzy-logic-based techniques
are quite effective at dealing with uncertainty about environmental issues. This study
proposes two methodologies for assessing water quality based on Mamdani and Sugeno
fuzzy systems, focusing on water’s physiochemical attributes, as these provide essential
indicators of water’s chemical composition and potential health impacts. The goal is to
evaluate water quality using a single numerical value which indicates total water quality at
a specific location and time. This study utilizes data from the Acea Group and employs
the Mamdani fuzzy inference system combined with various defuzzification techniques
as well as the Sugeno fuzzy system with the weighted average defuzzification technique.
The suggested model comprises three fuzzy middle models along with one ultimate fuzzy
model. Each model has three input variables and 27 fuzzy rules, using a dataset of nine
key factors to rate water quality for drinking purposes. This methodology is a suitable and
alternative tool for effective water-management plans. Results show a final water quality
score of 85.4% with Mamdani (centroid defuzzification) and 83.5% with Sugeno (weighted
average defuzzification), indicating excellent drinking water quality in Tivoli, Italy. Water
quality evaluation is vital for sustainability, ensuring clean resources, protecting biodiver-
sity, and promoting long-term environmental health. Intermediate model evaluations for
the Mamdani approach with centroid defuzzification showed amounts of 72.4%, 83.4%, and
92.5% for the first, second, and third fuzzy models, respectively. For the Sugeno method,
the corresponding amounts were 76.2%, 83.5%, and 92.5%. These results show the precision
of both fuzzy systems in capturing nuanced water quality variations. This study aims to
develop fuzzy logic methodologies for evaluating drinking water quality using a single
numerical index, ensuring a comprehensive and scalable tool for water management.

Keywords: water quality index; fuzzy systems; water pollution; sustainable water
management; sustainable environment; pollution control

1. Introduction
Water is a limited and vital resource for human well-being, socio-economic develop-

ment, and ecosystem health. However, over a billion people around the world currently do
not have access to safe drinking water, and two-thirds of the countries are experiencing
water-related stress [1]. Inequitable distribution leads to wastefulness, contamination,
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and unsustainable management practices [2], while its uses in sports and entertainment
events have long-term implications for its availability [3]. Human activities like increasing
population, industrialization, and the use of fertilizers lead to water contamination [4].
Various evaluation techniques have been developed for monitoring water quality, which
plays an important role in ecosystem survival and human health. Contaminated water
may increase mortality and cause serious health problems [5,6]. Water pollution is a major
issue in environmental monitoring, as toxins are released into water bodies, and traditional
water quality-evaluation methods are labor-intensive, complex, and inadequate for future
needs [7]. Converting complex environmental data into actionable information for the
public and policymakers is a major challenge [8–10]. An effective technique is needed
to resolve interpretation inconsistencies and clarify findings [11]. Drinking water quality
(DWQ) management has gained attention due to groundwater contamination [12–15], with
developing countries struggling to preserve water quality while ensuring supply [16–18]
and developed nations focusing on improving water quality amid population growth
and public health concerns [19,20]. Monitoring water quality in the 21st century is chal-
lenging due to the several chemicals used in daily life and commerce. A fuzzy-based
prediction approach is proposed to assess water quality more accurately, using various
physical, biological, and chemical parameters to address this. Several scholars have ap-
plied Water Quality Index (WQI) models for water quality evaluation. Sahu et al. [21]
used the ANFIS (Adaptive Neuro-Fuzzy Inference System) to analyze highly contami-
nated groundwater near mines, applying PCA (Principal Component Analysis) to convert
correlated data into uncorrelated data, improving accuracy, though requiring extensive
training. Liu et al. [22] applied a support vector machine (SVM) to predict aquaculture
water conditions and addressed parameter-selection issues by developing a real-value
genetic algorithm support vector regression (RGA-SVR), a genetic algorithm that effectively
handles nonlinear time series problems. Sedeño-Díaz and López [23] presented a simple
and cost-effective method for calculating water quality in reservoirs using tools like fuzzy
logic (FL), resulting in the highest accuracy findings. Khan and See used an Artificial
Neural Network (ANN) with a Nonlinear Autoregressive (NAR) time series and Scaled
Conjugate Gradient (SCG) to train on (chlorophyll, dissolved oxygen (DO), turbidity, and
conductance), achieving improved accuracy at slightly higher implementation costs [24].
Huang et al. proposed a Fuzzy Wavelet Neural Network (FWNN) model, using genetic
and gradient descent algorithms to assess river water quality with improved accuracy,
performance, and durability for varying and non-seasonal data [25]. Zhou et al. developed
two prediction models, including a Long short-term memory (LSTM) neural network
with enhanced Gray Relational Analysis (IGRA), to assess water quality. However, they
found the models required more data and longer training time [26]. Ahmed et al. used
SVM, Group Method of Data Handling (GMDH), and Artificial Neural Network (ANN)
for water quality prediction, finding SVM and GMDH more reliable, with WDT-ANFIS
recommended for WQI from historical data [27]. Li et al. propose a multimodal water
quality prediction model combining ensemble empirical mode decomposition (EEMD)
and support vector regression (SVR), demonstrating superior performance in predicting
dissolved oxygen [28]. The promising results of the Samantaray et al. study show that
SVR-FFAPSO is a viable method for evaluating GWL uncertainty because it produces tar-
geted and financially feasible outcomes without sacrificing any dependability [29]. Binney
et al. proposed a Sustainability Assessment of Groundwater in Southeast Ghana’s western
region. The study evaluated groundwater’s biological and physico-chemical characteristics,
using Hazard Quotient (HQ) and WQI to assess health risks. It found that 16.7% of samples
exceeded WHO limits for total dissolved solids (TDS) and turbidity, while 83.3% had a
mildly acidic pH [30]. Barzegar et al. proposed the FIS approach to evaluate drinking
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water quality in Rome, Italy, using various defuzzification methods [31]. Kimothi et al.
developed an IoT and machine learning (ML)-based framework to assess water quality in
13 Uttarakhand locations, finding all samples safe to drink, with pH levels averaging 7.19
and a mode of 0.25 [32]. Hassan et al. classified water quality across different geographical
regions in India using different machine-learning techniques. This study identified nitrate,
pH, and conductivity as significant variables in the classification of water quality [33]. Bui
Quoc Lap et al. used machine learning and feature selection to identify key water quality
parameters, with Random Forest achieving 0.94 accuracy for efficient WQI calculation in
Vietnam’s An Kim Hai system [34]. Salari et al. used an ANN with a backpropagation MLP
and the Adam algorithm to estimate water volume from Capacitive Deionization, achieving
RMSE values of 0.008 (testing) and 0.003 (training) [35]. Derdour et al. used classification
techniques including decision tree (DT), K-Nearest Neighbor (KNN), Data Assimilation
(DA), SVM, and Extra Trees (ET) to predict WQI in Algeria’s Wilaya of Naâma, with SVM
achieving the highest accuracy (95.4% for normalized data, 88.9% for test samples) [36].
Uddin et al. quantified uncertainty in the WQI model using Monte Carlo simulation (MCS)
and Gaussian Process Regression (GPR), finding that the number of input indicators signifi-
cantly impacted model uncertainties [37]. Dhruba et al. developed a real-time water quality
evaluation system using IoT and a mobile app to monitor key metrics like pH, TDS, turbid-
ity, and temperature, benefiting environmental and public health. Wu et al. developed a
framework combining ANN, discrete wavelet transforms, and LSTM to estimate Jinjiang
River’s water quality accurately, outperforming earlier models [38]. Mdee et al.’s study
in Dodoma, Tanzania, measured water quality using shallow wells and deep boreholes
with WQI, Inverse Distance Weighting (IDW), and GIS analysis. They found that 42.5% of
samples were good and 57.5% outstanding, while the IDW analysis indicated an eastward
improvement in water quality [39]. Mishra et al. [40] analyzed water quality data at seven
Doon Valley, India, locations using ArcGIS 10.7 and the IDW method. They determined
that pH had the greatest impact on WQI, followed by BOD, DO, and TDS, while noting
the limitations of conventional machine learning for large data processing [41]. Dilmi
et al. integrated deep learning with feature extraction, achieving 99.72% accuracy in water
quality classification at the Tilesdit dam using LSTM RNNs and dimensionality reduction
methods like LDA and ICA [42]. Barzegar et al. used a fuzzy inference system to evaluate
the severity of privacy problems in a healthcare case study [43]. In the presented research, a
cohesive fuzzy model has been applied to water quality assessment in Tivoli, Italy, aiming
to address the challenges of handling imprecise, distorted, or noisy data in water quality
monitoring. The cohesive fuzzy inference systems are compact and require fewer rules,
thus being user-friendly and reliable while treating vague and uncertain information. The
Mamdani fuzzy inference system is intuitive and human-oriented, thus most suitable for
representing expertise. On the other hand, the Sugeno method is computationally efficient
and easy to combine with optimization and adaptive techniques, thus very suitable for
dynamic nonlinear systems. The objective of the work is to compare the computational
efficiency and performance of Mamdani and Sugeno fuzzy inference systems, establish the
applicative efficiency of the cohesive fuzzy model in handling uncertainties within water
quality assessment, and deliver appropriate information for policymakers and managers to
enable efficient monitoring and management of water quality.

2. Materials and Methods
2.1. Geospatial Representation of the Study Area

This research was conducted in Tivoli, Italy, according to Figure 1. Water sample
analysis was carried out in the laboratory of Acea Group. The current study used data from
the Acea Elabori group’s accessible database [44]. The data comprise some key physical
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and chemical variables of the drinking water delivered in Tivoli, Italy. The Acea Elabori
group, the biggest Italian supplier of integrated water services in terms of population
served, works in different Italian areas. They manage the water cycle, from spring to
wastewater treatment, for nine million individuals in different Italian areas [44]. Key
parameters analyzed included pH, hardness, alkalinity, bicarbonates, sulfates, nitrates,
sodium, potassium, and magnesium, according to the D. Lgs 18/2023 guidelines. The
pH was determined by a pH meter, while hardness and alkalinity by EDTA titration.
Sulfates were analyzed by ion chromatography, nitrates by UV spectrophotometry, and
sodium, potassium, and magnesium were determined by flame photometry and atomic
absorption spectrometry.
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2.2. Fuzzy Logic Modeling
2.2.1. Fuzzy Logic Overview

Fuzzy logic is a mathematical approach utilized to model ambiguity and uncertainty
within decision-making processes. It enabled complex expressions to be translated from
natural language discourse to mathematical modeling [45]. L. Zadeh [20] invented fuzzy
logic, which has since become one of the most well-known ways to construct environmental
indicators. These systems can easily include human thought and expertise in the indices [46].
Fuzzy logic can translate uncertain or unclear data into fuzzy sets for processing by the
fuzzy inference system (FIS). Under this study, important parameters of water quality, like
pH, turbidity, and dissolved oxygen, have been considered as fuzzy variables. This enabled
the developed system to handle imprecise values, such as those from missing data and
sensor errors, and therefore produced more reliable and valid results [47–55].
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2.2.2. Fuzzy Inference Systems

A fuzzy inference system (FIS) transforms input elements into output through logical
reasoning, addressing uncertainty in terms like “significant impact” or “level of con-
cern” [56,57]. This imprecision stems from human judgment and is often expressed with
linguistic variables, especially in fields like environmental management and water qual-
ity [22]. The two main inference methods are Mamdani (1974) and Takagi–Sugeno (1985).
The Sugeno approach differs from Mamdani by using constant functions instead of fuzzy
sets in the consequent part of the rule base [58]. Both methods use triangular, Gaussian, or
trapezoidal membership functions for inputs, with Mamdani also using these functions for
outputs, while Sugeno uses singleton functions [59]. An FIS consists of three components:
fuzzification, inference rules, and defuzzification. Fuzzification converts numerical inputs
into fuzzy-set membership grades, indicating ranges like low or high [56]. The importance
of each variable is integrated into the rules. Once fuzzified, inputs are aggregated using
fuzzy operators to determine rule strength. These are combined with output membership
functions, and the results are aggregated to produce a fuzzy output. Defuzzification con-
verts the fuzzy output into a crisp value, using methods like centroid, area bisector, or the
largest of the maxima (LOM) in Mamdani FIS and weighted sum (wtsum) or weighted
average in Sugeno FIS [59]. Finally, the fuzzy output is transformed into a crisp value [60].
The FIS structure is shown in Figure 2.
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Figure 3 presents the flowchart of both Mamdani and Sugeno techniques, illustrating
all three steps involved in each method. The primary distinction between the Mamdani
and Sugeno approaches lies in the defuzzification process. Sugeno FIS utilizes weighted
sum (wtsum) and weighted average (wtaver) methods for defuzzification [61].
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2.2.3. Defuzzification Techniques

Defuzzification refers to converting fuzzy outputs into precise values. To summarize
the results of a water quality assessment, fuzzy results need to be translated into a single
crisp value. Various defuzzification techniques can be used, including centroid, height,
and area methods. The centroid method calculates the center of gravity (centroid) of
the fuzzy-set distribution. This is done by integrating the products of the membership
function and variable values across the entire fuzzy-set range and then dividing by the
total area. The height method selects the highest membership grade in the fuzzy set and
assigns the corresponding crisp value, indicating the dominant classification of water
quality. The area-based method evaluates the fuzzy set’s area to estimate the numeric score.
Techniques such as the center of area or the mean of maximum (MOM) can be applied in
this method. Different defuzzification methods include Center of Sums (COS), center of
gravity (COG)/Centroid of Area (COA), center of area (BOA), weighted average, First of
Maxima (FOM), Last of Maxima (LOM), and Mean of Maxima (MOM).

The COG/COA method calculates the precise value by determining the center of
gravity of the fuzzy set. The fuzzy set’s total area is divided into sub-areas, and the
centroids and areas of these sub-areas are calculated to determine the defuzzified value.
These are then summed up to obtain the final defined value [62]. For a discrete membership
function, this value, denoted as x* and calculated using the center of gravity (COG) method,
is defined as follows:

x∗ = ∑n
i=1 xi.µ(xi)

∑n
i=1 µ(xi)

(1)

In Equation (1), xi denotes a sample element, µ(xi) represents the membership function,
and n signifies the total number of elements in the sample.

For a continuous membership function, x∗ is defined as in Equation (2):

x∗ =

∫
xµA(x)dx
µA(x)dx

(2)

The Weighted Average: The technique works well with fuzzy sets that resemble the
COA technique and have symmetrical-outcome membership functions. This approach
requires less computing power. Based on the greatest membership score for every member
function, a weighting system is employed.

x∗ = ∑µ(x).x
∑µ(x)

(3)

In Equation (3), Σ denotes the algebraic summation, and x is the element with maxi-
mum membership function.

Center of Area/The Bisector of Area Method (BOA): This method identifies the point
beneath the curve where the areas on both sides of the curvature are equal, as outlined
in Equation (4). Two zones with the same area are created by the procedure that the
BOA creates.∫ x∗

α
µA(x)dx =

∫ β

x∗
µA(x)dx, where α = min{x|xϵX} and β = max{x|xϵX} (4)

The Last of Maxima (LOM): This defuzzification approach utilizes the area with
the highest membership score, which has the largest number [63]. The last maximum
defuzzification is shown in Equation (5). In Equation (5), the parameter A represents a
fuzzy set, while the number one denotes a membership function.

yLOM= max{y|µA(y) = max(µA(y))} (5)
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The Smallest of the Maxima Method (SOM): This technique ascertains the area with
the highest membership score that has the lowest number [64]. The smallest of maximum
defuzzification is shown in Equation (6). In Equation (6), the parameter A indicates a fuzzy
set, and one indicates a membership function.

ySOM= min{y|µA(y) = max(µA(y))} (6)

The Mean of Maxima Method (MOM): The component with the greatest membership
scores is determined by taking the defined value. This technique is useful when there is
more than one component that has the maximum membership score. The means of the
maxima defuzzification method is shown in Equation (7).

yMOM =
yLOM + ySOM

2
(7)

2.3. Development of an FIS Framework to Forecast the Quality of the Drinking Water Distributed
in Tivoli

The present research effort aims to develop a cohesive fuzzy model to forecast water
quality. This water quality-forecasting framework was developed using the MATLAB
R2022b program (MathWorks, Natick, MA, USA). We selected a cohesive fuzzy model
since the main benefit is that it reduces the overall number of fuzzy rules in comparison
to a conventional fuzzy model. The major issue with conventional fuzzy models is that
when more inputs are added to the model, it requires creating a huge number of fuzzy
if-then rules, making the model complex and time-intensive to develop. The number of
fuzzy if-then rules depends on the number of input variables and the number of fuzzy
sets for each variable. The conventional model in this study consists of 9 input variables,
each with 3 fuzzy sets (low, medium, high). In contrast, the cohesive fuzzy model is
structured with 3 fuzzy models in the middle layer, each containing 3 input variables
with 3 fuzzy sets per variable. Traditional and proposed cohesive fuzzy models can be
seen in Figures 4 and 5, respectively.
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2.3.1. Hierarchical Model Structure

A hierarchical, cohesive fuzzy inference model for estimating the quality of drinking
water is shown in Figure 6a–d. The model in this study consists of two levels. In the first
level, we define three intermediate models with three inputs; in the second level, we define
the final model. The outputs generated from the first level serve as inputs for the final
model in the second level. There are multiple stages throughout the process of creating the
model to forecast the quality of the water. The system’s input and output parameters must
be identified in the first stage. Alkalinity, pH, and hardness are the three variables of the
first fuzzy system, according to the fuzzy model’s framework. The second fuzzy model
similarly has three inputs: nitrate, bicarbonate, and sulfate. Similarly, the third fuzzy model
has three inputs: sodium, potassium, and magnesium. The results of all three models in
the middle layer will be used as inputs for the final model to evaluate the quality.

Assigning ranges to each input and output comes after the inputs and outputs of the
model have been defined. The criteria for drinking water quality (IS 10500) [65] are dis-
played in Table 1 and are used to determine the range for each variable. To protect human
health, regulatory organizations specify that the level and quality of physicochemical and
biological factors in water for drinking must be within allowable (or desirable) bound-
aries. All the model’s numerical input parameters are categorized into three groups, high,
medium, and low, and the output of the proposed model is divided into seven categories
between 0–100. Table 1 outlines the various input variables used in the analysis, specifying
their associated linguistic terms and the ranges for each term.
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Table 1. Fuzzy value of all parameters.

Parameters Low Range Medium Range High Range Data Set of Tivoli Standard Value

pH 0–7 (Poor) 5.5–9.5 (Good) 7–14 (Moderate) 7.5 6.5–8.5

Alkalinity 0–400 (Good) 100–700 (Moderate) 400–800 (Poor) 318 (mg/L) 200 (mg/L)

Hardness 0–500 (Good) 100–900 (Moderate) 500–1200(Poor) 317(mg/L) 300 (mg/L)

Bicarbonate 0–400 (Good) 100–700 (Moderate) 400–800 (Poor) 388 (mg/L) 100 (mg/L)

Magnesium 0–60 (Good) 20–100 (Moderate) 60–120 (Poor) 21.80 (mg/L) 50 (mg/L)

Potassium 0–15 (Good) 6–25 (Moderate) 15–30 (Poor) 0.65 (mg/L) 12 (mg/L)

Sodium 0–400(Good) 100–700 (Moderate) 400–800 (Poor) 2.9 (mg/L) 200 (mg/L)

Nitrates 0–80 (Good) 20–140 (Moderate) 80–180 (Poor) 2.01 mg/L 45 (mg/L)

Sulfate 0–400 (Good) 150–650 (Moderate) 400–800 (Poor) 3.67 (mg/L) 200 (mg/L)

Figure 7 shows the triangular membership function for bicarbonate and output which
is based on the quality of the water. The simplest membership functions formed using
straight lines are triangular membership functions. These straight-line membership func-
tions have the advantage of simplicity [66].
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µt
c= max{min[

Ct − Ct
l

mt − Ct
l
, 1,

Ct
u − Ct

Ct
u − mt ], 0} (8)

• Ct: Measured parameter’s concentration at time t; Ct
l : Lower limit of the acceptable

range at time t; Ct
u: Upper limit of the acceptable range at time t. The lowest acceptable

value is l; u is the maximum permissible value; and mt is the center value.

In the Equation (9), the fuzzy function is specified just by its minimum threshold (ct
l),

and it can be computed as:

µt
U= max{min [

Ct − Ct
l

mt − Ct
l
, 1], 0} (9)

Therefore, when an acceptable range is specified by a single possible upper unit, the
fuzzy function could be derived as follows:

µt
L = max{min[

Ct − Ct
l

mt − Ct
l
,

Ct
u − Ct

Ct
u − mt ], 0} (10)

2.3.2. Fuzzy Rule

The fourth step, including “if-then” logical statements, is used for combining an-
tecedents and consequences with the “and” operator [67]. Table 2 illustrates some of these
rules for the first fuzzy model. After defining the rules, the inference engine evaluates and
combines the rules into one rule. Defuzzification transforms fuzzy results into numerical
values. The proposed model has three fuzzy models with three input variables and three
fuzzy sets: low, medium, and high. This will result in 3 × 3 × 3 = 27 possible if-then rule
combinations per model.

Table 2. Fuzzy rules.

Rule Hardness Alkalinity pH Water Quality Output

1 Low Low Medium Very High (VH)

2 Low Low High Very High (VH)

3 Low Low Low High (H)

4 Low Medium Low Medium

5 Low Medium High Low (L)

6 Medium Medium Low Medium (M)

7 Medium Medium High Medium (M)

8 Medium Low Medium Medium (M)

9 Medium High Low Medium (M)

10 Medium High Medium Low (L)

11 Medium High High Medium (M)

2.3.3. Fuzzy Operator

After fuzzifying the inputs, we can determine the degree of antecedent satisfaction
for every rule. If a rule’s antecedent comprises many parts, the fuzzy operator generates
a single integer that reflects the rule’s outcome. The value is subsequently sent into the
outcome function. The fuzzy operator receives multiple membership scores from fuzzified
inputs and generates a whole amount of output. This study relied on the logic operator.



Sustainability 2025, 17, 579 12 of 25

2.3.4. Implication Method

The antecedent function reshapes the consequent by mapping an integer input to a
fuzzy-set output. Each rule applies an implication, calculating the minimum membership
degree (activation degree) among variables to limit the outcome function’s membership.
These fuzzy sets are then aggregated using the highest membership value, with rule
order irrelevant if the operation is commutative. Computing a fuzzy rule involves the
following: 1. Combining fuzzy inputs to determine rule strength. 2. Clipping the output
membership function at this strength. Figure 8 shows the implication method in the fuzzy
inference system.
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The aggregation process involves combining the fuzzy sets representing the outputs
of each rule into a single fuzzy set, occurring only once for each output variable before the
final defuzzification step, with the input being the list of truncated output functions from
the implication process for each rule and resulting in one fuzzy set for each output variable.

3. Results and Discussion
The evaluation rules and surface views of the three intermediate models, FWQ1,

FWQ2, FWQ3, and the final FWQ, have been derived in this study using two distinct fuzzy
inference engines: the Mamdani engine and the Sugeno fuzzy engine.

3.1. Intermediate Mamdani Fuzzy Model
3.1.1. First Mamdani Fuzzy Model

Figure 9 illustrates the rule viewer for the first model’s water quality evaluation,
which has three input variables: hardness, alkalinity, and pH. According to the rule-
based illustration in Figure 9, the score for water quality in the first fuzzy model is 72.4%,
which was obtained using the centroid defuzzification technique for their corresponding
average concentrations of alkalinity, pH, and hardness, which are 318 mg/L, 7.5, and
317 mg/L, accordingly.

The surface representation of the first fuzzy model in the middle layer using the
centroid defuzzification approach is illustrated in Figure 10. This illustration demonstrates
how alkalinity and hardness impact water quality in the first fuzzy model in the middle
layer. It indicates that lower concentrations of hardness and alkalinity correspond to better
water quality, and vice versa.
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3.1.2. Second Mamdani Fuzzy Model

Figure 11 shows the rule representation of the second model using bicarbonate, sul-
fate, and nitrate as input factors. The second model has a value of 83.4% using centroid
defuzzification for the sulfate, nitrate, and bicarbonate concentrations of 3.67, 2.01, and
388 mg/L, respectively.
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Figure 12a illustrates the impact of bicarbonate and nitrates on quality using MOM
defuzzification, whereas Figure 12b illustrates the centroid defuzzification approach. Better
water quality is correlated with a smaller amount of bicarbonate, fluoride, and nitrate,
and conversely.
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3.1.3. Third Mamdani Fuzzy Model

The rule adopted for the third model in the middle layer, which has three input variables—
sodium, potassium, and magnesium—is illustrated in Figure 13. Using the centroid defuzzifi-
cation approach, the water quality in the third model was determined to be 92.5%, as shown
by the rule-based representation in Figure 13. The average concentrations of magnesium,
potassium, and sodium were found to be 21.8, 0.65, and 2.9 mg/L, accordingly.
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3.2. Final Mamdani Fuzzy Model (MFWQ)

Figure 14a illustrates the impact of sodium and potassium on the quality of water
in the third model with the MOM defuzzification approach. Figure 14b illustrates the
impact of magnesium and sodium on water quality. They indicate that the smaller the
sodium, potassium, and magnesium levels, the better the water quality and vice versa.
Furthermore, it shows that the amount of sodium, potassium, and magnesium directly
impacts the water’s quality.
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In Figure 15, the rule-based illustration reveals a Final FWQ value of 85.4%, indicating
a very high-quality class between 80–100. The equivalent average values in the first, second,
and third fuzzy models are 72.4%, 83.4%, and 92.5%, respectively, determined using the
centroid defuzzification technique. Figure 15 provides a visual representation of the rule
viewer for evaluating fuzzy water quality in the final model, considering the outputs of the
first, second, and third fuzzy models.
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Figure 16 represents the surface viewer of the ultimate fuzzy water-quality model by
centroid defuzzification technique. Figure 16 illustrates how the second and third levels
influence the overall quality of water. Greater water quality of second- and third-model
levels correlates with greater overall water quality. Increased levels of fuzzy output in the
second and third models resulted in greater ultimate water quality values, and vice versa.
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3.3. Intermediate Sugeno

The results of water quality with the Sugeno fuzzy inference method with three
intermediate models and the final model are presented in Figures 17–20.

3.3.1. First Sugeno Fuzzy System

Figure 17 illustrates the outcomes of the initial Fuzzy system at the intermediate level
utilizing the Sugeno method. The water quality result from this first model, employing
the weighted average defuzzification technique with three input parameters—hardness at
317 mg/L, alkalinity at 318 mg/L, and pH at 7.5—yields a percentage of 76.2.

3.3.2. Second Sugeno Fuzzy

Figure 18 illustrates the outcomes of the second fuzzy model at the intermediate level
utilizing the Sugeno method. The water quality result from this first model, employing
the weighted average defuzzification technique with three input parameters—nitrate at
2.01 mg/L, bicarbonate at 388 mg/L, and sulfate at 3.67—yields a percentage of 83.5.

3.3.3. Third Sugeno Fuzzy

Figure 19 illustrates the outcomes of the third fuzzy model at the intermediate level
utilizing the Sugeno method. The water quality result from this model, employing the
weighted average defuzzification technique with three input parameters—sodium at
2.9 mg/L, potassium at 0.65 mg/L, and magnesium at 3.67—yields a percentage of 92.5.
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3.4. Final Sugeno Fuzzy Inference Engine

Figure 20 illustrates the results of the ultimate fuzzy system at the second level, which
employs the Sugeno method. Assessment of the quality derived from this model utilizes
the weighted average defuzzification approach. The inputs for this model are derived from
the outputs of the intermediate-level models. The final model yields a result of 83.5 percent
based on the weighted average defuzzification approach.

Table 3 shows water quality scores for three intermediate models (FWQ1, FWQ2,
FWQ3) and the final model (Final FWQ) using Mamdani and Sugeno systems. Mamdani’s
centroid method scored 72.4%, 83.4%, 92.5%, and 85.4%, while the LOM method achieved
the highest scores of 100.0% for FWQ3 and the Final FWQ. Sugeno’s weighted average
method provided consistent scores of 76.2%, 83.5%, 92.5%, and 83.5%, highlighting its
efficiency and stability for dynamic systems. The results demonstrate Mamdani’s flexibility
and Sugeno’s reliability for water quality evaluation.
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Table 3. Water quality scores for intermediate and final fuzzy models using Mamdani and
Sugeno systems.

Model Defuzzification
Method

FWQ1 Score
(%)

FWQ2 Score
(%)

FWQ3 Score
(%)

Final FWQ
Score (%)

Mamdani Centroid 72.4 83.4 92.5 85.4

Mamdani Bisector 72.0 83.0 94.0 86.0

Mamdani LOM 74.0 83.0 100.0 100.0

Mamdani MOM 67.0 83.0 97.0 94.5

Mamdani SOM 60.0 83.0 94.0 89.0

Sugeno Weighted
Average 76.2 83.5 92.5 83.5
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The system proposed in this study provides several advantages over other artificial
intelligence methods discussed in the literature:

1. Integrating fuzzy rules within an FIS presents an innovative and efficient way to
enhance communication between humans and advanced AI systems.

2. The use of fuzzy rules as a model-specific explanatory method shows varying degrees
of interpretability across different prediction models.

3. Fuzzy inference systems are well-suited for embedding linear controllers, offering ease
in mathematical analysis, straightforward rule formulation, and simple interpretation
and implementation.

4. Fuzzy inference systems are capable of extracting and managing fuzzy and uncertain
data features.
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5. The Sugeno method demonstrates high computational efficiency; it seamlessly incor-
porates optimization and adaptive techniques.
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3.5. Comparison and Interpretation of Results

The results of the water quality assessment, conducted using the Mamdani inference
engine with various defuzzification methods and the Sugeno inference engine, consistently
indicate water quality levels within the range of 80–100 percent. The results from both
methods fall within the ‘Very Very High’ (VVH) category, meaning the water quality is
excellent. Both the Mamdani and Sugeno approaches show the same outcome, consistently
indicating that the water quality is at a very very high level, confirming its superior quality.
Table 4 shows the final result with the Mamdani and Sugeno approaches, indicating that all
the results belong to the same water quality category.
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Table 4. Comparison result.

Mamdani WQ Centroid Mamdani WQ Bisector Mamdani WQ LOM Mamdani WQ MOM Mamdani WQ SOM Sugeno WQ

85.4% 86% 100% 94.5% 89% 83.5%

4. Conclusions
The assessment of drinking water quality in Tivoli, Italy, was carried out by two fuzzy

inference systems with different defuzzification techniques. This cohesive fuzzy model
proposed various advantages compared to the existing fuzzy systems; it is less complex and
has fewer rules. Therefore, it turned out to be reliable and interpretable, integrating nine
critical water quality parameters. The results showed that the water quality in Tivoli was
always in the category of “very high”, with Mamdani and Sugeno systems giving water
quality scores of 85.4% and 83.5%, respectively. These results illustrated the capability of
fuzzy-logic-based approaches in handling imprecise, uncertain, or noisy data; thus, it is an
efficient tool for sustainable water management. Compared to other methods, traditional
statistical approaches, or even modern machine learning models such as neural networks
and support vector machines, there are advantages to the cohesive fuzzy model. Fuzzy
logic works effectively with imprecise, uncertain, or ambiguous information, for which
statistical or deterministic models do not work well because of noisy or incomplete data
conditions. While machine learning methods are highly accurate, they mainly act as black-
box systems, hence limiting interpretability by policymakers and water managers. Other
advanced techniques, like the Adaptive Neuro-Fuzzy Inference Systems, combine neural
networks with fuzzy logic for high precision at the expense of increased computational
complexity and higher data requirements. In contrast, the cohesive fuzzy model strikes an
optimum balance between simplicity, efficiency, and accuracy, and thus provides actionable
insight understandable by experts and non-experts alike. The proposed methodology not
only simplifies the evaluation process but also delivers insights accessible to policymakers
and non-experts in pollution control, ecosystem conservation, and sustainable resource
utilization. Further research may extend the model by considering extra input parameters,
other types of membership functions, or more advanced techniques like ANFIS using
neural networks together with fuzzy logic. The results of this study help provide more
insight into the assessment of water quality for informed decisions to attain sustainable
and healthful longevity.
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