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Abstract: This study analyses pedestrian behaviour patterns at unsignalized crossings using
multiple data-mining approaches, aiming to improve pedestrian safety by understanding
the relationship between movement patterns, location, and infrastructure. Utilising the
STATS19 dataset from the UK Department for Transport, applied data analysis techniques,
including heatmap visualisation, association rule learning, and Principal Component
Analysis (PCA) with clustering, to identify high-risk behaviours and provide targeted
interventions. Heatmap visualisation identifies spatial patterns and high-risk areas, while
association rule learning reveals the relationships between pedestrian behaviours and
infrastructure elements, highlighting the importance of facility placement and accessibility
in encouraging safe crossing. PCA combined with clustering effectively reduces data
complexity, revealing key factors that influence pedestrian safety. The findings emphasise
the need for appropriate infrastructure, such as strategically placed zebra crossings and
central refuges, to guide pedestrian behaviour and reduce accident risks. Underutilised
facilities like footbridges and subways require redesign to align with pedestrian prefer-
ences. By analysing the relationship between pedestrian behaviour and infrastructure,
this study aligns with the United Nations’ sustainability goals, supporting evidence-based
interventions to achieve safer and more sustainable urban development. The results of
this study offer insights for urban planners to prioritise safety measures and infrastructure
improvements that enhance pedestrian safety at unsignalized crossings.

Keywords: unsignalized crossings; pedestrian safety; STATS19; pedestrian behaviour;
data mining

1. Introduction

Road traffic accidents represent a significant challenge to global public health, af-
fecting millions of lives annually. According to the World Health Organisation (WHO),
approximately 1.19 million people die each year from road traffic crashes, with low- and
middle-income countries accounting for over 93% of global fatalities (WHO, 2023) [1].
Addressing this issue requires a comprehensive understanding of the factors contributing
to road accidents, including infrastructure effectiveness and pedestrian behaviour. One key
area is pedestrian safety at crossings, especially unsignalized ones, which are often high-
risk zones. Understanding pedestrian behaviour patterns at these locations is crucial for
developing targeted interventions that can reduce accidents, improve safety, and ultimately
save lives.

Data-mining approaches help understand and mitigate road safety issues. Systematic
analysis of historical road accident data allows for the detailed examination of pedestrian
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behaviour, particularly at high-risk locations such as crossings. By leveraging data analytics,
researchers can identify recurring patterns and risk factors contributing to pedestrian
accidents. For instance, detailed studies in developed countries have highlighted how
certain behaviours, such as jaywalking or failing to use designated crossings, correlate
with higher accident frequencies [2]. This approach allows for a proactive response to
road safety challenges, enabling policymakers to implement changes based on evidence
rather than intuition [3]. The data-mining analysis is particularly powerful in uncovering
hidden insights that may not be immediately apparent, such as how environmental factors,
time of day, or road conditions influence pedestrian behaviour [4]. These findings serve
as a foundation for designing more effective interventions, such as improved crosswalks,
enhanced signage, or modified traffic flow to ensure pedestrian safety.

The International Road Assessment Programme (iRAP) is a key player in the global
effort to enhance road safety through infrastructure improvements. iRAP’s evaluation tools
are used to assess road infrastructure and identify areas where safety can be significantly
improved, particularly concerning pedestrian facilities. iRAP’s star ratings for roads
are a globally recognised benchmark for road safety, and they highlight critical aspects
that influence pedestrian risk. iRAP provides valuable insights into how infrastructure
elements affect pedestrian behaviour. The absence of appropriate pedestrian facilities, as
assessed by iRAP, is often linked to an increased risk of accidents. By integrating iRAP’s
assessment tools, policymakers can identify areas where infrastructure improvements
are most urgently needed, directly influencing pedestrian behaviour in ways that reduce
accident risk. Effective infrastructure plays a significant role in determining pedestrian
movement patterns, and understanding this relationship is crucial for reducing accidents
at high-risk locations such as unsignalized crossings [5].

Unsignalized crossings are often identified as high-risk areas for pedestrian accidents.
Unlike signalized crossings, which have dedicated signals to manage traffic flow and
pedestrian movement, unsignalized crossings rely largely on the awareness and behaviour
of drivers and pedestrians. This lack of control increases the risk of accidents, particularly
when drivers fail to yield to pedestrians or when pedestrians underestimate the speed
of approaching vehicles. A significant portion of severe pedestrian accidents occurs at
unsignalized crossings, where both vehicle speed and pedestrian unpredictability con-
tribute to a hazard [6]. Pedestrians at unsignalized crossings are more vulnerable due to
the absence of clear signals that would otherwise grant them the right of way, leading
to confusion and risky behaviour [7]. Understanding pedestrian behaviour patterns at
these locations is critical for developing targeted interventions. Pedestrian behaviour and
infrastructure influence traffic accidents in various and complex ways. Behavioural fac-
tors include pedestrians disobeying traffic rules, choosing undesignated crossing points,
crossing when their view is obstructed by vehicles, being influenced by peer pressure or
social norms, being distracted by mobile phones or headphones, risking crossing due to
long waiting times or rushing, and impaired judgement under the influence of alcohol or
drugs. On the infrastructure side, the absence of clearly marked or convenient crossing
facilities, wide roads, obstructed views caused by parked vehicles, insufficient lighting, and
inadequate consideration for the needs of vulnerable groups all increase pedestrian crossing
risks. These behavioural and infrastructure factors interact to collectively determine the
risk and severity of pedestrian traffic accidents [8].

The growing complexity of urban environments and the increasing number of road
users have heightened the need for sophisticated data-mining methods in road safety
analysis. Traditional approaches to pedestrian safety often relied on anecdotal evidence or
simplistic models that did not account for the diverse factors influencing pedestrian be-
haviour. Today, advanced analytical techniques such as association rule learning, clustering,
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and Principal Component Analysis (PCA) are used to delve deeper into historical crash data
and extract meaningful patterns. These methods enable the identification of underlying
factors that contribute to accidents at unsignalized crossings, providing a more nuanced
understanding of the risks involved. Association rule learning can uncover relationships
between pedestrian behaviour and specific environmental conditions. Meanwhile, PCA
helps reduce the complexity of large datasets, making it easier to visualise and understand
key factors affecting pedestrian safety. These data-mining techniques offer a comprehensive
approach that combines multiple to develop targeted strategies for preventing accidents.

The primary focus of this research is to analyse pedestrian behaviour patterns at
unsignalized crossings using data-mining techniques. This study aims to understand how
pedestrian movement, location, and the presence of infrastructure influence accident risk.
The remainder of this paper is organised as follows: Section 2 outlines the methodology for
identifying pedestrian behaviour patterns using historical crash data. Section 3 describes
the methodology employed in this study, including data collection, a brief description
of the analytical models, and the integration of analytical techniques. Section 4 presents
the results of the analytical models and the comparative analysis results, followed by a
discussion in Section 5 to demonstrate the impact of the proposed methodology on the
analysis of pedestrian behaviour patterns in practice. Finally, Section 6 provides concluding
remarks and suggests directions for future research in determining the effectiveness of
pedestrian behaviour patterns on road safety.

2. Related Work

Pedestrian safety at unsignalized crossings remains a critical concern, prompting
extensive research into pedestrian behaviour patterns and their interactions with crossing
facilities. Historical accident data has been instrumental in this exploration, with various
optimisation models employed to analyse and visualise risk factors. Heatmaps have
been effective in visualising spatial distributions of pedestrian accidents, aiding in the
identification of high-risk zones and informing targeted interventions [9]. A GIS-based
pedestrian accident analysis in Delhi demonstrated how spatial visualisation techniques
can guide infrastructural improvements in urban settings [10].

Association rule learning has been applied to uncover complex relationships between
pedestrian behaviours and environmental factors. Trend mining using association rules on
fatal pedestrian crashes at unsignalized crossings revealed significant patterns associated
with crossing behaviours and intersection characteristics [11]. This approach facilitates the
identification of critical risk factors that may not be evident through traditional statistical
methods. An integrated text mining and meta-analysis approach also investigated pedes-
trian violation behaviours, providing a comprehensive understanding of factors influencing
pedestrian compliance and safety [12].

Clustering and Principal Component Analysis (PCA) techniques have been instru-
mental in segmenting pedestrian behaviours and identifying underlying risk patterns. A
study utilising clustering methods investigated clusters and injuries in pedestrian crashes
using GIS, categorising accidents based on common characteristics [13]. Similarly, a novel
integrated model under fuzzy environments supported pedestrian safety studies by em-
ploying PCA to manage complex datasets and enhance interpretability [14]. Pedestrian
behaviour analysis at unsignalized crossings has also utilised clustering to inform targeted
safety measures [15].

Innovative strategies integrating these analytical tools have emerged to address pedes-
trian safety challenges at unsignalized crossings. Vision-based approaches utilise data
mining techniques on surveillance footage to conduct potential pedestrian risk analysis,
enabling real-time monitoring of pedestrian-vehicle interactions and facilitating proac-
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tive safety interventions [16]. Evaluating pedestrian-vehicle interaction dynamics at T-
unsignalized crossings through a proactive safety analysis can inform the design of safer
unsignalized crossings [17].

Simulation modelling has proven valuable in assessing the effectiveness of safety inter-
ventions. Simulation modelling was applied to improve pedestrian safety at unsignalized
crosswalks, examining the impact of infrastructural changes [18]. A study using a traffic
conflict technique to assess pedestrian safety at traffic signals demonstrated how simulation
models can predict potential conflicts and guide preventative measures [19]. Additionally,
modelling pedestrian crossing behaviour based on road traffic and human factors provided
insights into behavioural responses to different traffic conditions [20].

Applications of these models have significantly influenced urban planning and policy.
Characterisation of pedestrian accidents and examination of infrastructure measures in-
formed policy decisions regarding crosswalk placements and traffic calming measures [21].
Exploring the link between the built environment, pedestrian activity, and collision oc-
currence at unsignalized crossings emphasised the role of urban design in promoting
pedestrian safety [22]. Mapping patterns of pedestrian fatal accidents provided valuable
data for policymakers to address high-risk areas [23].

Studies focusing on pedestrian perception and behaviour have contributed to a deeper
understanding of safety issues. A comparative study of safe and unsafe unsignalized
crossings from the viewpoint of pedestrian behaviour and perception highlighted the
importance of user experience in assessing intersection safety [24]. Observational studies
examined road-rule violations at high-incident unsignalized crossings, providing insights
into human behaviour and its impact on pedestrian injury risk [25].

Unsupervised learning algorithms have been applied to investigate crash patterns.
Pedestrian crash patterns at high-speed, unsignalized crossings and road segments were
explored, providing novel insights into accident characteristics without prior labelling
of data [26]. Additionally, the historical context of traffic and pedestrians in the modern
city underscores the evolution of pedestrian safety concerns and the need for adaptive
strategies [27].

Challenges and gaps persist, particularly in data limitations and methodological
constraints. The variability in pedestrian behaviour across different demographics and
regions complicates the generalisation of predictive models. The association between
roadway intersection characteristics and pedestrian crash risk varies, necessitating localised
studies [28]. Sheykhfard reviewed different perspectives of vehicle-pedestrian conflicts and
crashes and discussed passive and active analysis approaches, underscoring the necessity
for comprehensive data collection [29].

Emerging opportunities involve integrating advanced technologies and interdisci-
plinary approaches. The use of IoT devices and Al algorithms facilitates real-time data
collection and dynamic modelling. A systems-based approach to investigating unsafe
pedestrian behaviour at level crossings suggested that incorporating systems thinking can
enhance safety analyses [30].

Significant progress has been made in understanding pedestrian safety at unsignalized
crossings through advanced analytical tools such as heatmaps, association rule learning,
clustering, and PCA. These methods have proven effective in identifying high-risk areas,
uncovering complex behaviour patterns, and guiding targeted safety interventions. Vision-
based and simulation modelling approaches further enhance real-time risk analysis and
predictive capabilities. Despite these advancements, challenges persist, including data
limitations, variability in pedestrian behaviour across different regions, and the need for
localised studies to ensure model generalizability. Emerging technologies such as IoT
and artificial intelligence offer promising avenues for real-time monitoring and adaptive
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safety strategies, paving the way for more effective and sustainable urban planning solu-
tions. Comprehensive analysis of pedestrian behaviour at unsignalized crossings using
historical data and advanced models has deepened the understanding of risks, informed
evidence-based safety strategies, and emphasised the role of emerging technologies and in-
terdisciplinary approaches in addressing challenges and enhancing urban pedestrian safety.

3. Methodology

This study introduces three distinct methods used to analyse pedestrian behaviour
at unsignalized crossings: heatmap visualisation, association rule learning, and Principal
Component Analysis (PCA) combined with clustering. Each of these methods provides
unique insights into pedestrian behaviour patterns and risk factors, allowing for a compre-
hensive exploration of pedestrian safety issues [31].

The following sections provide a detailed explanation of the characteristics of each
method and their roles in analysing crash data. Heatmap visualisation is employed to
identify spatial patterns and high-risk areas, association rule learning uncovers latent rela-
tionships between behaviours and environmental factors, and PCA with clustering is used
to reduce data complexity while grouping similar behaviour patterns for further analysis.

This study aims to use these methods within an integrated analytical framework to
better understand pedestrian safety at unsignalized crossings. The overall purpose is to
leverage the complementary strengths of each method to provide data-mining insights that
can inform targeted interventions and enhance pedestrian safety. Figure 1 illustrates how
each model was applied to analyse pedestrian behaviour at unsignalized crossings.

=
- =
+ ¢

Key associated Associated set of
factors factors

Figure 1. Process of overall methodology.
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3.1. Data Collection

The data utilised in this study originates from the STATS19 road safety data, collected
and maintained by the UK Department for Transport. This dataset comprises detailed
records of road accidents reported to the police across Great Britain, covering the years 2018
to 2022. The STATS19 data are widely regarded as one of the most comprehensive sources of
road traffic accident information, encompassing various aspects such as the circumstances
of personal injury collisions, the types of vehicles involved, and the resulting casualties.

3.1.1. Study Dataset

For this study, an extracted subset of the STATS19 data specifically focusing on pedes-
trian accidents at unsignalized crossings was considered. The dataset includes records from
2018 to 2022, providing a reasonable sample for analysis [32]. Key elements of the dataset
include the following;:

e  Accident Details: Information about the date, time, and location of the accident, as
well as the road conditions, weather, and lighting at the time of the incident.

e Casualty Information: Details about the individuals involved in the accident, in-
cluding age, gender, injury severity, and whether they were pedestrians, cyclists, or
vehicle occupants.

3.1.2. Data Limitations

The STATS19 dataset, accessible via the UK Government’s data portal, supports road
safety research while maintaining ethical standards and individual privacy. Despite limita-
tions such as underreporting of minor incidents and variability in police report accuracy,
STATS19 remains crucial for understanding road safety trends. This study leverages the
dataset to provide insights into pedestrian safety at unsignalized crossings, aiding infras-
tructure improvements [33].

3.2. Data Preprocessing

Data preprocessing was crucial for ensuring the dataset’s readiness for machine learn-
ing. The study filtered the STATS19 dataset to focus only on accidents at unsignalized
crossings, excluding entries involving signalized crossings or controlled junctions. This
filtering step provided a precise dataset directly aligned with the research focus. Cleaning
involved addressing missing values through median imputation for numerical data and the
most frequent value imputation for categorical data. Standardisation of numerical features
(mean of 0, standard deviation of 1) and binary encoding of categorical variables prepared
the data for analysis.

After cleaning and encoding, the pre-processed dataset was integrated into the analysis
pipeline. Consistency checks verified a uniform data structure, and transformations were
validated to maintain the dataset’s integrity. This preprocessing ensured the robustness of
the dataset for model training and evaluation, supporting accurate analysis of pedestrian
injury severity and identifying key factors affecting safety at unsignalized crossings.

3.3. Models
3.3.1. Heatmap Analysis

The basic principle of heat map analysis lies in the use of colour intensity to convey
accident concentrations for various pedestrian locations and facility types. The analysis
involves constructing a data matrix, calculating likelihood values to quantify the frequency
of accidents, and visualising these values through colour-coded intensities. The heat
maps generated highlight specific areas of higher risk, revealing the interaction between
pedestrian behaviour and infrastructure.
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As noted by Netek et al. [34], heat maps are a versatile GIS-based method that pro-
vides intuitive and visually comprehensible representations of spatial data, making them
particularly useful for traffic safety analysis. Heat map analysis was used to visually
represent the spatial distribution of pedestrian accidents across different locations and
associated facilities. The accident data are organised into a matrix format where rows
represent pedestrian locations or behavioural patterns and columns represent different
facility types. Each pixel value in the matrix corresponds to the normalised frequency of
accidents for a particular combination of location and facility point type. The intensity of
each cell represents the density of accidents and allows for a clear description of high-risk
areas. Heat maps provide an effective visualisation of data patterns and help to identify
high-risk areas that require targeted intervention.

3.3.2. Association Rule Learning

Association rule learning is applied to identify latent patterns and weigh optimal
solutions through an aggregation method. This process employs a rule-based model using
“if ..., then ...” decision rules to reveal relationships between pedestrian behaviours and
associated facilities, thereby providing data-mining insights to inform targeted safety
interventions. The Apriori algorithm is used to generate frequent item sets and derive
association rules, which helps uncover significant associations. To evaluate the robustness
and significance of these rules, key metrics such as support, confidence, and lift are used.
Feng et al. [35] pointed out that it effectively reveals hidden correlations within multi-
attribute traffic data and supports the extraction of actionable insights through rule-based
patterns. Analysing pedestrian location and movement behaviour can lead to better traffic
facility layouts, ultimately improving safety and efficiency.

As an unsupervised learning method, association rules do not require pre-labelled
data, which makes them suitable for exploratory data analysis. They effectively discover
frequently occurring patterns in datasets, providing valuable insights for decision-making.
Moreover, association rules are versatile, applying to various types of data, and help in
evaluating the strength of relationships using metrics like support, confidence, and lift.
High support, confidence, and lift reveal strong patterns, suggest prevalent associations,
and indicate significant relationships that can be leveraged in practice. The aggregation of
lift values across road attributes and countermeasures provides a measure of risk, where
higher lift values signify increased risk levels that require targeted interventions. This data-
mining approach helps assess the impact of these associations on road safety, guiding policy
decisions, infrastructure improvements, and intervention planning to enhance pedestrian
safety at unsignalized crossings. The following formula demonstrates the strength of the
association between rules:

Support(X) = Number of transactions containing A, 1)

Total number of records

where number of transactions containing X A set of items representing the associated
factors and total number of records: Represents the number of all analysed data.
_ Support(A U B)

Confidence(A — B) = Support(A) ()

where A represents pedestrian movement/location factors and B represents pedestrian
facility condition factors.

Lift(A — B) =

Confidence(A )—> B), 3)

Support(B
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where A represents pedestrian movement/location factors and B represents pedestrian
facility condition factors.

3.3.3. PCA and Clustering Analysis

PCA and clustering were employed to reduce the complexity of the dataset while
retaining essential information, enabling the identification of distinct patterns and relation-
ships in pedestrian behaviours at unsignalized crossings. Clustering and PCA dimensional-
ity reduction are powerful tools for data analysis, capable of retaining the most important
information while reducing data complexity. This is particularly useful for discovering
patterns and relationships within the data, especially when dealing with high-dimensional
data. Ding and He [36] demonstrated that principal components are the continuous solu-
tions to the discrete cluster membership indicators for K-means clustering, highlighting the
close relationship between PCA and K-means clustering in data analysis.

The Principal Component Analysis (PCA) process involved reducing the dataset to its
most significant components, retaining the first two principal components that explained
the majority of the variance.

X =WZ, 4)

where X represents the original data, W is the matrix of eigenvectors, and Z is the trans-
formed data in the reduced space.

This dimensionality reduction facilitated visualisation in a two-dimensional space while
preserving critical information, making it easier to recognize patterns and relationships.

Subsequently, the K-Means clustering algorithm was applied to the dimensionally
reduced data to group pedestrian behaviours into distinct clusters. The objective function
of K-means clustering is to minimize the sum of squared distances between data points
and the centroid of their respective clusters:

o i

2

, ©)

where | is the objective function and k is the number of clusters, x]@ represents the data
points within cluster i, and c; represents the centroid of cluster i.

Each cluster represented a combination of pedestrian behaviours and associated facili-
ties, revealing common accident scenarios and high-risk behaviour groups. Visualisations
such as boxplots and scatterplots were employed to illustrate the characteristics of each
cluster, providing insights into how different behaviour patterns are distributed spatially.
This clustering approach enabled the identification of groups with similar accident charac-
teristics, providing valuable insights into potential safety interventions. By simplifying the
dataset, PCA also enhanced the interpretability of clustering results, supporting effective
intervention planning to improve pedestrian safety at unsignalized crossings.

4. Results
4.1. Heatmap Analysis

The heatmap analysis in Figure 2 reveals distinct pedestrian behaviours in relation
to physical crossing facilities. In areas with no crossing facilities, pedestrian movements
are typically categorised as ‘unknown or other’, implying that individuals cross at random
points, which could pose increased safety risks. Conversely, pedestrian phasing at zebra
crossings shows a higher association with controlled pedestrian behaviour, with individuals
primarily using the designated crossing points correctly. Specifically, zebra crossings show
a strong correlation with locations (in the carriageway, crossing within zig-zag lines at
crossing approach; in the carriageway, crossing within zig-zag lines at crossing exit; in the
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Location

In carriageway,
crossing on _

pedestrian crossing
facility

In carriageway,
crossing within zig-
zag lines at
crossing approach

In carriageway,
crossing within zig-
zag lines at
crossing exit

In carriageway,
crossing elsewhere
within 50m of
pedestrian crossing

In carriageway,
crossing elsewhere

on footway or verge

On refuge, central
island or central -
reservation

In centre of

carriageway, not on
refuge, island or ~

central reservation

In carriageway, not _
crossing

Unknown or other -

carriageway, crossing elsewhere within 50 m of pedestrian crossing), suggesting proper
adherence to marked pedestrian paths. However, some locations still display a preference
for crossing at non-official points, possibly reflecting impatience or a desire to minimise
walking distances.

Normalized Heatmap of Locations and Facilities

0.00000 0.00000 0.00000 0.00000

0.85236 0.04268 0.07036 0.03460
0.8

0.30093 0.04354 0.03199 0.02355

0.87556 0.03704 0.06370 0.02370
0.6

0.91045 0.01824 0.03980 0.03151

0.82014 0.12770 0.02698 0.02518

0.4

0.00292 0.17544 0.37135
0.00000 0.12125 0.80200 0.07675
-0.2
0.00000 0.04762 0.95238 0.00000
0.00000 0.00000 1.00000 0.00000
' I ' -0.0
No physical crossing Zebra crossing Footbridge or subway Central refuge — no
facility within 50m other controls

Facility

Figure 2. Heatmap (pedestrian facilities / pedestrian location).

Pedestrian behaviours at central refuges, footbridges, and subways are also notewor-
thy. The significant use of central refuges indicates that they play a critical role in enhancing
pedestrian safety, especially in wider roads or complex junctions. The heatmap shows that
while safety islands are effective in guiding pedestrians towards safer crossing options,
the footbridges or subways associated with these islands are underutilised, suggesting
potential challenges with accessibility, convenience, or even lack of awareness. Additionally,
the moderate use of locations without nearby crossing facilities highlights a gap between
pedestrian needs and the existing infrastructure, emphasising the need for better alignment
between pedestrian flow and facility placement.

Further analysis indicates that well-marked facilities like zebra crossings have a strong
positive impact, reinforcing their effectiveness in encouraging safe crossing behaviours.
The data suggest that zebra crossings are well-aligned with pedestrian expectations, which
leads to a high level of compliance. On the other hand, facilities such as pedestrian phasing
at unsignalized crossings show a weaker correlation with their intended use, potentially
indicating design flaws or a need for improved signage and pedestrian education. These
findings underline the importance of reassessing facility placements to better accommodate
pedestrian desire lines and natural traffic flow, ultimately enhancing road safety and
convenience for pedestrians.
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The heatmap analysis in Figure 3 presented here provides a visualisation overview
of pedestrian movement in relation to physical crossing facilities. This analysis revolves
around understanding how pedestrians interact with various types of infrastructure, which
range from zebra crossings to footbridges or subways, across different movement scenarios.
The matrix highlights the interactions between specific pedestrian movements—such as
crossing from the driver’s offside or walking along the carriageway—and corresponding
facilities. Key findings indicate notable variations in facility utilisation depending on
the type of movement, which reveals significant differences in pedestrian preferences
and behaviour patterns. This analysis not only underscores the complex dynamics at
unsignalized crossings but also points toward critical areas where infrastructure may not
be serving its intended purpose effectively.

Heatmap Movement and Facilities

Crossing from

drivers offside ~ 0.00000 0.00000 0.00000 0.00000

Crossing from

driver's nearside 0.81332 0.05105 0.09869 0.03695

Crossing from
driver’s offside-
masked by parked or
stationary veh'

0.68421 0.08264 0.18396 0.04919

Crossing from

driver's nearside-
masked by parked or 0.70972 0.07124 0.17277 0.04627

stationary veh'

In carriageway,

stationary - not
crossing (standing 0.79075 0.05727 0.10352 0.04846

or playing)

Pedestrian Movement

In carriageway,
stationary -not
crossing (standing 958
or playing), masked (EEEL 0.01370 0.00683 002083
by parked or
stationary veh’

Walking along in -0.2
carriageway-back to 0.82709 0.02882 0.07493 0.06916

traffic

Walking along in
carriageway-facing 0.89324 0.03559 0.04626 0.02491
traffic

' ' ' - 0.0
No physical crossing Zebra crossing Footbridge or subway Central refuge — no
facility within 50m other controls

Pedestrian Facility

Figure 3. Heatmap (pedestrian facilities / pedestrian movement).

An examination of pedestrian behaviour within different crossing facilities sheds light
on usage trends and potential design shortcomings. For instance, pedestrian movement
involving a zebra crossing appears frequently in the data, which suggests a high rate
of utilisation and perceived safety. However, facilities like footbridges or subways see
comparatively less movement across different scenarios, indicating a preference for at-
grade crossings even when grade-separated alternatives are available. This may imply
that pedestrians are less willing to take the effort required for elevation changes, reflecting
behaviour that prioritises convenience over other factors such as safety. The movement
categories, ranging from simple offside or nearside crossings to more complicated scenarios
involving obstructions like parked vehicles, further reveal how visibility and perceived
safety influence pedestrian choices. The fact that crossings obscured by parked vehicles still
see considerable use hints at a discrepancy between infrastructure planning and real-world
pedestrian behaviour, potentially indicating a lack of suitable and safe alternatives.
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The findings from the heatmap analysis emphasise several insights regarding the
interaction between crossing facilities and pedestrian behaviour. One major observation
is the apparent gap between infrastructure design and pedestrian preference, particularly
with facilities such as footbridges and subways, which seem to be underutilised despite
their potential safety benefits. This behaviour can be attributed to inconvenience, additional
travel time, or even poor positioning of these facilities. It raises the question of whether
current pedestrian infrastructure adequately addresses user needs or if adjustments are
necessary to increase compliance and safety. The underutilisation of key safety features
implies a need to re-evaluate existing infrastructure with a focus on pedestrian convenience
and accessibility. Moreover, the significant usage of zebra crossings and central refuges,
even in contexts with limited visibility, suggests a reliance on at-grade crossings that may
expose pedestrians to heightened risk. Based on these observations, revisiting the design
and placement of current facilities to better align them with pedestrian preferences and
natural movement patterns. Such a reassessment could enhance both usability and safety,
ultimately encouraging safer pedestrian behaviours while reducing potential conflicts with
vehicular traffic.

4.2. Association Rule Analysis
4.2.1. Relationship Between Pedestrian Location and Crossing Facility

Table 1 presents the results of association rule mining, showing the antecedents
and consequences of pedestrian crossing behaviour as well as metrics such as support,
confidence, and lift. Figure 4 shows the five rules with the highest support, confidence, and
lift, highlighting key patterns in crossing facilities and pedestrian behaviour.

Table 1. Location association rule results.

Antecedents

Consequents Support  Confidence Lift

On footway or verge

No physical crossing facility within50m  0.08652 0.85138 1.13460

In carriageway, crossing elsewhere ~ No physical crossing facility within 50 m  0.47489 0.89953 1.19877

In carriageway, not crossing

In centre of carriageway, not on
refuge, island or central reservation
On refuge, central island or central

reservation
In carriageway, crossing on
pedestrian crossing facility

No physical crossing facility within 50m  0.06428 0.91045 1.21331
No physical crossing facility within 50m  0.05339 0.81867 1.09101

Central refuge—no other controls 0.00363 0.60784 9.59628

Zebra crossing 0.08442 0.80111 5.70666

Nearly half of pedestrians (support: 0.474886) choose to cross the road at locations
without physical crossing facilities within 50 m. This behaviour highlights the need for
installing appropriate crossing facilities in such areas to enhance pedestrian safety.

Pedestrian behaviour on carriageways reflects a lack of nearby physical crossing
facilities, indicating significant safety concerns. When pedestrians are on the carriageway
without attempting to cross, the confidence of 0.910448 suggests that there are rarely
crossing facilities within 50 m. Furthermore, pedestrians crossing at locations without
designated facilities show a confidence of 0.899534, underscoring the prevalence of this
risky behaviour. Similarly, those walking on footways or verges also lack nearby physical
crossing facilities (confidence: 0.851382), pointing to a pressing need for infrastructure
improvements in these areas. Pedestrians staying in the middle of the carriageway without
a safety refuge (confidence: 0.818671) represent a particularly dangerous behaviour that
requires immediate intervention, such as the installation of safe zones or appropriate
crossing facilities. On the other hand, pedestrians do frequently utilise zebra crossings,
as indicated by a confidence of 0.801111 for those crossing at pedestrian crossings. This
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suggests that zebra crossings are commonly used but highlights the need to study their
placement and ensure they are accessible at key locations to enhance pedestrian habits and
overall safety.

Top 6 Rules by Support
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Figure 4. Distribution of high support, high confidence, and high lift (Location and facility).

There is a strong association between certain pedestrian behaviours and the existing
infrastructure. The lift value of 9.596281 suggests that pedestrians staying on central islands
or reservations are commonly found in areas with only central refuge facilities, highlighting
that while these facilities are present, they may be insufficient for complete safety. Similarly,
a lift value of 5.706664 indicates a strong association between zebra crossings and pedestrian
crossing behaviour, emphasising the importance of ensuring that the placement of zebra
crossings is strategic and convenient for pedestrians.

High pedestrian accident rates are prevalent on sidewalks or roadside areas, particu-
larly where there are no crossing facilities within 50 m. This points to the need to prioritise
the installation of crossing facilities, such as zebra crossings or subways, in the design of
sidewalks and roadside areas to mitigate accidents and improve pedestrian safety. The
frequent occurrence of pedestrians crossing at informal locations highlights the lack of
adequate crossing facilities in these areas. Should evaluate high-frequency crossing points
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and implement suitable crossing facilities to reduce the incidence of pedestrians crossing
arbitrarily and thus decrease accident risks.

When pedestrians walk on the carriageway without attempting to cross, the risk of
accidents is heightened. This indicates a need to add central refuge islands or more pedes-
trian crossings to provide pedestrians with safe areas for waiting and crossing, ultimately
reducing the risk of accidents. The risk of accidents remains high when pedestrians are in
the centre of the carriageway without refuge facilities. Governments and transportation
departments should prioritise the installation of central refuge islands or other protec-
tive infrastructure in these high-risk areas to enhance pedestrian safety and minimise
the likelihood of accidents. Although central refuge islands offer some degree of safety
for pedestrians, accidents can still occur, particularly in the absence of additional control
measures. Should consider implementing further safety measures, such as warning signs,
to bolster pedestrian protection in these areas and reduce accident rates.

These association rules collectively underscore the critical role of infrastructure plan-
ning, policy development, and education in improving traffic safety. Practical measures
derived from these insights can optimise traffic facilities and management, leading to
enhanced pedestrian safety levels. Table 2 shows all association rules about pedestrian
location and pedestrian facilities.

Table 2. Location association rules.

Association Rules

1 Walking on a footway or verge with no crossing facility within 50 m.
2 Crossing the road away from a designated facility with no crossing point within 50 m.
3 Standing or walking in the carriageway without crossing with no crossing facility nearby.
4 Positioned in the centre of the carriageway, not on a refuge island or central reservation with no crossing facility
nearby.
5 Located on a refuge central island or central reservation with no additional crossing controls present.
6 Crossing the road using a zebra crossing.
4.2.2. Relationship Between Pedestrian Movement and Crossing Facility
Table 3 shows the association rules between pedestrian movement and pedestrian
facilities and their corresponding antecedents, consequences, and metrics such as support,
confidence, and lift. Figure 5 shows the distribution of these metrics, providing insight into
the frequency and variability of rule strength.
Table 3. Movement association rule results.
Antecedents Consequents Support Confidence Lift
Crossing from driver’s offside No physical crossing facility within 50 m  0.162861 0.681863  0.908689
Crossing from driver’s nearside No physical crossing facility within50m  0.249619 0.709484  0.945499
Crossing from driver’s
nearside-masked by parked or No physical crossing facility within 50 m  0.042033 0.790749  1.053797

stationary veh

Walking along in carriageway-back

to traffic
Crossing from driver’s

No physical crossing facility within 50 m  0.016392 0.952381 1.269197

offside-masked by parked or No physical crossing facility within 50m  0.033603 0.827089  1.102227

stationary veh

In carriageway, stationary—not
crossing (standing or playing)

No physical crossing facility within 50 m  0.029388 0.890071 1.186159
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Table 3. Cont.

Antecedents

Consequents

Support

Confidence

Lift

Walking along in
carriageway-facing traffic

In carriageway, stationary -not
crossing (standing or playing),
masked by parked or stationary veh
In carriageway, stationary -not
crossing (standing or playing),
masked by parked or stationary veh

No physical crossing facility within 50 m

No physical crossing facility within 50 m

Zebra crossing

0.015221

0.005386

0.002889

0.838710

0.867925

0.714286

1.117712

1.156646

1.247657

Footbridge or subway

Crossing from driver’s offside 0.004044 0.777778  2.084107
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Figure 5. Distribution of high support, high confidence, and high lift (Movement and facility).

A significant number of pedestrians choose to crossroads at locations without physical
crossing facilities, whether approaching from the driver’s nearside or offside, as indicated
by high support values. This suggests that these areas are common crossing points, poten-
tially due to convenience, even in the absence of safe crossing infrastructure. The lack of
physical facilities at these frequent crossing locations indicates that they may be prone to
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accidents, representing critical safety concerns. To address this issue and improve pedes-
trian safety, it is essential to install appropriate crossing facilities at these commonly used
locations, thereby mitigating risks and ensuring safer road-crossing options for pedestrians.

Pedestrians walking along the carriageway without physical crossing facilities within
50 m are often in highly dangerous situations, whether they are walking with their backs to
traffic, facing oncoming vehicles, or even stationary while standing or playing on the road.
Walking with their backs to the traffic makes it impossible for pedestrians to see approaching
vehicles, increasing the risk of accidents. This clearly indicates the urgent need to improve
pedestrian pathway facilities along roadsides to provide a safer environment. Even when
pedestrians walk facing traffic, where they have a clearer view of oncoming vehicles, they
still face significant danger due to the absence of proper infrastructure, pointing to a need
for enhanced roadside pathways and protective facilities. Furthermore, when pedestrians
are stationary on the carriageway, this behaviour is particularly dangerous, especially in
areas lacking crossing facilities. This highlights the necessity for both the construction of
appropriate pedestrian facilities and improved safety education programs to discourage
such behaviours and promote safer practices.

Despite the presence of infrastructure such as footbridges or subways, pedestrians
often choose to cross the road from the driver’s offside, suggesting that the utilisation
rate of these facilities is low. This is due to factors such as perceived inconvenience or
concerns about safety, indicating the need for further investigation into the design and
accessibility of these facilities. Additionally, pedestrians walking along the carriageway
with their backs to the traffic, in areas without physical crossing facilities within 50 m, face
significantly increased risks. The high lift value associated with this behaviour emphasises
the need for targeted interventions to improve pedestrian safety, such as the construction
of dedicated pathways and awareness campaigns. Furthermore, there is a concerning
trend of pedestrians remaining stationary on the carriageway, even when zebra crossings
are available nearby. This suggests possible issues with the design or placement of zebra
crossings, or it may reflect unsafe pedestrian behaviour. Addressing these issues will
require both design improvements to make zebra crossings more accessible and appealing,
as well as educational efforts to encourage pedestrians to use these safer options.

When pedestrians cross the road from the driver’s nearside, there are typically no
physical crossing facilities within 50 m. This implies that pedestrians may have to cross
the road under unsafe conditions, which increases their risk of accidents. To mitigate these
risks, it is crucial to add crossing facilities in these areas, thereby providing safer crossing
options and improving overall pedestrian safety. Pedestrians crossing from the driver’s
offside similarly encounter the absence of physical crossing facilities within 50 m. The
lack of proper infrastructure in these locations forces pedestrians to cross the road without
adequate safety measures, emphasising the necessity of installing crossing facilities in these
high-risk areas to reduce potential accidents and ensure safer crossings.

Pedestrians walking along the carriageway with their backs to traffic, especially when
there are no physical crossing facilities nearby, face a highly dangerous situation, as they are
unable to see oncoming vehicles. This behaviour significantly elevates the risk of accidents
and highlights the importance of installing both crossing facilities and dedicated pedestrian
pathways along the road. Such improvements could reduce hazardous behaviours and
enhance pedestrian safety.

In areas with footbridges or subways, pedestrians are often still observed crossing the
road from the driver’s offside, indicating that these facilities are not used effectively. This
highlights the importance of designing and placing crossing infrastructure in a way that
encourages pedestrians to use them. A reasonable layout, where footbridges or subways are
convenient and safe, can help promote their use, reducing unsafe crossing behaviour. Near
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zebra crossings, pedestrians sometimes remain stationary in the carriageway rather than
using the crossing facility. This behaviour suggests that either the zebra crossing placement
is not optimal, or there is insufficient guidance to direct pedestrians towards using it.
By optimising the design and placement of zebra crossings and providing appropriate
guidance, pedestrian behaviour can be improved, resulting in a safer environment for road
users. Table 4 shows all association rules about pedestrian location and pedestrian facilities.

Table 4. Movement association rules.

Association Rules

20 0 N Uk W N

Crossing from the driver’s offside without a physical crossing facility within 50 m.

Crossing from the driver’s nearside without a physical crossing facility within 50 m.

Crossing from the driver’s nearside masked by parked or stationary vehicles without a physical crossing facility
within 50 m.

Walking along the carriageway with back to traffic without a physical crossing facility within 50 m.

Crossing from the driver’s offside masked by parked or stationary vehicles without a physical crossing facility
within 50 m.

Stationary in the carriageway without crossing without a physical crossing facility within 50 m.

Walking along the carriageway facing traffic without a physical crossing facility within 50 m.

Stationary in the carriageway masked by parked or stationary vehicles without crossing without a physical
crossing facility within 50 m.

Stationary in the carriageway masked by parked or stationary vehicles near a zebra crossing without crossing.
Using a footbridge or subway crossing from the driver’s offside.

4.3. Clustering and PCA Dimensionality Reduction Analysis
4.3.1. Relationship Between Pedestrian Location and Crossing Facility

Table 5 shows the loading coefficients of pedestrian location and pedestrian facilities
on the two principal components (PC1 and PC2) of the Principal Component Analysis
(PCA). The weights of the different features in the principal components reflect their
contribution to each principal component, helping to explain the main sources of variation
in the data. Figure 6 displays the distribution of PC1 and PC2. For PC1, a prominent peak
around —1 suggests most data points fall within this range. For PC2, two peaks around
1 and —1.5 indicate that data points are concentrated within these areas. Additionally,
the distribution suggests a pattern of clustering in these areas, which could be further
analysed for underlying causes. The varying concentration highlights the need to examine
pedestrian crossing facilities and their influence on movement.

Table 5. Pedestrian location feature and PCA results.

Feature PC1 PC2
No physical crossing facility within 50 m —0.5644 —0.11262
Central refuge—no other controls 0.168697 —0.00534
Zebra crossing 0.481838 0.163248
Footbridge or subway 0.011598 0.028101
On footway or verge —0.01569 —0.41538
In carriageway, crossing elsewhere —0.3452 0.666283
Unknown or other —0.02271 —0.3396
In carriageway, not crossing —0.03574 —0.32776
In centre of carriageway, not on refuge, island or central reservation —0.00665 —0.29594
In carriageway, crossing elsewhere within 50 m of pedestrian crossing 0.233285 —0.03531
In carriageway, crossing on pedestrian crossing facility 0.454867 0.163054
In carriageway, crossing within zig-zag lines at crossing approach 0.064136 0.027047
In carriageway, crossing within zig-zag lines at crossing exit 0.053095 0.024167

On refuge, central island or central reservation 0.042538 —0.05011
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Figure 6. Pedestrian location distribution of principal components.

Figure 7 presents clustering results using data after PCA dimensionality reduction.
The X-axis represents the first principal component (Principal Component 1), capturing the
largest variance in the original dataset, while the Y-axis represents the second principal
component (Principal Component 2), capturing the second-largest variance and providing
additional insights into pedestrian behaviour. The different colours represent different
cluster labels, and points of the same colour are generally grouped together, indicating
effective clustering after PCA. The separation of clusters suggests that PCA has successfully
reduced dimensionality while retaining key patterns in the data. Additionally, the visual
grouping highlights areas with distinct pedestrian behaviours, aiding in the identification of
areas needing intervention. These clustering results can guide urban planners in optimising
pedestrian safety and crossing facilities based on behaviour patterns.
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Figure 7. Scatterplot distribution of pedestrian location clustering after PCA.

Figure 8 shows the box plots for Principal Component 1 (PC1) and Principal Compo-
nent 2 (PC2) across different clusters. For PC1, Cluster 1 has higher values, while Clusters
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0 and 2 have lower values. For PC2, Cluster 1 has a wide distribution with some outliers,
Cluster 2 has a lower concentration with a smaller spread, and Cluster 0 is concentrated in
the mid-range with some outliers.

Boxplot of PC1 by Cluster Boxplot of PC2 by Cluster
2.04
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o
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Figure 8. Pedestrian location boxplot of PC1 and PC2 by cluster.

Table 6 provides statistical summaries such as mean, standard deviation, minimum,
and quartiles for the clustering results after PCA. The detailed statistics help in understand-
ing the distribution and spread of the principal components within each cluster, allowing
for better characterisation of the different pedestrian crossing behaviours. These metrics
can guide the evaluation of areas where safety improvements are most needed, particularly
in regions with high variability or extreme values. Additionally, identifying the central
tendency and dispersion of data within clusters supports targeted interventions to address
specific pedestrian safety concerns.

Table 6. Pedestrian location clustering PCA analysis results.

PC1 PC2 Cluster Metric
—0.972744 0.882438 0 mean
0.522678 0.065959 0 std
—1.116843 0.867784 0 min
—1.116843 0.867784 0 25%
—1.116843 0.867784 0 50%
—1.116843 0.867784 0 75%
1.017503 1.911298 0 max
3.169682 0.384904 1 mean
0.715592 0.731849 1 std
1.574415 —1.10051 1 min
2.898762 0.08434 1 25%
3.455674 0.793215 1 50%
3.747259 0.793215 1 75%
3.747259 1.609099 1 max
—0.316384 —1.73189 2 mean
0.584429 0.111304 2 std
—0.564879 —1.84182 2 min
—0.509484 —1.84182 2 25%
—0.477307 —1.746 2 50%
—0.452288 —1.66543 2 75%
1.682057 —0.62191 2 max
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High PC1 values indicate that pedestrian locations are situated in areas with dense
crossing facilities, such as zebra crossings or pedestrian footbridges, ensuring safer pedes-
trian movements. In contrast, low PC1 values highlight pedestrian locations in areas with
insufficient infrastructure, forcing individuals to cross at undesignated points. The lack
of appropriate crossing options exposes pedestrians to greater traffic risks, increasing the
likelihood of accidents. In these areas, inadequate safety measures and poor infrastructure
significantly elevate the danger for pedestrians, making them high-risk zones for road
safety concerns.

Cluster 0 has lower PC1 and higher PC2 values, indicating a lack of crossing facilities
and high pedestrian flow. These areas require more crossing facilities to improve safety,
alongside enhanced pedestrian education. The absence of physical infrastructure like
zebra crossings or pedestrian islands means that pedestrians in these areas are exposed
to significant risks. Additionally, the high pedestrian flow suggests these locations are
frequently used, making it even more critical to implement immediate safety interventions.
Educational programs should focus on safe crossing practices and increasing awareness of
traffic dangers to reduce accidents.

Cluster 1 has higher PC1 values, indicating well-developed crossing facilities such as
zebra crossings and central refuges. Despite the organised facilities, random pedestrian
crossing behaviours still occur, suggesting the need for additional safety measures like
barriers. These barriers could help channel pedestrian movement towards designated cross-
ings, thereby reducing the instances of unsafe crossing behaviour. Moreover, additional
signage and visual cues can be implemented to further reinforce the use of proper crossing
points. Public awareness campaigns aimed at promoting adherence to designated facilities
could also contribute to enhancing safety in these areas.

Cluster 2 has moderate PC1 values and lower PC2 values, suggesting these areas have
basic crossing facilities, and pedestrian behaviour is more regulated. Improvements in
awareness and facility enhancements can further improve safety. The existing infrastructure
appears to meet the basic needs of pedestrians, but there is still room for upgrading these
facilities to ensure higher safety standards. Adding more visible crossing points and
ensuring the maintenance of existing infrastructure can enhance safety and comfort for
pedestrians. Furthermore, targeted educational efforts could help reinforce the importance
of using available facilities and adhering to safe crossing behaviours, thereby reducing
potential risks.

4.3.2. Relationship Between Pedestrian Movement and Crossing Facility

Table 7 shows the loading values of pedestrian movement and pedestrian facilities
on the two principal components (PC1 and PC2) in Principal Component Analysis (PCA).
Figure 9 displays histograms of PC1 and PC2 distributions. PC1 is concentrated between —1
and 0, with peaks around these values, indicating that a significant portion of the data points
are clustered in this range. This pattern suggests the presence of common characteristics
among the data points contributing to PC1. PC2 has multiple peaks around —1, 0, and
1, indicating a varied spread, which implies more complex underlying behaviours. The
multiple peaks in PC2 suggest different types of pedestrian behaviours or conditions
influencing their movement. Understanding these variations can help in identifying specific
areas where pedestrian management strategies may need to be adjusted to cater to diverse
movement patterns. Additionally, the distributions provide insights into which principal
components contribute most to variations in pedestrian behaviour, aiding in the targeted
improvement of crossing facilities.
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Table 7. Pedestrian movement feature and PCA results.

Feature PC1 PC2

No physical crossing facility within 50 m 0.689002 —0.09848
Central refuge—no other controls 0.28858 0.069384
Zebra crossing 0.521246 0.03178
Footbridge or subway 0.036105 0.075158
Unknown or other —0.204043 0.293523
Crossing from driver’s offside 0.153411 0.524336
Crossing from driver’s nearside 0.170211 —0.7813
Crossing from driver’s nearside-masked by parked or stationary veh’ —0.043232 0.046138
Walking along in carriageway-back to traffic —0.092563 0.007407
Crossing from driver’s offside-masked by parked or stationary veh’ —0.063034 0.031957
In carriageway, stationary—not crossing (standing or playing) —0.093271 0.019059
Walking along in carriageway-facing traffic —0.04541 0.018285

In carriageway, stationary—not crossing (standing or playing), masked by

parked or stationary veh’

—0.03198 0.006841
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Figure 9. Pedestrian movement histogram distribution of principal components.

Figure 10 shows the distribution of data points along PC1 and PC2 after clustering.
The points form a number of groups, indicating effective clustering and setting the stage for
subsequent analyses. The separation of data points suggests inherent patterns in pedestrian
movement, which can be leveraged to identify distinct behaviours or conditions. By under-
standing these natural groupings, designers can better address specific pedestrian needs
and improve safety measures. Additionally, this visualisation highlights areas where exist-
ing infrastructure may either facilitate or hinder pedestrian movement, offering insights for
targeted interventions. The distinct group formations also indicate that different regions
may require unique management strategies to enhance pedestrian safety and efficiency.

Figure 11 and Table 8 demonstrate the distribution of the first two principal com-
ponents (PC1 and PC2) across distinct clusters. The visual and numerical data highlight
significant variations in median, interquartile range, and outlier presence among Clusters
0,1, and 2. These differences suggest unique characteristics and behaviours within each
cluster, reflecting distinct underlying factors that contribute to pedestrian safety behaviour
in the studied context. The clustering analysis effectively captures heterogeneity in the
dataset, as evidenced by the separation along PC1 and PC2 dimensions.
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Figure 10. Scatterplot distribution of pedestrian movement clustering after PCA.
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Figure 11. Pedestrian movement boxplot of PC1 And PC2 by cluster.

High PC2 values represent areas where organised pedestrian movements involve
minimal interaction with infrastructure, typically supported by sufficient crossing facilities.
These areas encourage safer pedestrian activities. However, low PC2 values reflect regions
characterised by more random or unpredictable pedestrian movements, often resulting
from inadequate infrastructure. Such behaviours include crossing roads at undesignated
points or sharing road space with vehicles, thereby increasing exposure to traffic risks.

Cluster 0 areas lack physical crossing facilities, leading pedestrians to adopt risky
crossing methods. Pedestrians often crossroads at undesignated locations, significantly
increasing the risk of accidents due to inadequate safety measures. However, there is
some use of safe facilities like footbridges, which indicates a potential area for further
infrastructure expansion. Improving crossing facilities, such as adding zebra crossings,
would significantly enhance safety in these high-risk areas. Moreover, public education
campaigns focusing on safe road-crossing practices are crucial to mitigate the risks posed
by current behaviours.

Cluster 1 has well-developed traffic management and pedestrian safety facilities,
resulting in safer, more orderly pedestrian behaviours. These facilities, including zebra
crossings, central refuges, and pedestrian lights, help guide pedestrian movement effec-
tively, minimising conflicts with vehicles. Despite the presence of these organised facilities,
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there are still instances of random crossings, which suggest that additional measures, such
as barriers or pedestrian fencing, could further improve adherence to designated crossings.
Implementing more visible signage and community awareness programs may also help
reinforce safer pedestrian behaviours in these areas.

Table 8. Pedestrian movement clustering PCA analysis results.

PC1 PC2 Cluster Metric
4271 4277 0 count
—0.94289 0.698326 0 mean
0.384822 0.423203 0 std
1.478717 0.045516 0 min
1.244116 0.194221 0 25%
—1.10719 0.674902 0 50%
—0.40721 1.2183 0 75%
0.407206 1.2183 0 max
2132 2132 1 count
2.302096 0.246608 1 mean
0.41409 1.293902 1 std
1.119994 —1.32849 1 min
1.985292 —1.13874 1 25%
2.366177 0.702998 1 50%
2.68191 1.537329 1 75%
2.685279 3.541469 1 max
2132 2132 2 count
0.410574 —1.64752 2 mean
5.80 x 10~ 1° 711 x 1071° 2 std
0.410574 —1.64752 2 min
—0.41057 —1.64752 2 25%
—0.41057 —1.64752 2 50%
—0.41057 —1.64752 2 75%
—0.41057 —1.64752 2 max

Cluster 2 areas have moderate crossing facilities, resulting in regulated pedestrian
behaviour and lower pedestrian flow, reflecting good management but with room for
facility improvement. The existing infrastructure includes basic crossing points that meet
minimum requirements, but enhancements such as improved lighting, clearer markings,
and additional pedestrian refuges could further elevate safety standards. Additionally,
targeted interventions, like educational workshops on traffic rules and safe pedestrian
habits, could bolster safety awareness. Investing in maintenance and upgrades of current
facilities will ensure their continued effectiveness and increase pedestrian comfort, thereby
fostering safer walking environments.

Based on the analysis of Clusters 0, 1, and 2, the following comprehensive practical
significances can be summarised: Necessity of Traffic Management and Pedestrian Safety
Facilities Cluster 0 highlights the risks associated with a lack of physical crossing facilities,
while Cluster 1 shows the positive effects of well-developed facilities. Cluster 2 suggests
that moderate facilities can maintain orderliness but still require improvement. Diversity
of Pedestrian Behaviour and Its Management Cluster 0 exhibits disorderly pedestrian
behaviour, Cluster 1 shows generally orderly behaviour despite diversity, and Cluster 2
reflects regulated behaviour in low-traffic areas. Targeted Improvement Recommendations
Cluster 0 requires significant enhancements in crossing facilities, Cluster 1 should optimize
management to accommodate diverse behaviours, and Cluster 2 can benefit from increased
safety awareness and facility improvements. Optimised Resource Allocation Resource
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allocation should prioritise enhancing facilities in Cluster 0, optimising management in
Cluster 1, and focusing on education and facility enhancements in Cluster 2.

5. Discussion
5.1. Models

The heatmap analysis effectively identified high-risk areas by visualising the spatial
distribution of pedestrian accidents. Preliminary from the results, zebra crossings were
identified as well-aligned with pedestrian behaviours, leading to higher compliance rates.
In contrast, underutilised infrastructures like footbridges and subways suggested that
convenience and accessibility are significant determinants of pedestrian choices. The
association rules extracted relationships such as the high-risk behaviours associated with
the absence of nearby crossing facilities, and the preference for zebra crossings. The high-
confidence rules indicated that most pedestrians do not have access to nearby facilities
resulting in unsafe crossing practices. By retaining key principle components that explained
the most variance in the dataset, PCA enabled the visualisation of the most impactful
features. These clusters allowed for targeted analysis of high-risk behaviours and their
associated infrastructural contexts.

This study uniquely integrates heatmap visualisation, association rule learning, and
PCA with clustering to leverage historical accident data for a comprehensive understanding
of pedestrian behaviour at unsignalized crossings. Unlike previous studies that primar-
ily explored the causes of accidents stemming from pedestrian behaviour, this research
employs a novel analytical framework to identify relationships between high-risk pedes-
trian behaviours and infrastructure elements. It uses heatmap visualisation to explore
and highlight the interactions between pedestrian behaviours and facilities as recorded
in accident data, applies association rule learning to determine the strength and specific
outcomes of correlations between pedestrian behaviours and related infrastructure, and
utilises PCA clustering techniques to segment pedestrian behaviours, uncovering unique
safety profiles that guide targeted interventions. By aligning pedestrian behaviour insights
with infrastructure design, this study provides actionable, data-driven recommendations
for facility placement and safety enhancements. Furthermore, comparisons with existing
literature using the STATS19 dataset confirm that no prior research has achieved the same
depth of integrated analysis or produced the specific conclusions presented here.

5.2. Engineering Findings Implications

The relationship between pedestrian behaviour and infrastructure design highlights
critical opportunities for improving safety, with clear evidence supporting the role of
specific interventions. Zebra crossings and central refuges emerge as pivotal elements in
fostering pedestrian compliance and reducing accidents [37]. Heatmap analyses consis-
tently show that these facilities, when conveniently located, significantly enhance safety by
guiding pedestrians toward designated crossing points. Zebra crossings, with their high
visibility, serve as effective psychological cues, encouraging compliance even in busy traffic
environments. Similarly, central refuges reduce crossing distances, providing pedestrians
with safe havens in the middle of wide or high-speed roads, thereby mitigating risks.
These findings underscore the importance of thoughtful placement and integration of such
facilities in areas with high pedestrian flow or increased vehicular traffic. By aligning
infrastructure design with pedestrian movement patterns, planners can achieve substantial
safety gains, particularly in urban environments [38].

On the other hand, grade-separated crossings, such as footbridges and subways, often
fail to achieve their intended safety benefits due to poor design and placement. While these
structures offer potential safety advantages by separating pedestrian and vehicle flows, their
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underutilisation highlights a disconnect between design intentions and user behaviour [39].
Additionally, integrating these features with surrounding pedestrian networks ensures a
seamless experience, encouraging compliance and reducing risk exposure [40].

The absence of nearby crossing facilities poses another significant safety challenge, as
shown by association rule analysis. Areas lacking formal crossings within a 50-m radius
frequently experience higher pedestrian accident rates, often due to risky behaviours like
crossing at undesignated locations. This issue underscores the urgent need for targeted
interventions in high-risk areas. By analysing pedestrian flow and informal crossing
patterns, urban planners can identify critical gaps in infrastructure and implement solutions.
These interventions not only enhance safety but also align with pedestrian preferences,
reducing the prevalence of unsafe behaviours while fostering a culture of compliance. Such
data-driven approaches enable planners to prioritise resources effectively, focusing on
locations where interventions yield the highest safety benefits [41].

Advanced analytical techniques like PCA and clustering further enrich the under-
standing of pedestrian behaviours and safety dynamics, enabling a more nuanced and
data-driven approach to infrastructure planning. PCA reduces the complexity of mul-
tidimensional datasets, retaining the most influential features while allowing planners
to focus on critical variables. When combined with clustering, these techniques reveal
distinct patterns of pedestrian behaviour and infrastructure effectiveness across various
contexts. For instance, Cluster 0 represents areas with a lack of crossing facilities, exhibit-
ing high-risk pedestrian behaviours and an urgent need for infrastructural interventions.
In contrast, Cluster 1, characterised by developed facilities but diverse compliance lev-
els, suggests opportunities for optimisation through better management and enhanced
guidance. Cluster 2 highlights areas with moderate risk and regulated behaviour, indicat-
ing the value of continued infrastructure improvements and educational initiatives. By
leveraging these insights, planners can classify crossings into safety profiles, enabling the
development of tailored interventions that address specific risks. Moreover, clustering
supports the systematic deployment of safety measures, allowing regions with similar risk
profiles to benefit from comparable solutions, thereby streamlining resource allocation and
maximising safety outcomes.

5.3. Challenges and Limitations

The study faced several challenges and limitations, particularly in data quality and
generalizability. The primary dataset, STATS19, though comprehensive, relies on police-
reported incidents, which may lead to biases due to underreporting of minor accidents or
inconsistencies in report quality. The lack of consistent data for near-miss incidents, which
could provide valuable insights into potential risk scenarios, further limits the analysis.
As a result, the conclusions drawn may not fully represent all pedestrian safety concerns,
particularly those related to unreported minor incidents or non-collision safety hazards.

Methodologically, the clustering approach used in conjunction with PCA has limita-
tions in the interpretability of clusters. While PCA effectively reduces data dimensionality,
the transformation can sometimes obscure the specific features that contribute to each clus-
ter’s formation. This complexity makes it challenging to translate clustering results directly
into actionable infrastructural changes. A more interpretable dimensionality reduction
technique, or combining PCA with domain-specific insights, could improve the practical
utility of the clustering results.

Another significant challenge was the variability in pedestrian behaviour across dif-
ferent demographic and geographic contexts. The behaviours observed at unsignalized
crossings in one urban area may not generalise to other regions with different cultural
norms or infrastructural layouts. This variability necessitates caution when attempting to
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apply the findings universally. Localised studies that consider regional characteristics of
pedestrian movement and infrastructure usage would be necessary to validate the broader
applicability of the proposed interventions.

Finally, there were computational challenges related to handling the high-dimensional
dataset. The need for significant preprocessing to clean and prepare the data for analysis
was time intensive. Missing data, particularly for certain infrastructural attributes, required
imputation, which may introduce biases into the results. Addressing these computational
challenges through automated preprocessing tools and improved data collection protocols
could enhance the reliability of future studies.

6. Conclusions

This study utilised heatmap analysis, association rule learning, and PCA with cluster-
ing to analyse pedestrian safety at unsignalized crossings. Each method provided unique
insights into pedestrian behaviours and their interactions with infrastructure. The heatmap
analysis highlighted high-risk areas, while association rule learning uncovered significant
relationships between behaviours and facility availability. PCA and clustering facilitated a
deeper understanding of behaviour patterns by reducing data complexity and identifying
distinct groups.

The engineering findings underscore the importance of strategically placed pedestrian
facilities to enhance compliance and safety. Underutilised facilities like footbridges need
design improvements to better align with pedestrian preferences. Challenges in data quality,
interpretability, and generalisability were identified, indicating the need for localised
studies and enhanced data collection efforts. Future work should focus on improving
infrastructure accessibility, optimising facility placement, and employing advanced data
analysis techniques to support effective pedestrian safety interventions.
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