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Abstract: The present work compares the performance and emissions of a compression ig-
nition (CI) engine using dual-mode LPG at varying flow rates and an oxygenated biodiesel
mix (B20). The experimental investigation is carried out on LPG flow rates (0.1, 0.3, and
0.5 kg/h) and replacing the diesel with oxygenated B20, affecting engine performance
and emissions under various load circumstances while maintaining engine speed. The
study demonstrates the potential of the artificial neural network (ANN) in accurately
forecasting the performance and emission characteristics of the engine across different
operating conditions. The ANN model’s high accuracy in correlating experimental results
with predicted outcomes underscores its potential as a dependable instrument for opti-
mizing fuel parameters. The results show that LPG and oxygenated B20 balance engine
performance and emissions, making CI engine functionality sustainable. A biodiesel blend
containing diethyl ether (B20 + 2%DEE) exhibits slightly reduced brake thermal efficiency
(BTE) at lower brake power (BP); however, it demonstrates advantages at higher BP, with
diethyl ether contributing to improved ignition quality. The analysis indicates that the
average NOx emissions for B20 + 2%DEE at flow rates of 0.1 kg/h, 0.3 kg/h, and 0.5 kg/h
are 29.33%, 28.89%, 48.05%, and 37.48%, respectively. Consequently, selecting appropri-
ate fuel and regulating the LPG flow rate is critical for enhancing thermal efficiency in a
dual-fuel engine.

Keywords: oxygenated fuel additive; B20; LPG dual mode; ANN; performance and
emissions

1. Introduction
The increasing demand for alternative fuels can be attributed to environmental con-

cerns, the necessity to decrease dependence on fossil fuels, and the drive for sustainability
within the energy sector. Alternative fuels offer several advantages, including their re-
newable characteristics and the potential to reduce harmful emissions. Additionally, it
is important to consider the geopolitical and regulatory factors that influence their adop-
tion. Advancements in technology have enhanced the feasibility and cost-effectiveness of
these fuels; however, greenhouse gas emissions have continued to increase, highlighting
an ongoing challenge in addressing climate change [1–5]. Research on alternative fuels,
particularly biodiesel, is limited due to a lack of comprehensive studies on their long-term
effectiveness in reducing greenhouse gas emissions. Machine learning can enhance engine
performance and lower emissions, with studies showing significant reductions in NOx and
smoke emissions at a 30% CNG energy share and a 4.35% increase in thermal efficiency [6].
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Researchers study alternative biodiesel fuels, including parsley biodiesel and acetylene
gas with microalgae biodiesel. B20 blend enhances engine performance and reduces emis-
sions but increases NOx. Advanced fuel injection timing also improves performance [7,8].
The experimental investigation on microalgae biodiesel and biofuel blends has shown
improved dual-fuel CI engine performance and reduced emissions. While existing studies
show improved brake thermal efficiency and reduced CO and HC emissions, NOx levels
are slightly increased. However, a research gap exists in exploring the long-term effects
of these biofuels on engine performance and emissions and evaluating predictive models
beyond ANN, GBR, and GPR [3,9,10].

Sanjeevannavar et al. [11] tested biodiesel blends with hydrogen peroxide additives in
an internal combustion engine, finding XG Boost as the most accurate model for predicting
performance and emissions [12,13]. Six artificial neural network models were developed
to predict the performance and emissions of a diesel engine operating on 8% biodiesel.
The models demonstrated reliable power, efficiency, and emissions predictions across
various load conditions, providing a solid foundation for the accuracy of the research. The
models exhibited consistent power, efficiency, and emissions predictions under different
load conditions, further reinforcing the role of machine learning in predicting engine
performance [14]. Awogbemi and Von Kallon [15] analyzed the benefits of biodiesel as a
sustainable fuel source, outlining the use of machine learning techniques, including ANN,
RSM, and ANFIS, in optimizing production processes, which leads to improved yields and
accuracy. Hybrid approaches are crucial in this domain, as advanced hybrid methodologies
that integrate machine learning with optimization techniques are increasingly gaining
traction. Sharma et al. [16] have optimized dual-fuel engine performance with biodiesel
and producer gas using Artificial Neural Networks (ANN) to reduce emissions and improve
combustion. The development of a dual-fuel combustion engine utilizing a biodiesel/diesel
pilot and producer gas has successfully created a multi-layer perceptron artificial neural
network (MLP-ANN) model with a 3–10-6 topology. This model effectively predicted
and optimized combustion–emission characteristics, resulting in a significant reduction.
For instance, Soudagar et al. [17] studied ANN with Ant Colony Optimization (ACO)-
optimized biodiesel production, providing excellent yield predictability. Similarly, Seela
et al. [18] developed a Multitarget Regression model for predicting performance and
emissions, demonstrating the utility of Multitarget Regression algorithms. Gaussian Process
Regression is the most accurate model for predicting diesel engine fuel consumption,
outperforming Neural Networks and Random Forest Regression [19–21]. Recent studies
show that Deep Neural Networks and MIMO-ANN improve engine testing accuracy and
efficiency, reducing experimental efforts. Biodiesel production using non-edible oils and
waste feedstocks addresses food security and cost issues. Nanoparticles and chemical
additives improve biodiesel properties. Machine learning and Deep Learning predict
engine performance and emissions from waste fry biofuel. Kernel-based extreme learning
machines assess biodiesel–bioethanol–diesel blends [22–28]. However, combining modern
modeling approaches for biodiesel synthesis utilizing non-edible oils and waste feedstocks
is still lacking. While various feedstocks have been studied for their environmental and
economic advantages, little is known about how DNNs and MIMO-ANNs can optimize
engine settings for biodiesel from these alternative sources. The effects of nanoparticles
and chemical additives on biodiesel blend performance using machine learning are also
unknown. Research might create comprehensive models that include these factors to
improve biodiesel’s efficiency and sustainability as a diesel replacement.

The analysis shows how biodiesel innovation, machine learning (ML), and optimiza-
tion tactics provide sustainable engine performance and pollution management. Although
progress has been achieved, NOx emissions and biodiesel manufacturing costs remain sig-
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nificant challenges that require urgent attention in future research. Future research should
integrate real-time ML-based monitoring systems and investigate new biofuel compositions
to fulfill energy and environmental needs. Researchers are studying alternate IC engine
fuels because of environmental concerns, fossil fuel depletion, and the need for sustain-
able energy. Due to its biodegradability and lower emissions, biomass-based biodiesel
may replace diesel. Its high viscosity and low energy density may limit its fuel efficiency.
Adding Liquefied Petroleum Gas (LPG) to CI engines may boost combustion efficiency
and reduce pollutants. The significance of this research lies in its exploration of advanced
machine-learning techniques to enhance the performance of tractors and compression
ignition (CI) engines, which are critical in agricultural operations. By employing methods
such as Artificial Neural Networks (ANNs), Support Vector Machines (SVM), XGBoost,
and Deep Learning (DL), the study aims to optimize fuel consumption and reduce harmful
emissions, thereby contributing to more efficient and environmentally friendly agricultural
practices [29–31].

The dual-fuel approach poses a considerable challenge in optimizing the character-
istics of biodiesel blends. This optimization is critical for ensuring compatibility with
LPG and enhancing the efficient operation of compression ignition engines. Integrating
oxygenated additives to improve the combustion characteristics of biodiesel blends is a
viable method. Adding these additives leads to decreased emissions, increased calorific
value, and improved ignition quality of the fuel blend. This study aims to investigate the
formulation of a biodiesel blend that incorporates an oxygenated additive and evaluate its
performance when utilized alongside LPG as a secondary fuel in a compression ignition
engine. The objective is to assess the combustion characteristics, engine performance, and
emission profile to develop a sustainable and efficient dual-fuel system. To achieve this,
biodiesel is produced from waste biomass (from palm trees), i.e., palm kernel methyl ester
(PKme). Subsequently, the PKme will be diluted with an oxygenated additive, and the
performance emission of the CI engine will be analyzed. Further, experiments with LPG at
various flow rates will be conducted. Then, the artificial neural network (ANN) network
will be employed to develop a simulation process utilizing an artificial neural network
(ANN) to identify the optimal parameters. This analysis utilizes four types of networks,
each configured with either a single or double hidden layer comprising 10 hidden neurons.

2. Preparation and Properties of B20 Blend
Producing biodiesel from palm kernel oil entails transesterification, wherein palm

kernel oil undergoes a reaction with an alcohol, generally methanol, facilitated by a catalyst,
as presented in Figure 1. This reaction yields palm kernel methyl ester (PKme) and glycerol
as a byproduct. The initial step involves pre-treating palm kernel oil to eliminate impurities,
including free fatty acids and moisture, which may disrupt the reaction. Producing biodiesel
from palm kernel oil is initiated by determining the free fatty acid (FFA) content via titration.
Oils exhibiting free fatty acid (FFA) levels greater than 3% necessitate a pretreatment
process involving acid esterification to lower the FFA concentration to below 3%. This is
subsequently followed by alkali esterification. Acid esterification requires heating 750 mL
of palm kernel oil (PKO) to a temperature of 45 ◦C. Subsequently, methanol is added at a
ratio of 0.2 vol/vol, along with sulphuric acid (H2SO4) at a concentration of 0.7% vol/vol.
The mixture is then stirred and maintained at 65 ◦C for 70 min. After this period, glycerol is
separated following a settling time of six hours. The process of alkali esterification involves
the following steps: Combine 7.5 g of KOH with methanol at a ratio of 0.2 vol/vol. Heat
the oil to a temperature of 45 ◦C. Subsequently, potassium methoxide was introduced,
and the reaction was maintained at 70 ◦C for one hour. The glycerol and biodiesel layers
are separated. The biodiesel is subjected to water washing, consisting of five cycles with
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distilled water, to eliminate impurities. Subsequently, dehydration is performed at 100 ◦C
to remove any residual water.
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Figure 1. Preparation of PKme biodiesel using the transesterification process.

The flash point is determined for biodiesel characterization using Cleveland’s flash fire
point apparatus. Viscosity is measured using a Redwood Viscometer, where oil is heated in
a water bath and flow time for 50 mL is recorded at various temperatures. Calorific value is
assessed using a bomb calorimeter, where 0.81 g of oil is burned in an oxygen-filled bomb
inside a water bath. Temperature changes are recorded with a Beckmann thermometer to
calculate lower heating values. The process emphasizes critical parameters such as reaction
time (1 h), temperature (60 ◦C ± 2), methanol ratio, and catalyst amounts for optimizing
biodiesel yield and quality. The flash point and fire point of PKme fuel are measured at
163 ◦C and 166 ◦C, respectively, while its cloud and pour points are recorded at 14.5 ◦C and
12.5 ◦C. In this study, the B20 blend, known for its 80% diesel and 20% PKme, is used in
the CI engine. Diethyl ether (DEE) is an oxygenated additive and will be added to the B20
blend to prepare fuel for the CI engine. The biodiesel properties were tested using ASTM
standards, as shown in Table 1.

Table 1. Properties of PKme, B20 and other fuels.

Parameter/Property PKme B20 DEE [32] Diesel [32] LPG [32]

Density (kg/m3) 885 838 713 833 505

Viscosity at 20◦ (cp) 7.64 5.72 0.23 4.21 -

Calorific value (kJ/kg) 35,008 39,051 33,900 42,500 46,380

3. Methodology
LPG comprises 65% propane and 35% butane. The primary component is propane,

characterized by a low carbon-to-hydrogen ratio. Its elevated octane rating and capacity to
create a homogeneous mixture within the combustion chamber facilitate reduced emissions
compared to traditional fuels. LPG is typically stored in pressure vessels at a pressure of
7 bar, which may vary based on ambient temperature conditions. The diesel engine with
electric loading is utilized for experimental purposes. The engine has been modified to
accommodate diesel, oxygenated B20, and LPG. In the current study, an oxygenated B20
blend is prepared using 2%DEE, referred from the literature [33]. The initial step involves
the entry of LPG into the mixing chamber, where it is combined with fresh atmospheric
air. Subsequently, the mixture is directed to the engine via the inlet manifold. The flow
control valve installed between the cylinder and the solenoid valve regulates the LPG
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flow rate. The homogeneous mixture is introduced into the engine via the intake valve,
where it undergoes compression in conjunction with the air. A precise volume of B20 +
2%DEE is injected into the cylinder utilizing a fuel injector. Upon achieving the self-ignition
condition, the oxygenated B20 fuel within the cylinder initiates the combustion process. The
combustion process of LPG occurs with the assistance of the temperature present within
the combustion chamber. Figure 2a–c illustrates the schematic diagram of the dual-fuel
mode experimental setup and a photograph of the setup. LPG alone cannot self-ignite
within a diesel-fuel compression–ignition engine. In the compression stroke, the air and
LPG mixture undergoes compression, increasing the temperature to approximately 400 ◦C.
This temperature is insufficient to ignite the LPG, which has an ignition temperature of
around 500 ◦C. Upon atomization of oxygenated B20 fuel into the cylinder at high pressure,
self-ignition occurs, leading to the combustion of LPG. Due to the presence of LPG as a
mixture with air, the flame front generated by the oxygenated B20 fuel propagates at an
accelerated rate and with greater completeness. This includes igniting the air–fuel mixture
that comes into contact with the cooler cylinder walls, contrasting with the super-heated
air within the combustion chamber.
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Engine tests are conducted with diesel, B20 + 2%DEE and at various percentages of
LPG within the air–gas mixture. This investigation introduces LPG with intake air via a
premix chamber and uses B20 + 2%DEE as an ignition enhancer instead of diesel. The LPG
from the cylinder is combined with ambient air in the mixing chamber. The inlet manifold
introduces the premixed fuel-air mixture into the combustion chamber. The flow rate of
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LPG to the engine is manually adjusted within a range of 0.1 kg/h to 0.5 kg/h using a flow
regulating valve. The engine automatically adjusts the B20 + 2%DEE flow rate to satisfy its
energy requirements. Performance and emission tests are conducted at varying LPG flow
rates under different load conditions, with the engine operating at a constant speed. The
load is adjusted using an electrical loading system. A single-cylinder, water-cooled DI diesel
engine (7 hp at 1500 rpm) was used for experiments. Moreover, engine specifications and
uncertainties of parameters measured in the experiments are presented in Tables 2 and 3,
respectively. LPG flow rates were fixed at 0.1 kg/h, 0.3 kg/h and 0.5 kg/h. Key parameters
such as fuel consumption, CO, NOx, and exhaust gas temperature were recorded.

Table 2. Specifications of the Engine.

Engine type 4-stroke, Single cylinder diesel engine

Rated power 7 hp

Speed 1500 rpm

Stroke 110 mm

Alternator capacity 5 KVA

Orifice diameter 20 mm

Compression ratio 16.5

Cooling Water cooling type

Table 3. Uncertainty of parameters measured in the experiments.

Parameter Uncertainty

Time (Sec) ±0.5

Fuel consumption (kg/h) for diesel, B20 ±0.0057

Fuel consumption (kg/h) for LPG ±0.011045

Sp. Energy consumption (MJ/kW h) ±0.05479

ηBTE (%) ±0.853

ηITE (%) ±0.853

Temperature (◦C) ±0.15% of reading

Emission (CO, CO2, NOx & HC) in ppm Both CO & CO2 ±2.5% of reading, NOx is ±5, HC is ±6,

4. ANN Modeling
Artificial Neural Networks (ANNs) are structured data processing systems comprising

input, hidden, and output layers, which can be either feed-forward or recurrent. Their
configuration and training methods influence their performance, including learning from
labeled data, unsupervised learning, or reinforcement learning. A key training method
is the backpropagation algorithm, and performance is evaluated using metrics like sum
squared and mean squared errors. ANNs are particularly important for modeling and pre-
dicting engine performance in complex, non-linear systems, as they can be effective. ANNs
enhance accuracy by adapting to empirical data, making them applicable across various
engine configurations. This adaptability is essential for optimizing engine performance
and developing more efficient, environmentally friendly combustion systems.

For a dual-mode LPG-operated compression ignition (CI) engine, backward Neural
Networks offer immense research potential in optimizing performance, emissions, and fuel
efficiency. Such engines operate under dual-fuel conditions, typically combining LPG with
a small quantity of pilot diesel for ignition. Backward Neural Networks can model complex
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combustion dynamics, including fuel-air mixing, ignition delay, and flame propagation, by
leveraging the backpropagation mechanism to learn patterns from experimental data. These
models can help optimize LPG substitution ratios, predict NOx and particulate emissions,
and enhance thermal efficiency. Additionally, they can facilitate adaptive control strategies
by integrating real-time sensor data, enabling precise adjustments to fuel injection timing,
pressure, and air-fuel ratios, ultimately improving engine performance while minimizing
environmental impact.

The ANN prediction tool was utilized to forecast the output values across all ranges.
Modeling procedures are utilized to predict the system’s outcome without conducting
real-time experiments. Various modeling procedures exist for calculating future output
based on current and historical input-output signals. The importance of this concept in
engineering has facilitated numerous parametric and non-parametric modeling techniques
across various thrust areas. This analysis focuses on artificial neural systems that configure
frameworks composed of neurons to address complex problems, aiming to replicate the
structure and function of biological neurons. A neural system framework consists of three
distinct layers: the input, hidden, and output. The network configuration of the ANN
model for the LPG-fueled CI engine is illustrated in Figure 3 for both single and double
hidden layers, with specifications. The perception network in MATLAB 2019 software was
utilized to adjust the synaptic weights automatically. The regression value obtained in this
study ranged from 0.95 to 1.
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The Purelin function is utilized for hidden and output neurons, while the Transig
transfer function is typically employed between input and hidden neurons. Figure 4
illustrates the flow chart outlining the development and training process of the ANN
model utilized for the performance prediction of a dual-fuel engine. The ANN utilized for
performance prediction was developed within the MATLAB environment, employing the
neural network toolbox. A total of 10 neurons were utilized in the hidden layer during the
training process. The backpropagation algorithm, the most commonly utilized method in
ANN, optimizes weight connections by enabling the error to propagate from the output
layers to the lower layers, including the hidden and input layers.
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The network’s output is evaluated against the desired output during each presenta-
tion, and errors are calculated accordingly. The errors were subsequently backpropagated
to the ANN to adjust the weights, reducing errors with each iteration and enabling the
ANN model to approximate the desired output more accurately. The network training
continues until the specified error goal of 10−6 is reached. The current study employs the
backpropagation algorithm in conjunction with a variant of the Levenberg–Marquardt
method. The predicted results from the ANN are compared with the actual experimental
results to assess the network’s performance. The optimal network architecture was de-
termined based on the network’s performance results. This method is selected to predict
the performance of a dual-fuel engine. One method for identifying a suitable substitute
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for diesel involves conducting experiments in an internal combustion engine operating
in dual-fuel mode with LPG to determine the optimal blend performance of the engine.
Given that experimentation requires significant time and financial resources, it is essential
to consider alternative methods. A simulation model is developed using ANN to predict
the performance of a compression ignition (CI) engine operating in dual-fuel mode.

5. Results and Discussion
5.1. Performance Comparison

A dual-fuel engine’s brake thermal efficiency (BTE) varies significantly depending
on the fuel type and brake power (BP). BTE is generally higher for diesel at lower BP and
shows a gradual increase with increasing BP due to improved combustion efficiency, as
shown in Figure 5a. B20 + 2%DEE (biodiesel blend with diethyl ether), BTE tends to be
slightly lower compared to diesel at lower BP but improves as BP increases, owing to better
ignition quality provided by DEE. When LPG is introduced at varying flow rates (0.1, 0.3,
and 0.5 kg/h), the BTE generally decreases compared to diesel, especially at lower BP. This
is because LPG has a lower cetane number, leading to delayed combustion. However, the
dual-fuel operation can show improved BTE at higher BP due to enhanced mixing and
combustion characteristics. The BTE decreases as the LPG flow rate increases from 0.1 to
0.5 kg/h, indicating that excessive LPG substitution can reduce the combustion efficiency.
The choice of fuel and LPG flow rate profoundly impacts the engine’s thermal efficiency
across different operating conditions. The analysis predicts the brake thermal efficiency of
8.01%, 2.7%, 9.8%, and 5.3% for B20 + 2%DEE, LPG at 0.1 kg/h, 0.3 kg/h, and 0.5 kg/h,
respectively, in comparison to diesel fuel.
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A dual-fuel engine’s specific energy consumption (SEC) varies with fuel type, LPG
flow rate, and brake power. SEC typically decreases as BP increases for diesel due to
better fuel utilization and reduced relative heat losses at higher power outputs. Diesel
demonstrates the lowest SEC compared to other fuel combinations, indicating efficient
energy conversion. In the case of B20 + 2%DEE, SEC is slightly higher than diesel at low BP
because of the lower energy content of the biodiesel blend, as shown in Figure 5b. However,
the oxygen content in DEE improves combustion at higher BP, reducing SEC closer to diesel
levels. SEC increases when LPG is introduced at 0.1, 0.3, and 0.5 kg/h compared to diesel,
especially at higher flow rates. At 0.1 kg/h, the SEC is relatively close to diesel, as a small
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amount of LPG enhances combustion efficiency. SEC rises as the flow rate increases to 0.3
and 0.5 kg/h due to incomplete combustion and energy losses caused by excessive LPG
substitution. The trend indicates that optimized LPG flow rates are crucial to achieving
reasonable SEC in dual-fuel engines, particularly at varying power outputs.

The diesel replacement rate in a dual-fuel engine, a key factor in reducing fossil diesel
dependency, can be significantly improved with the introduction of LPG or a biodiesel
blend, as shown in Figure 6a. For B20 + 2%DEE, the diesel replacement is approximately
20%, corresponding to the biodiesel content in the blend. This reduction in fossil diesel
dependency does not compromise engine performance, especially at higher BP, where
combustion improves. When LPG is introduced at varying flow rates (0.1, 0.3, and 0.5 kg/h),
the diesel replacement rate increases proportionally with the LPG flow. At 0.1 kg/h,
diesel replacement is moderate, and combustion remains stable. At 0.3 kg/h, the diesel
replacement is more significant, with LPG contributing a greater share of the energy input.
At 0.3 kg/h, diesel replacement reaches its highest level, but excessive LPG can lead
to incomplete combustion or misfires, particularly at lower BP. However, with proper
optimization of the LPG flow rate, we can ensure maximum diesel replacement while
maintaining engine efficiency and minimizing emissions, paving the way for improved
engine performance in the future.
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A dual-fuel engine’s air-fuel ratio (AFR) exhibits distinct variations based on fuel type,
LPG flow rate, and brake power (BP). For diesel, the AFR tends to decrease as BP increases
since more fuel is injected to meet the higher energy demands, leading to a relatively
richer mixture, as shown in Figure 6b. For B20 + 2%DEE, the AFR is generally lower than
diesel at low BP due to the higher fuel mass flow rate required for biodiesel blends with
lower calorific value. However, the oxygen content in DEE aids combustion, maintaining a
relatively stable AFR as BP increases. When LPG is introduced at different flow rates (0.1,
0.3, and 0.5 kg/h), the AFR increases compared to diesel, particularly at higher flow rates.
LPG’s gaseous nature and lower density contribute to a leaner mixture. The AFR remains
near diesel at 0.1 kg/h LPG, ensuring better combustion. However, at 0.3 and 0.5 kg/h,
the AFR rises significantly, potentially leading to lean misfires and incomplete combustion
at higher BP. Thus, the proper control of the LPG flow rate is not just a technical detail
but a crucial aspect of maintaining an optimal AFR across varying BP levels for efficient
dual-fuel engine performance.

Exhaust gas temperature (EGT) typically increases with BP for diesel due to higher fuel
injection and combustion temperatures as the engine load rises, as presented in Figure 6c.
For B20 + 2%DEE, the EGT is slightly higher than diesel at lower BP because of the oxygen
content in biodiesel and diethyl ether (DEE), which enhances combustion. At higher BP, the
EGT for B20 + 2%DEE approaches that of diesel due to better fuel utilization and reduced
heat loss. When LPG is added at different flow rates (0.1, 0.3, and 0.5 kg/h), the EGT trends
vary. At 0.1 kg/h LPG, the EGT is comparable to diesel as the additional gaseous fuel
improves combustion. At 0.3 kg/h, EGT increases slightly due to enhanced combustion
efficiency at moderate LPG flow. However, at 0.5 kg/h, the EGT may decrease at higher
BP because of incomplete combustion and excessive air dilution. This highlights the need
to optimize LPG flow rates to maintain stable EGT levels and efficient energy utilization
across different BP ranges.

5.2. Comparison of Emissions

Nitrogen oxide (NOx) emissions in a dual-fuel engine are influenced by combustion
temperature, oxygen availability, and the type of fuel used. For diesel, NOx emissions
typically increase with BP due to higher combustion temperatures and increased oxygen
availability from air intake, as shown in Figure 7. In the case of B20 + 2%DEE, NOx
emissions are generally higher than diesel, especially at lower BP. This is because the
oxygen content in biodiesel and DEE enhances combustion, leading to higher in-cylinder
temperatures. However, at higher BP, the difference in NOx emissions between diesel and
B20 + 2%DEE decreases as the combustion process stabilizes. When LPG is introduced
at varying flow rates (0.1, 0.3, and 0.5 kg/h), NOx emissions show a complex trend. At
0.1 kg/h LPG, NOx emissions may slightly increase compared to diesel due to improved
combustion efficiency. At 0.3 kg/h, NOx emissions could be further elevated due to higher
combustion temperatures caused by enhanced fuel mixing. However, NOx emissions may
be reduced by 0.3 kg/h, especially at higher BP, because the leaner air-fuel mixture and
lower combustion temperature suppress NOx formation. Thus, the need to optimize LPG
flow rates to maintain stable EGT levels and efficient energy utilization across different BP
ranges is crucial. It is not just about emissions but about balancing NOx emissions and
engine performance, and your role in achieving this balance is significant.
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A comparison of Hydrocarbon (HC) emissions from CI engines when operating with
different fuels is presented in Figure 7a. HC emissions in a dual-fuel engine are affected by
combustion quality, fuel type, and LPG flow rate across varying BP levels. The elevated
cetane number and optimized combustion process contribute to diesel fuel’s generally low
HC emissions. However, they may increase slightly at very low BP due to incomplete com-
bustion under light load conditions. For B20 + 2%DEE, HC emissions are generally higher
than diesel at low BP due to the lower volatility of biodiesel and its tendency for incomplete
combustion. At higher BP, the oxygen content in DEE improves combustion, reducing HC
emissions closer to diesel levels. HC emissions increase when LPG is introduced compared
to diesel, particularly at higher LPG flow rates. HC emissions remain relatively low at
0.1 kg/h LPG because of better mixing and improved combustion. At 0.3 kg/h, HC emis-
sions may rise slightly due to incomplete combustion of the gaseous LPG. HC emissions
significantly increase at 0.5 kg/h, especially at lower BP, as the higher LPG substitution
rate leads to fuel-rich pockets and incomplete burning. This highlights the importance of
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optimizing LPG flow rates to minimize HC emissions across various operating conditions.
The intrinsic oxygen in their molecular composition guarantees a more thorough burning
of hydrocarbons, even under less-than-ideal combustion circumstances. This leads to little
unburned hydrocarbons being released as emissions. More HC emissions are reduced with
oxygenated B20 fuel than diesel and dual-mode engines.

The quality of the air-fuel mixture, combustion efficiency, and the type of fuel utilized
significantly affect carbon monoxide (CO) emissions in a dual-fuel engine. For diesel, CO
emissions are generally low due to the lean combustion process and high combustion
temperatures, though they can increase slightly at low BP due to incomplete combustion
under light load. For B20 + 2%DEE, CO emissions are typically higher than diesel at lower
BP because of the lower volatility of biodiesel and its tendency for incomplete burning.
However, at higher BP, the oxygen content in DEE enhances combustion, reducing CO
emissions to levels closer to diesel, as shown in Figure 7b. CO emissions show varying
trends when LPG is introduced at flow rates of 0.1, 0.3, and 0.5 kg/h, as depicted in
Figure 7c. At 0.1 kg/h, CO emissions remain relatively low as the additional gaseous fuel is
efficiently combusted. At 0.3 kg/h, CO emissions may increase slightly due to incomplete
combustion of LPG in certain operating conditions. CO emissions rise significantly at
0.5 kg/h, particularly at lower BP, as the richer air-fuel mixture and potential misfires
contribute to incomplete combustion. Effective control of LPG flow rates is critical to
maintaining low CO emissions while achieving optimal engine performance. Moreover,
CO emissions are very low when oxygenated fuel is replaced with diesel as a primary fuel
in dual-mode engines. The average CO emissions are 10.2%, 18.6%, 30.1%, and 66.01% for
B20 + 2%DEE, dual mode LPG with B20 + 2%DEE with 0.1 kg/h, 0.3 kg/h, and 0.5 kg/h,
respectively, compared to diesel.

5.3. Performance Prediction Using ANN

The experimental data collected from a series of experiments performed on a dual-
fuel compression ignition engine at various mass flow rates of LPG were utilized to train
the network. The architecture consists of several layers of neurons, each utilizing non-
linear transfer functions, enabling the network to effectively learn non-linear and linear
relationships between input and output vectors. The input layer in this study comprises
three vector elements: BP, fuel consumption of LPG (FCLPG), and mass flow rate of air
(MA). The backpropagation learning algorithm is utilized to train the network. A single
hidden layer utilizing the ‘tansig’ transfer function has been selected for this network
configuration. The ‘purelin’ transfer function is implemented in the output layer, where
the output vector element represents the predicted fuel consumption of oxygenated fuel
and brake thermal efficiency. The network is initially trained using the specified number of
neurons, momentum correction factor, learning rate, and activation function. The network
undergoes training until the specified error goal is reached. The network undergoes
validation by utilizing the validation data set as input. The predicted outputs, specifically
fuel consumption of B20 + 2%DEE and brake thermal efficiency, are then compared against
the actual values. In cases where there is a significant discrepancy between the predicted
and actual values, the network undergoes a retraining process. The network is trained and
validated by adjusting the number of neurons, momentum correction factor, learning rate,
and activation function until reliable results are achieved.

Four types of networks are chosen to predict the performance of dual-fuel engines.
They are (a) ANN with a single hidden layer using Levenberg–Marquardt (LM) Algorithm,
(b) ANN with a single hidden layer using the Scaled Conjugate Gradient (SCG) Algorithm,
(c) ANN with a double hidden layer using Levenberg–Marquardt (LM) Algorithm and
(d) ANN with double hidden layer using Scaled Conjugate Gradient (SCG) Algorithm. To
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develop this network, a total of 50 data sets were utilized, with each data set comprising
three input variables and two output neurons. The inputs consist of brake power (BP),
fuel consumption of LPG (FCLPG), and mass flow rate of air (MA). The outputs include
oxygenated B20 fuel consumption (FCD) and brake thermal efficiency (BTH). These ANN
models may substantially improve engine performance forecasts and efficiency assessments.
The evaluation of ANN designs (single vs. many hidden layers) will ascertain the optimal
model. The outcomes of applying the aforementioned two algorithms are evaluated against
the experimental results, which involves evaluating different ANN designs, specifically
comparing single hidden layer models to those with multiple hidden layers, to determine
which configuration provides the best performance in forecasting.

Figure 8 compares the brake thermal efficiency predicted by ANN and the experi-
mentally determined brake thermal efficiency utilizing a single hidden layer. The brake
thermal efficiency of the artificial neural network employing a single hidden layer with
the Levenberg–Marquardt algorithm demonstrates superior performance compared to the
scaled conjugate gradient algorithm. The brake thermal efficiency exhibits a non-linear rise
with braking power throughout all graphs, starting from zero and stabilizing between 0.3%
and 0.35%. LMD and LMS models often exhibit superior alignment with experimental
data relative to SCGD and SCGS, especially at elevated power levels. SCGS routinely
underestimates the efficiency seen in Figure 8a. SCGD exhibits more discrepancies from
experimental findings at reduced power levels in Figure 8b,c. The models (LMD and LMS)
can accurately forecast brake thermal efficiency within the examined range of braking
power. Additional tuning may be required for the SCGS and SCGD models to enhance
precision, especially in the lower and mid-braking power levels. The experimental data
in Figure 8 serve as the standard for assessing model performance. The LMD and LMS
models closely correspond with the experimental data, indicating greater precision and less
residual error. The SCGD and SCGS models exhibit significant discrepancies, especially
at lower and mid-brake power levels, suggesting a possible systematic underprediction.
A statistical investigation of residuals (the differences between experimental and model-
predicted values) may elucidate whether mistakes are random or systematic, indicating the
need for structural enhancements in the model.

The brake thermal efficiency of the artificial neural network (ANN) utilizing a dou-
ble hidden layer with the Levenberg–Marquardt (LM) algorithm demonstrates superior
performance compared to the scaled conjugate gradient (SCG) algorithm. Table 4 presents
the errors associated with various Artificial Neural Networks (ANNs), indicating that the
Levenberg–Marquardt (LM) algorithm with a double hidden layer results in a lower error
rate. The network configuration featuring a linear model with ten neurons in the hidden
layer and a double hidden layer demonstrated optimal performance.

The outcomes of applying the aforementioned two algorithms are evaluated against
the experimental results. Figure 9 compares the fuel consumption predicted by ANN and
the experimentally measured B20 + 2%DEE (oxygenated B20 fuel) consumption, utilizing a
single hidden layer. The fuel consumption of the ANN utilizing a single hidden layer with
the Levenberg–Marquardt (LM) algorithm demonstrates superior performance compared
to the Scaled Conjugate Gradient (SCG) algorithm. The errors related to all Artificial Neural
Networks (ANNs) are presented in Table 4, with the Levenberg–Marquardt (LM) algorithm
utilizing a double hidden layer demonstrating a lower error rate. The brake thermal
efficiency and fuel consumption of diesel (FCD) achieved by the artificial neural network
utilizing a double hidden layer with the Levenberg–Marquardt algorithm demonstrates
superior performance compared to the scaled conjugate gradient algorithm. This study
identified a neural network model with ten neurons in the hidden layer and a double hidden
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layer as an effective method for predicting the performance of a dual-fuel compression
ignition engine.
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Figure 8. A comparison of ANN-predicted brake thermal efficiency was obtained (a) with a single
hidden layer, (b) with a double hidden layer, and (c) with single and double hidden layers.

Table 4. Comparison of errors of various ANN models.

S.No
FC of B20 + 2%DEE Brake Thermal Efficiency

LM SCG LM SCG

Single Double Single Double Single Double Single Double

1. 0.011 0.0187 0.0473 0.0465 0 0 0 0

2. −0.0004 −0.0057 0.0248 0.0219 −0.0027 −0.0056 −0.0206 −0.0209

3. −0.0226 −0.001 −0.1058 −0.1128 0.0192 −0.0185 0.0291 0.0286
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Table 4. Cont.

S.No
FC of B20 + 2%DEE Brake Thermal Efficiency

LM SCG LM SCG

Single Double Single Double Single Double Single Double

4. −0.0088 −0.0089 −0.049 −0.0562 −0.0049 0.0039 0.0415 0.0408

5. −0.0145 −0.0115 0.0819 0.0763 0.0067 −0.0038 0.0494 0.0489

6. −0.0712 −0.0211 0.2239 0.2208 0.0107 −0.0059 0.0031 0.003

7. −0.085 0.0206 0.1258 0.1215 0.0203 −0.0147 0.0118 0.0118

8. −0.019 −0.017 0.027 0.028 0.0201 −0.0102 0.0197 0.0198

9. −0.011 −0.048 0.144 0.146 0.0039 −0.0046 0.0163 0.0164
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Figure 9. Comparison of ANN predicted fuel consumption (a) with single hidden layer (b) with
double hidden layer (c) with single and double hidden layers.
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6. Conclusions
The study evaluates a CI engine using liquefied petroleum gas (LPG) and an oxy-

genated biodiesel blend (B20). It finds that LPG and oxygenated B20 balance engine
performance and emissions, making it a sustainable option for CI engine functionality. LPG,
a low-carbon-to-hydrogen fuel, is used in a diesel engine for experimental purposes. The
engine is modified to accommodate diesel, oxygenated B20, and LPG. An oxygenated B20
blend is prepared using 2%DEE, and the mixture is introduced into the engine. Engine tests
are conducted with diesel, B20 + 2%DEE, and various percentages of LPG in the air–gas
mixture. The engine adjusts the flow rate to meet energy requirements. Key parameters like
fuel consumption, CO, NOx, and exhaust gas temperature are recorded. ANN is employed
to predict the performance of a dual-fuel compression ignition engine using experimental
data collected at various LPG mass flow rates. The network employs a backpropagation
learning algorithm, with a single hidden layer using the ‘tansig’ transfer function and a
‘purelin’ transfer function in the output layer, which predicts fuel consumption and brake
thermal efficiency.

The introduction of LPG results in decreased BTE, especially at lower BP, due to its
lower cetane number, although higher BP can enhance combustion characteristics. However,
increasing LPG flow rates can further diminish BTE, highlighting the importance of fuel
selection and flow rates on engine thermal efficiency. The predicted BTE values for different
fuel combinations demonstrate the varying impacts of these factors on engine performance.
LPG at varying flow rates presents a complex relationship with NOx emissions, where
lower flow rates may slightly increase emissions, while higher rates can lead to reductions
at elevated brake power due to leaner mixtures. Thus, careful management of LPG flow
rates is essential for optimizing NOx emissions and overall engine performance, with
average NOx emissions recorded at various LPG flow rates indicating significant variability.
Biodiesel blends like B20 + 2%DEE have higher HC and CO emissions at low BP due
to enhanced oxygen content, while LPG increases HC emissions at higher flow rates.
Optimizing fuel mixtures and combustion conditions is crucial for emission reduction and
engine performance. Oxygenated fuels like B20 show cleaner combustion potential.

The study uses experimental data from a dual-fuel compression ignition engine to
train a network using multiple layers of neurons. The input layer includes brake power,
fuel consumption, and air mass flow rate. Four types of Artificial Neural Networks (ANN)
are used to predict engine performance, with 50 data sets used. The optimal model is
evaluated based on the results, comparing single and multiple hidden layers. The ANN
with a single hidden layer and the Levenberg–Marquardt algorithm performs better than
the scaled conjugate gradient algorithm. The model can accurately forecast brake thermal
efficiency, but additional tuning may be needed for precision.
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Nomenclature

Nomenclature
A/F ratio Air-fuel ratio
CO Carbon monoxide
CO2 Carbon dioxide
NOx Nitrogen oxides
HC Hydrocarbon
hp Horsepower
SEC Specific energy consumption (MJ/kWh)
KOH Potassium hydroxide
H2SO4 Sulfuric acid
Abbreviations
ANN Artificial neural network
LPG Liquefied petroleum gas
CI Compression–ignition
B20 A blend of 20% biodiesel
DEE Diethyl ether
PKme Palm kernel methyl ester
CNG Compressed Natural Gas
GBR Gradient Boost Regressor
GPR Gaussian Process Regression
RSM Root Mean Square
ANFIS Adaptive network-based fuzzy inference system
ML Machine learning
DE Diesel replacement
EXP Experimental
LMS Least mean-square
SCGS Stochastic Conjugate Gradient Strategy
SCGD Stochastic Conjugate Gradient Descent
LM Levenberg–Marquardt
PKO Palm kernel oil
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