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Abstract: To advance sustainable transportation solutions, this work investigates an electric
vehicle charging scheduling problem under the uncertainty of vehicle arrival times. Given
a set of appointed electric vehicles, the objective of the considered problem is to explore
charging strategies that minimize the total charging cost for the charging station. To
address this problem, this work first establishes a mixed-integer programming model.
Then, an enhanced sample average approximation approach alongside two versions of
distribution-free approaches are applied to solve the studied problem. Additionally, this
study introduces a BP neural network-enhanced distribution-free approach to efficiently
resolve the problem. Finally, numerical experiments are conducted to demonstrate the
effectiveness of the proposed approaches.

Keywords: charging scheduling; electric vehicles; uncertain arrival times; distribution-free;
numerical experiments

1. Introduction
With the increasing popularity of electric vehicles (EVs) due to their environmentally

friendly advantages, the demand for EV charging services is growing rapidly [1–7]. How-
ever, in scheduling practices, charging stations prioritize serving their affiliated bus compa-
nies by providing recharging services for electric buses (EBs). To enhance the efficiency of
charging infrastructure and maximize revenue generation, idle periods of EV chargers are
utilized by charging stations to accommodate pre-booked electric vehicles. Consequently,
EV chargers might not always be available throughout the entire decision-making pro-
cess. The limited number of available EV chargers poses challenges for decision-makers in
making efficient scheduling decisions for EV charging [8,9].

The scheduling of EV charging encounters challenges that arise from various uncer-
tainties [5]. To facilitate advanced scheduling, the charging station requires EV users to
input their estimated arrival times, required charging levels, and other relevant details into
the reservation system for completing the booking process, as depicted in Figure 1. Due
to uncertain factors such as road conditions and driver’s driving skills, EVs are usually
with uncertain EV arrival times. In practice, decision-makers at charging stations may
learn some characters or approximate distributions of uncertain EV arrival times. However,
in most situations, historical data only provide upper and lower information other than
accurate specific distribution. This uncertainty causes the deviation in the execution of
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charging plans, especially the delay of some charging activities. To enhance customer satis-
faction, it is essential to manage the likelihood of delayed charging within an acceptable
risk threshold.

Charging StationCharging Appointment

Arrival time,
charging level, 

etc.

Figure 1. Illustration of the research background.

As illustrated in Figure 2, the implementation of time-of-use (TOU) pricing could
significantly impact supply-side management strategies. These strategies focus on reducing
costs of charging services and optimizing load distribution at charging stations during
various time periods [10]. Moreover, decision-makers encounter the challenge of striking a
delicate balance between the costs associated with electricity demand and the risk level
incurred due to delayed charging. This necessitates the careful consideration of this trade-
off in order to minimize the overall expenses associated with the charging process. As a
result, decision-makers face an additional challenge in making scheduling decisions.
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Figure 2. Time-of-use tariffs during each day in Shanghai city (except July to September).

While some existing studies have formulated the charging function of electric vehicles
as a linear model, empirical evidence from charging practices suggests that the relationship
between state of charge (SoC) and charging duration is nonlinear [11–14]. It is evident that
an appropriate characterization of the charging function plays a crucial role in enabling
decision-makers to accurately assess the necessary charging duration for electric vehicles.
Therefore, it is imperative to establish a reasonable charging function to facilitate informed
decision-making regarding charging scheduling.

Numerous studies have addressed EV charging scheduling through optimization-
based frameworks, including deterministic approaches, stochastic programming, and
robust optimization. Deterministic models often struggle to capture uncertainties in EV ar-
rivals, charging demands, and grid conditions, leading to suboptimal scheduling outcomes
in dynamic real-world scenarios. Stochastic programming approaches, while capable of
handling uncertainties, typically rely on full distributional knowledge, which may not
always be available or accurate. On the other hand, robust optimization techniques provide
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solutions that are overly conservative, potentially leading to higher costs or inefficiencies.
These limitations highlight the need for methods that balance robustness, flexibility, and
computational efficiency in EV charging scheduling.

To address the considered problem, this work investigates a charging scheduling of
electric vehicles considering uncertain EV arrival times. Our objective is to determine a
schedule that minimizes total charging costs in an environment with uncertainty and time-
of-use mechanisms. Similar to [11,14], this work employs a piecewise linear approximation
to capture the nonlinear nature of the charging process. The contributions of our research
are summarized as follows:

1. In line with charging practices, the EV charging scheduling problem considering
uncertain EV arrival times, the TOU mechanism, and the nonlinear charging function
is first introduced in this work;

2. For addressing this problem, a K-means enhanced SAA (Sample Average Approxima-
tion) approach and distribution-free approaches are, respectively, established by this
work;

3. To the best of our knowledge, the BP neural network is applied for the first time to
enhance the distribution-free approach for addressing the EV charging scheduling
problem. Numerical experiments are conducted to demonstrate the effectiveness of
our approaches.

The remainder of this paper is organized as follows. Section 2 provides a brief literature
review. Section 3 gives a brief description of the studied problem and establishes a stochastic
mixed-integer programming model. Section 4 establishes SAA models and distribution-free
models. Section 5 conducts numerical experiments to demonstrate the effectiveness of the
proposed approaches. Section 6 concludes this work.

2. Literature Review
The EV scheduling problem has been well investigated in the literature [15–17]. Below,

we give a brief view of five key areas of related studies, i.e., the optimization of charging
costs, mitigation of power grid constraints, reduction in EV waiting time, and management
of charging station capacity.

2.1. Optimization of Charging Costs

Previous studies have primarily focused on minimizing objectives related to charg-
ing costs. Sassi and Oulamara (2017) addressed the optimization of vehicle assignment
to tours and charging costs in an electric vehicle scheduling problem. They proposed a
mixed-integer linear programming formulation for modeling this problem, followed by the
introduction of two heuristics to handle large instances effectively [18]. Expanding on the
theme of cost minimization, Koufakis et al. (2020) tackled the single charging station electric
vehicle charging problem by developing a mixed-integer programming model that aims to
minimize total charging costs. Additionally, they presented both offline and online schedul-
ing algorithms for efficient charging at a single station [19]. To resolve conflicts at charging
stations, Kakkar et al. (2022) introduce a blockchain and Internet of Things-based consensus
mechanism for secure and trustworthy electric vehicle scheduling at these locations [20].
Cao et al. (2023) considered a joint routing and wireless charging scheduling problem with
microwave power transfer systems in mind, aiming to minimize travel distance, charg-
ing costs, and battery degradation when IoEVs provide shuttle services. They propose a
customized benders decomposition algorithm called “routing and charging customized
benders decomposition” (RCBD), along with an improved version called the IRCBD algo-
rithm to enhance time efficiency based on extensive simulation results, demonstrating the
effectiveness and correctness of their proposed scheduling algorithms [21]. Wang and Wu
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(2024) explored the optimization of real-time charging schedules for large-scale EV parking
lots, introducing a semi-decentralized scheduling framework that balances scalability and
economic efficiency. The study employs a chance-constrained model with a Gaussian
mixture model to estimate aggregate charging needs while addressing demand uncer-
tainties, followed by the allocation of charging energy references to individual chargers.
Simulation results highlight that this approach significantly improves scheduling efficiency
at a marginal cost of revenue, providing a promising alternative to fully centralized or
decentralized schemes [22].

Reinforcement learning (RL) methods have been employed in several studies to ad-
dress EV charging scheduling problems. Park and Moon (2022) proposed a multi-agent
deep reinforcement learning approach to minimize the operating cost of electric vehicles,
demonstrating its effectiveness through numerical experiments [2]. Hossain et al. (2023)
introduced a genetic algorithm-based reinforcement learning framework for studying
EV charging scheduling, showcasing accelerated convergence and significantly enhanced
cost-friendly privacy with their proposed framework [23].

2.2. Mitigation of Power Grid Constraints

Several studies are focused on addressing constraints associated with the power grid.
Wang et al. (2023) investigated the EV charging scheduling problem by considering uncer-
tain EV departures, aiming to support load flattening at the distribution level of the utility
grid. Meanwhile, a holistic methodology is proposed by them to formulate and mitigate
the impact of unexpected trip uncertainty [24]. Nimalsiri et al. (2022) introduced two
decentralized schemes for scheduling EV charges in residential communities connected
to the electric grid, with the objective of shaping the load curve [25]. Frendo et al. (2021)
presented an open-source package that incorporates a smart charging algorithm, effectively
addressing EV charging scheduling problems, as demonstrated by experimental results [26].
Zhao et al. (2024) investigated the problem of electric vehicle charging scheduling with
the objective of flattening aggregate load on the power grid and reducing peak demand.
For solving this problem, a two-level hierarchical charging scheduling method is first
proposed by them, and then a comprehensive set of experiments is carried out to exam-
ine the effectiveness of the developed two-level scheduling scheme [27]. Aljohani et al.
(2024) studied the challenges of managing large-scale electric vehicle (EV) integration by
proposing a two-layer optimization framework based on the Stackelberg leader–follower
game to coordinate EV charging. The framework models practical economic, technical, and
operational variables and solves the optimization problem using mixed-integer quadratic
programming (MIQP). The results show that the proposed strategy effectively influences
EV charging via dynamic energy price signals and achieves optimal energy exchange,
reducing overall system costs [28]. Jia et al. (2023) examined the impact of uncertain EV
charging and discharging behavior on the stability of distribution networks, highlighting
the sensitivity of EV loads to electricity pricing. For solving the problem, they proposed
a virtual power plant optimization scheduling model that leverages incentive-based de-
mand response strategies and dynamic load compensation under time-of-use pricing. The
method proposed by them, validated using real-world data from an EV charging station
in Zhengzhou, demonstrates its effectiveness in improving grid stability and economic
performance [29].

2.3. Reduction in Electric Vehicle Waiting Time

Several studies focus on reducing the waiting time for EVs. Tan et al. (2023) formulated
a bi-objective charging and discharging scheduling problem, aiming to balance the trade-off
between time-aware fairness and the overall waiting time of EVs, with a primary objective of
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minimizing individual waiting times. They proposed an online scheduling algorithm based
on dynamic schedulable time, and their experimental results demonstrate that their method
effectively reduces total waiting time [30]. Similarly, Arikumar et al. (2024) introduced
a software-defined network-assisted EV charge scheduling and management strategy
designed to optimize charge scheduling and provide personalized charging services. Their
experimental analysis reveals that this method is significantly more efficient compared to
existing algorithms [31].

2.4. Management of Charging Station Capacity

Constraints related to the capacity of charging stations have been considered in numer-
ous existing studies. de Vos et al. (2024) addressed the EV scheduling problem by taking
into account the limited capacity of charging stations. To tackle this issue, they extended a
connection-based network and developed a model for recharging actions. Subsequently,
they formulated the electric vehicle scheduling problem as a path-based binary program
and employed two heuristics to find integer-feasible solutions [32]. With regard to the
limited number of charging piles and maximum instantaneous power at charging stations,
Wu et al. (2023) proposed an EV charging scheduling strategy to handle the EV charging
scheduling problem under a time-of-use price mechanism [9]. To address insufficiencies in
charging capacity caused by mismatches between charging stations and EV charging loads,
Chen et al. (2022) proposed a hierarchical scheduling model for EVs that aimed to achieve
optimal matching between different charging facilities and EVs [33]. Shahmoradi et al.
(2022) presented an efficient method for solving the electric vehicle charging scheduling
problem (EVCSP), which was inspired by an actual charging station scenario. The primary
constraint in this problem lies in balancing power consumption among multiple lines,
resulting in limitations on simultaneous device chargeability [4]. Diefenbach et al. (2023)
introduced a novel electric vehicle scheduling problem with multiple charging stations in
an in-plant logistics setting with the objective of minimizing the required fleet size.To solve
this problem, they presented an integer programming model and an exact branch-and-
check solution procedure [34]. Zhou et al. (2024) investigated a time-dependent electric
vehicle routing and scheduling problem with time windows (TDEVRSPTW) to address
energy capacity limitations and high consumption in EVs. A mixed-integer linear program-
ming (MILP) model was developed to optimize small-scale problems, while a variable
neighborhood search with a partial model method was proposed for large-scale scenarios.
Numerical experiments show significant energy savings and strong performance [35].

Based on the above observations and Table 1, it can be inferred that current research
mainly focuses on deterministic charging scheduling problems, with limited consideration
of uncertainty in practice. Nonlinear charging functions are rarely taken into account,
and few studies have addressed the issue of EV charger availability over the decision-
making horizon. Most existing studies rely on heuristic methods to quickly respond to EV
charging scheduling problems. Motivated by these findings, we propose an EV charging
scheduling problem that considers uncertain EV arrival times and nonlinear charging
functions. To solve this problem, we developed a K-means enhanced SAA approach and
distribution-free approaches. Numerical experiments demonstrate the effectiveness of the
proposed approach.
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Table 1. Related studies of the EV charging scheduling problem.

Study Nonlinear Charging
Function

Uncertain
Arrival Times TOU EV Charger

Unavailability
Solution
Method

Ref. [18] ✓
MILP,

Heuristics

Ref. [19] MILP,
OFA, ONA

Ref. [20] Heuristic
Ref. [21] ✓ RCBD
Ref. [22] ✓ ✓ SDRCSS
Ref. [24] ✓ ADMM

Ref. [25]
MILP,
C-VF,

C-VF-PS
Ref. [26] ✓ Heuristic
Ref. [28] ✓ MIQP
Ref. [29] ✓ MILP
Ref. [30] ✓ ONA
Ref. [31] SEVC

Ref. [32] CG,
Heuristic

Ref. [9] ✓ AGA
Ref. [33] QPSA
Ref. [4] EDA
Ref. [34] ✓ B&C
Ref. [2] ✓ ✓ RL

Ref. [23] ✓ ✓
RL,
GA

Ref. [27] ✓ ✓ RL, MDP
Ref. [35] ✓ VNS-PM

this work ✓ ✓ ✓ ✓
MILP,
DFA

Note: MILP: mixed-integer linear programming; OFA: offline algorithm; ONA: online algorithm; RCBD: routing
and charging customized benders decomposition; SDRCSS: semi-decentralized real-time charging scheduling
scheme; ADMM: alternating direction method of multipliers; C-VF: coordinated valley-filling; C-VF-PS: coordi-
nated valley-filling and peak-shaving; MIQP: mixed-integer quadratic programming; SEVC: software-defined
network-assisted EV charge; CG: column generation; AGA: adaptive genetic algorithm; QPSA: quantum par-
ticle swarm algorithm; EDA: estimation of distribution algorithm; B&C: branch-and-check; RL: reinforcement
learning; MDP: Markov decision process; VNS-PM: variable neighborhood search with partial model; DFA:
Distribution-Free Approaches

3. Problem Description
Consider a charging station that is equipped with a set of available EV chargers

M = {1, 2, . . . , |M |} (refer to Figure 3). The station has received a collection of appointed
charging demands N = {1, 2, . . . , |N |}, where each demand corresponds to some EVs
and planned state-of-charging (SoC) amount. Notice that we simplify SoC as the charging
level for ease of model construction and solution. Specifically, we define the charging
level as a discrete representation of SoC, where a charging level of 1 corresponds to 1%
SoC, and a charging level of 100 corresponds to 100% SoC. This discrete approach enables
efficient problem formulation and solution while ensuring sufficient accuracy for practical
applications. Influenced by road conditions, driver proficiency, etc., the arrival time of
each EV typically exhibits characteristics of uncertainty. Such an uncertainty of EV arrival
times leads to unpredictability in the start charging time and charging duration of each EVs.
Additionally, reflecting real-world charging practices, we consider that the cost of electricity
demand varies over time, i.e., TOU. Under limitations of the TOU pricing, decision-makers
are required to robustly determine the start and end charging times for any EV. Due to the
occurrence of uncertain EV arrival times, formulating such decisions presents significant
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challenges. In this work, we aim to develop a feasible solution that minimizes the total
charging cost as effectively as possible.

Charging Station

W
aitting for charging

...
...

...

EVs with a recharging appointment

...

...

...

EVs that have finished charging

Figure 3. Illustration of a charging station.

Before solving this problem, we introduce four fundamental assumptions as follows:

1. In line with effective charging protocols, the charging duration of any EV is continuous,
and preemption is not allowed;

2. In this work, continuous charging of EVs fails to account for the time needed to switch
between charging stations during the charging process;

3. Each EV charger is designed to maintain a constant power output;
4. The time horizon covers three types of electricity prices, i.e., peak price, off-peak price,

and valley price.

3.1. Mathematical Model

Below, we first introduce parameters and decision variables associated with the con-
sidered problem, and then present the established mathematical model.

3.1.1. Input Parameters

M : Set of EV chargers, indexed by i, i.e., i ∈ M = {1, 2, . . . , |M |};

N : Set of appointed EVs, indexed by j, i.e., j ∈ N = {1, 2, . . . , |N |};

T : Set of time points, indexed by t, i.e., t ∈ T = {1, 2, . . . , |T |};

rj: Uncertain arrival time of EV j ∈ N ;

idleit: A binary parameter, equal to 1 indicates that EV charger i ∈ M is available at time
t ∈ T , 0 otherwise;

aj: Initial SoC of EV j ∈ N ;

lj: Charging level of EV j ∈ N ;

pj: Charging duration time of EV j ∈ N ;

v1: Charging speed (kw) associated with less than or equal to 80 SoC;

v2: Charging speed (kw) associated with large than 80 SoC;

ce
t : Electricity price at time t ∈ T ;

P: Power of each EV charger i ∈ M (in kW · h);

wmax: Given maximum waiting time for each EV;

ε: Given risk level;
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∆t: Discrete time interval (in minutes);

M: A sufficiently large positive integer.

3.1.2. Decision Variables

xjt: A binary variable, when equal to 1 indicates that EV j ∈ N is charged at time t ∈ T , 0
otherwise;

zjt: A binary variable, when equal to 1 indicates that start charging time of EV j ∈ N is
time point t ∈ T , 0 otherwise;

sj: Start charging time of EV j ∈ N .

The objective function is formulated to minimize the total charging cost.

[P1]min ∑
j∈N

∑
t∈T

xjt · ce
t · P

60 · ∆t (1)

subject to

∑
t∈T

zjt = 1, ∀j ∈ N (2)

∑
j∈N

xjt ≤ ∑
i∈M

idleit, ∀t ∈ T (3)

xjt ≥ zjt, ∀j ∈ N , t ∈ T (4)

sj = ∑
t∈T

t · zjt, ∀j ∈ N (5)

sj ≥ rj, ∀j ∈ N (6)

xjt′ ≥ 1 − M · (1 − zjt), ∀j ∈ N , t ∈ T , t
′ ∈ [t, t + ⌈pj⌉] (7)

P{sj ≤ rj + wmax} ≥ 1 − ε, ∀j ∈ N (8)

xjt, zjt ∈ {0, 1}, ∀j ∈ N , t ∈ T (9)

sj ∈ R+, ∀j ∈ N (10)

Constraint (2) ensures that each EV j ∈ N is charged throughout the entire time
horizon. Constraint (3) guarantees that the number of EVs charged at any time t ∈ T is not
larger than that of given EV chargers. Constraints (4)–(6) calculate the start charging time
of EV j ∈ N . Constraint (7) ensures that the charging duration of EV j ∈ N is continuous
and uninterrupted. Chance Constraint (8) incorporates the uncertainty of EV arrival times
through a chance constraint P(sj ≤ rj + wmax) ≥ 1 − ϵ. This constraint ensures that the
start charging time sj cannot exceed the arrival time rj plus the maximum allowable waiting
time wmax with a probability of at least 1 − ϵ. By introducing this constraint, the model
accounts for the randomness in EV arrival times, ensuring robust scheduling decisions
under uncertainty. Notice that the symbol P{•} denotes the probability associated with the
occurrence of event •. Constraints (9)–(10) give the range of variables, where R+ represents
the set of real numbers.

The proposed model is formulated as a mixed-integer programming (MIP) problem,
which is known to be NP-hard. As such, the computational complexity of the model
increases exponentially with the number of decision variables and constraints. The key
factors influencing this growth include the number of EVs, the number of time slots,
and the number of scenarios generated for uncertainty modeling. While MIP problems
are computationally challenging, advances in modern solvers allow us to solve practical
problem sizes efficiently, as demonstrated in Section 4.

3.2. Nonlinear Charging Function

Below is a piecewise equation associated with charging level and initial SoC.
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pj =

{
(lj − aj)/v1, lj < 80%SoC

max{80 − aj, 0}/v1 + (lj − 80)/v2, lj ≥ 80%SoC
, ∀j ∈ N (11)

As shown in Figure 4, under reasonable assumptions (see [11,14,36]), i.e., the initial
SoC satisfying aj ≤ 80, the piecewise equation (11) can be rewritten as follows:

pj =

{
(lj − aj)/v1, lj < 80%SoC

(80 − aj)/v1 + (lj − 80)/v2, lj ≥ 80%SoC
, ∀j ∈ N (12)

Below, we first introduce a binary auxiliary parameter yj to function (12), and then
simplify this charging time function:

yj: A binary auxiliary parameter, equal to 1 indicates that lj ≥ 80, 0 otherwise.

pj =
(
(lj − aj)/v1

)
· (1 − yj) +

(
(80 − aj)/v1 + (lj − 80)/v2

)
· yj

= lj · (1 − yj)/v1 + yj · 80/v1 + yj · (lj − 80)/v2 − aj/v1, ∀j ∈ N

With the support of such a binary auxiliary parameter yj, pj is a linear function of lj.

100

80

t

SoCj

0

Figure 4. Illustration of a charging function.

4. Solution Approaches
Based on the known degree of distribution information of uncertain variable rj (j ∈ N ),

we apply the K-means enhanced SAA, denoted as the KSAA approach, and the distribution-
free approaches to solve the studied problem. Specifically, the KSAA approach can be
employed to address the studied problem when precise distribution information of EV
arrival times is available. Conversely, in cases where only partial distribution information of
EV arrival times is known, the designed distribution-free approaches can be utilized based
on the available information to solve the considered problem. Certainly, we anticipate
that distribution-free approaches, which possess only partial distribution information of
uncertain variables, can achieve objective values comparable to those obtained by the
KSAA approach. Subsequently, we delineate the specific procedural steps of KSAA and
distribution-free approaches individually.

4.1. K-Means Enhanced SAA Approach

The fundamental principle of stochastic programming is to characterize an uncertain
set of possible realizations of the uncertain parameters. For exploring the expected total
benefit, we introduce a random event set Ω, which is indexed ω, i.e., ω ∈ Ω (the realization
of a specific random event ω ∈ Ω can be denoted by ξω = {ς1(ω), ς2(ω), · · · , ς|N |(ω)})
and contains infinite random events. For each random event ω ∈ Ω, ξω is collected in the
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set ξ = {ξ1, ξ2, · · · , ξ|Ω|}. Therefore, the new objective function can be reformulated as
follows:

minEξ

[
∑

j∈N
∑

t∈T
xjt(ω) · ce

t · P
60 · ∆t

]

Clearly, the studied problem cannot be solved directly due to infinite random events.
Thus, we adopted the SAA approach to further study the problem. In detail, we define
a finite scenario set S , which is indexed by s, i.e., s ∈ S = {1, 2, · · · , |S|}. We formulate
the realization of a specific scenario s ∈ S as ζs = {ς1(s), ς2(s), · · · , ς|N |(s)}, which is
collected in the set ζ = {ζ1, ζ2, · · · , ζ|S|}. To make the original problem solvable, we
attempt to use the finite scenario set S to approximate the infinite random event set Ω.
With this assumption, the arrival time rj for each EV j ∈ N is known beforehand in any
scenario s ∈ S . Thus, model [P1 ] can be rewritten as model [P2] as shown in Appendix A.
As model [P2] is a mixed-integer linear programming model, it can be readily solved by
mainstream commercial solvers, such as Cplex and Gurobi.

Historically, decision-makers require a substantial set of samples S , which includes
a significant number of scenario samples. This extensive sampling is necessary to effec-
tively approximate the random event set Ω before establishing the SAA model. However,
traditional SAA approaches face a limitation in terms of their computational time complex-
ity, which exhibits a significant increasing trend with an increase in sample size |S|. To
overcome such a limitation, this work employs a scenario-reduction strategy inspired by
Ref. [37] and utilizes the K-means method to effectively tackle the aforementioned problem.
Specifically, this work initially applies the K-means method to cluster the sample set S
and iteratively identifies a representative set of cluster centers K = {1, 2, · · · , |K|} that is
indexed by k, using Euclidean distance as a measure. Notice that the cardinality of set K
serves as an input parameter provided by decision-makers. The K-means approach is delin-
eated in the following three steps, providing a comprehensive and systematic framework
for data clustering:

• Step 1: Given the original sample set, initialize |K| centers in a random manner.
• Step 2: Assign each scenario to the closest cluster by utilizing a classifier based on the

smallest Euclidean distance.
• Step 3: Update the cluster centers iteratively, and repeat Step 2 until convergence

is achieved, defined as all the cluster centers remaining unchanged in the last two
iterations.

Based on the K-means approach, the enhanced SAA model [P3], i.e., KSAA, can be
formulated as follows:

[P3]min 1
|K| · ∑

k∈K
∑

j∈N
∑

t∈T
xjt(k) · ce

t · P
60 · ∆t (13)
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subject to

∑
t∈T

zjt(k) = 1, ∀j ∈ N , k ∈ K (14)

∑
j∈N

xjt(k) ≤ ∑
i∈M

idleit, ∀t ∈ T , k ∈ K (15)

xjt(k) ≥ zjt(k), ∀j ∈ N , t ∈ T , k ∈ K (16)

sj(k) = ∑
t∈T

t · zjt(k), ∀j ∈ N , k ∈ K (17)

sj(k) ≥ rj(k), ∀j ∈ N , k ∈ K (18)

xjt′ (k) ≥ 1 − M · (1 − zjt(k)),

∀j ∈ N , ∀t ∈ T , t
′ ∈ [t, t + ⌈pj⌉ − 1], k ∈ K (19)

sj(k)− αj(k) · M ≤ rj(k) + wmax, ∀j ∈ N , k ∈ K (20)

∑
k∈K

αj(k) ≤ ε · |K|, ∀j ∈ N (21)

xjt(k), zjt(k), yj(k) ∈ {0, 1}, ∀j ∈ N , t ∈ T , k ∈ K (22)

sj(k) ∈ R+, ∀j ∈ N , k ∈ K (23)

From the above, we can determine that both the traditional SAA method and KSAA
method exhibit limitations in their ability to effectively account for the specific realization
of uncertain variables that lie outside the scope of the scenario samples S . In order to
overcome this limitation, we now propose the adoption of distribution-free methods, which
enable a tailored response to the specific realization of uncertain variables.

4.2. Distribution-Free Approaches

When the probability distribution of EV arrival times is unknown but statistical
bounds (e.g., upper and lower limits) are available, a distribution-free approach is adopted.
This method relies on inequality-based techniques to approximate the chance constraint
P(sj ≤ rj + wmax) ≥ 1 − ϵ, ensuring robustness under partial information. By avoiding
reliance on specific probability distributions, this approach is well suited for practical
scenarios where only limited historical data are available.

We now primarily concentrate on addressing model [P1] in cases where the complete
probability distribution of rj is unknown. The statistical properties of variable rj, including
its mean, variance, as well as the upper and lower bounds, are known beforehand. In this
subsection, we aim to solve the investigated problem by expanding upon the distribution-
free approach proposed by Ref. [38]. In line with the distribution-free approach proposed
by Ref. [38], we let

rj = rj · (1 + Zj), ∀j ∈ N (24)

where rj is the expected arrival time of EV j ∈ N . Note that Zj is scaled in interval [bl
j, br

j ],
which denotes the percentage deviation between rj and its expected value rj.

It turns out that we can always find a non-positive real number uj that can equivalently
replace chance Constraint (8) with Constraint (25).

sj − wmax ≤ rj + uj, ∀j ∈ N (25)

In contrast to Ref. [38], this work aims to approximate the chance Constraint (8) by
adjusting the probability of decision variables being less than or equal to the uncertain
parameter, rather than that of Ref. [38], where it is adjusted when it is not smaller than the
uncertain parameter, i.e., Equation (26).
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P{sj − wmax > rj} = P{sj − wmax > rj · (1 + Zj)} ≤ P{rj · Zj ≤ uj},

∀j ∈ N (26)

4.2.1. Case 4.2.1: Cantelli’s Inequality-Based Distribution-Free Method

In this case, we assume that both P{Zj < 0} and E[Zj|Zj < 0] are unknown be-
forehand. Due to the different expression of chance constraints compared to Ref. [38] as
mentioned before, it is necessary to reformulate Equation (26) as Equation (27).

P{rj · Zj ≤ uj} = P{−Zj ≥ −uj/rj}, ∀j ∈ N (27)

Theorem 1. Equation (27) is subject to an upper bound, which can be mathematically represented

as
D(rj)

D(rj)+u2
j
.

Proof. Since the expected value of Zj is zero, we can infer that the variance of Zj, denoted
as D(Zj), equals D(rj), divided by the square of the mean value of rj, i.e., E[Z2

j ] = D(Zj) =
D(rj)

r2
j

. According to Cantelli’s inequality, it can be inferred that P{−Zj ≥ −uj/rj} ≤
D(Zj)

D(Zj)+(uj/rj)2 =
D(rj)

D(rj)+u2
j
. The proof is completed.

Given the prior knowledge of D(rj) as mentioned before, the validity of Equation (25)
can be guaranteed if an appropriate value of µj that satisfies Equation (28) is identified:

f (µj) ≡
D(rj)

D(rj)+u2
j
− ε = 0, ∀j ∈ N (28)

The univariate root-finding algorithm in Matlab can be utilized to solve Formula (26),
enabling the identification of the appropriate value for µj, denoted as u∗

j .
Hence, the distribution-free model can be formulated as [P4] accordingly:

[P4]min ∑
j∈N

∑
t∈T

xjt · ce
t · P

60 · ∆t

subject to

Constraints (2)–(5), Constraint (7), Constraints (9)–(10)

sj ≥ rj · (1 + br
j ), ∀j ∈ N (29)

sj − wmax ≤ rj + u∗
j , ∀j ∈ N (30)

4.2.2. Case 4.2.2: Markov Inequality-Based Distribution-Free Method

In Case 4.2.2, we assume prior knowledge of both P{Zj < 0} and E[Zj|Zj < 0]. Given
that µj ≤ 0, it follows that P{rj · Zj ≤ uj|Zj ≥ 0} = 0. Consequently, we have

P{rj · Zj ≤ uj} = P{rj · Zj ≤ uj|Zj < 0} · P{Zj < 0}, ∀j ∈ N (31)

According to the Markov inequality, we have

P{rj · Zj ≤ uj} = P{−rj · Zj ≥ −uj|Zj < 0} · P{Zj < 0} ≤
rj ·E[−Zj |Zj<0]

−uj
· P{Zj < 0}, ∀j ∈ N (32)
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The novel distribution-free model, as illustrated in [P5], can be formulated by identify-

ing an appropriate uj, denoted as u∗∗
j , such that the expression

rj ·E[−Zj |Zj<0]
−u∗∗

j
· P{Zj < 0}− ε

is equated to zero, i.e., u∗∗
j = − rj ·E[−Zj |Zj<0]·P{Zj<0}

ε .

[P5]min ∑
j∈N

∑
t∈T

xjt · ce
t · P

60 · ∆t

subject to

Constraints (2)–(5), Constraint (7), Constraints (9)–(10), Constraint(29)

sj − wmax ≤ rj + u∗∗
j , ∀j ∈ N (33)

Remark 1. The optimal objective value of model [P4] and [P5] serves as the upper bound for that
of model [P1] due to the fact that rj ≤ rj · (1 + bj) for each EV j ∈ N .

4.2.3. BP Neural Network-Enhanced Distribution-Free Approach

In this section, we aim to enhance the effectiveness of Cantelli’s inequality-based
distribution-free approach by incorporating a BP neural network, as it demonstrates supe-
rior convergence towards the optimal value of uj compared to the Markov inequality-based
distribution-free approach when prior knowledge about the variance of EV arrival times is
available.

Given the assumption of uo
j for j ∈ N , it can be concluded that P{−Zj ≥ −uo

j /rj} = ϵ.
Irrespective of the aforementioned version of distribution-free approaches, the upper bound
obtained for P{−Zj ≥ −uj/rj} is not sufficiently tight, i.e., uo

j − u∗
j ≥ 0. To further enhance

the accuracy of this upper bound, a BP neural network algorithm is employed by this work
to effectively model the gap between u∗

j and the optimal value of uj, i.e., the maximum
value of uj. Specifically, as shown in Figure 5, we establish the connection between rj, σ2,
u∗

j , and gap∗j using a BP neural network and train the BP neural network to accurately
predict gap∗j for j ∈ N .

��� 0��∗− ��

푔���∗

BP Neural network module

푔���∗

��

�2

��∗

Figure 5. Illustration of the designed BP neural network-enhanced distribution-free approach.

Under the support of the BP neural network, chance Constraint (8) can be approxi-
mately replaced by Constraint (34):

sj − wmax ≤ rj + u∗
j + gap∗j , ∀j ∈ N (34)
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Certainly, considering the issue of overfitting and other factors associated with the
BP neural network, it is possible for P{sj ≥ rj + u∗

j + gap∗j + wmax} = ε + ∆, where
∆ > 0. However, when ∆ is sufficiently small, for instance, ∆ < 1%, the gap∗j obtained
through the proposed BP neural network-enhanced distribution-free approach can be
deemed acceptable.

5. Numerical Experiments
We utilized Matlab 2023b on a PC equipped with an i7 14700K CPU operating at

2.50 GHz and boasting 32 GB of memory to conduct numerical experiments.
Since the effectiveness of the K-means enhanced SAA approach in addressing schedul-

ing optimization problems has been verified by both Refs. [14,37], this experiment employs
the output solution of the K-means enhanced SAA approach as a benchmark to evaluate
the performance of the proposed distribution-free approaches.

5.1. Experiment Settings

Let objDF1a, objDF2, and objDF1b, respectively, denote the objective value of distribution-
free approaches for the three versions mentioned above; the effectiveness of the three
approaches is demonstrated by defining the following three relative errors:

• gap1 = objDF1a−objKSAA
objKSAA

· 100% represents the relative error between Cantelli’s inequality-
based distribution-free approach and the KSAA model.

• gap2 = objDF2−objKSAA
objKSAA

· 100% represents the relative error between the Markov
inequality-based distribution-free approach and the KSAA model.

• gap3 = objDF1b−objKSAA
objKSAA

· 100% represents the relative error between the BP neural
network-enhanced distribution-free approach and the KSAA model.

The increased risk level, denoted as IRL, is defined as the difference between the
actual maximum risk level obtained using the DF1b approach and the given risk level
ϵ. In other words, IRL can be calculated as IRL = maxj∈N {ϵDF1b

j } − ϵ, where ϵDF1b
j

represents the actual risk level obtained using DF1b. Notice that through the preliminary
numerical experiments, we observed that the BP neural network comprising 8 neurons
exhibited superior performance in predicting the gap between u∗

j and the optimal value of
uj. Consequently, in this numerical experiment, the number of neurons was set to 8.

We approximated the number of random events to 100, 000, i.e., |Ω| = 100, 000. The
number of cluster centers |K| was set as 0.2 · |S|. In our work, the decision horizon
encompasses a duration of 12 h, which is discretized into a set of time points denoted
as T with ten-minute intervals; thus, ∆t = 10 and |T | = 72. In order to mitigate the
infeasibility of the considered problem caused by randomly generated parameters, each EV
charger i ∈ N was assigned a single time period during which it would remain unavailable,
accounting for only 10% to 20% of the whole decision horizon, i.e., it was scaled within
the interval of [0.1 · |T |, 0.2 · |T |]. As shown in Figure 2, regarding the electricity tariffs
for industrial and commercial usage in Shanghai, China, the peak and off-peak rates
were established at 1.037/kWh, 0.324/kWh, and 0.648/kWh correspondingly. This work
assumed that the entire decision horizon spans from 6 pm to 18 pm.

In order to comprehensively demonstrate the efficacy of the proposed approaches, we
conducted numerical experiments under the assumption that the EV arrival time follows
a normal distribution and a lognormal distribution, respectively. Specifically, within the
normal distribution, we considered an interval of [10, 60] for a mean value of EV j ∈ N ,
i.e., µ̄j. With reference to Ref. [39], the variance σ̄2 was set as 0.1 · µj. In the context of

the lognormal distribution, the mean value for EV j ∈ N was defined as ln

(
µ̄2

j√
σ̄2+µ̄2

j

)
,
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while the variance was specified as

√
ln
(

σ̄2

µ̄2
j
+ 1
)

. To enhance the feasibility of generating

instances, we let wmax = 1.2 ·
(

maxω∈Ω{rj} − (rj + µ∗
j )
)

under the two distributions. The
other parameter settings are presented in Table 2.

Table 2. Parameter settings.

Parameters: |S| lj v1 v2 ε P

Values: 100 [80, 100] 1 0.5 0.1 60

5.2. Numerical Results

The numerical results presented in Tables A1 and A2 in Appendix B were used to
compare the performance of KSAA against the three proposed distribution-free approaches
(DF1a, DF2, and DF1b) under both normal and lognormal distributions. The comparison
was conducted with varying scaling intervals for parameter aj: [20, 60] in Table A1 and [20,
30] in Table A2. The findings highlight the significant advantages of the distribution-free
approaches in terms of both computational efficiency and solution accuracy.

The average running times of KSAA are substantially higher compared to the proposed
methods. Specifically, for the [20, 60] interval, the average computational times of KSAA,
DF1a, DF2, and DF1b are 2623, 18, 18, and 20 s, respectively, as shown in Table A1. Similarly,
under the [20, 30] interval (Table A2), the average running times are 2549, 19, 19, and 20 s.
These results correspond to a reduction in execution time of approximately 99.31%, 99.31%,
and 99.24% for DF1a, DF2, and DF1b compared to KSAA under the [20, 60] interval,
and 99.25%, 99.25%, and 99.22% under the [20, 30] interval. Notably, DF1b exhibits a
slightly longer running time (by approximately 2 s) than DF1a and DF2, a trade-off that is
compensated by its superior accuracy.

Regardless of the method, the computational time shows a noticeable upward trend
with an increasing number of EVs, while the number of EV chargers has only a negligible
impact on running time. This scalability further underscores the practicality of the proposed
methods for real-world applications.

The relative errors of the proposed methods vary depending on the approach and
the underlying distribution. Under the [20, 60] interval, the average relative errors for
DF1a, DF2, and DF1b are 5.15%, 7.21%, and 2.09%, respectively, with DF1b consistently
achieving the smallest error. Under the [20, 30] interval, the corresponding relative errors
are 4.78%, 7.08%, and 2.03%, again demonstrating the superior accuracy of DF1b. These
results suggest that DF1b can effectively predict objective values and generate feasible
scheduling solutions, even with limited information about the uncertain variable rj.

Figure 6 provides a detailed visualization of the relative errors (gap1, gap2, and gap3)
for instances 1 to 48 (Table A1 presents the gap values of the solutions obtained by each
method for instances 1 to 24, while Table A2 shows the gap values for the remaining
instances) across the three distribution-free approaches. The bar chart highlights the dif-
ferences in prediction accuracy among the methods. DF1b (gap3, green bars) consistently
achieves the smallest relative error across all instances, with most values below 6%. By con-
trast, DF2 (gap2, orange bars) often exhibits the largest errors, with many values exceeding
10%. DF1a (gap1, blue bars) demonstrates intermediate performance, with errors generally
higher than DF1b but lower than DF2. This visual evidence aligns with the numerical
results, reinforcing the conclusion that DF1b is the most accurate and robust approach.
Figure 6 also emphasizes the stability of DF1b, as its error distribution remains tightly
bounded compared to the larger variance observed in DF2.
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Figure 6. Comparison of relative error distributions.

The performance of the proposed approaches is influenced by the type of distribution.
DF1b demonstrates higher relative accuracy under lognormal distributions compared to
normal distributions. This can be attributed to the concentration of EV arrival times near
the mean under lognormal distributions, which enhances the fitting capability of the BP
neural network used in this study. By contrast, DF2’s accuracy is hindered by its limited
capacity to incorporate variance information, resulting in the highest relative errors among
the three distribution-free approaches.

In terms of integrated risk level (IRL), DF1b achieves an average increase of less than
0.30% across all settings, effectively balancing robustness and feasibility. It successfully
mitigates the conservatism inherent in traditional distribution-free methods and addresses
the infeasibility and time constraints associated with KSAA. Notably, DF1b overcomes
the inability of KSAA to generate feasible solutions for certain instances (as indicated by
missing values in Tables A1 and A2).

Overall, numerical experiments demonstrate the effectiveness of both the SAA and
distribution-free approaches in handling the uncertainty of EV arrival times. Under known
probability distributions, the SAA method provides robust and cost-effective schedules by
leveraging scenario generation. In contrast, the distribution-free approach shows strong
performance in cases where only partial information (e.g., upper and lower bounds) is
available, ensuring reliable scheduling decisions without relying on specific distributional
assumptions.

In terms of managerial insights, the aforementioned conclusion suggests the following.
(1) The inherent uncertainty in EV arrival times necessitates robust scheduling strategies.
SAA enables the creation of schedules that perform well on average across multiple sce-
narios, while distribution-free approaches provide solutions that are resilient to a wide
range of possible arrival time distributions. Managers should consider integrating these
approaches to enhance the reliability of charging station operations. (2) Distribution-free
approaches offer scalability and adaptability to varying levels of demand and uncertainty,
making them versatile tools for diverse operating environments. Managers can leverage
these techniques to scale operations efficiently and adapt to dynamic changes in EV usage
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patterns. (3) By optimizing charging schedules with these advanced methods, it is possible
to reduce operational costs. Efficient scheduling minimizes peak load, reduces the need for
expensive infrastructure upgrades, and optimizes energy usage. This cost-effectiveness is
crucial for maintaining competitive pricing and ensuring the financial sustainability of EV
charging services. And (4) the integration of these approaches encourages a data-driven
approach to decision-making. By continuously collecting and analyzing data on EV ar-
rivals and charging patterns, managers can refine their scheduling algorithms and improve
performance over time.

6. Conclusions
In this work, we study an EV charging scheduling problem, where the arrival time of

each EV is uncertain. A K-means enhanced SAA together with two versions of distribution-
free approaches are proposed to solve this problem. Additionally, a BP neural network is
also applied to enhance the proposed distribution-free approach.

Numerical experiments demonstrate the effectiveness of the model in reducing total
charging costs while ensuring the reliability of scheduling decisions under diverse uncer-
tainty conditions. The results highlight that the proposed methods can adapt to different
levels of uncertainty and provide practical solutions for EV charging stations, even under
challenging real-world conditions. The results show that balancing robustness and cost
efficiency is essential for designing effective charging schedules, and the proposed methods
achieve this balance through tailored optimization techniques. Additionally, numerical
results confirm the computational feasibility of the model for small-to-medium problem
sizes, demonstrating its applicability to real-world EV charging stations.

The assumptions of uninterrupted charging and fixed TOU pricing simplify the model
for mathematical tractability but may limit its applicability in real-world scenarios. Charg-
ing interruptions, caused by user behavior or operational constraints, could significantly
impact the scheduling process but are not currently accounted for in this study. Simi-
larly, fixed TOU pricing does not reflect real-time pricing dynamics or demand response
programs, which are increasingly common in modern power systems. Future research
directions may include the following: (1) exploring more effective clustering approaches to
enhance the traditional stochastic programming approaches; (2) extending the model to
accommodate real-time or dynamic pricing schemes, such as demand response programs,
to capture the variability in electricity prices and their impact on scheduling decisions;
(3) developing other deep learning enhanced methods which require less training time
of large-scale data; (4) conducting a formal sensitivity analysis to evaluate the impact of
key parameter variations, such as charging rates, arrival times, and cost structures, on
the model’s outcomes; and (5) testing the scalability of the proposed approach on larger
datasets and in more complex scenarios, such as highly variable EV arrival patterns or
larger fleets, using advanced optimization techniques or real-time dynamic scheduling
frameworks to ensure robustness and practicality in real-world applications.
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Appendix A. The SAA Model
We first introduce a binary auxiliary variable αj(s) (j ∈ N , j ∈ N ), and then present

the SAA model:

αj(s): A binary auxiliary variable, when equal to 1 indicates that sj(s) > rj(s) + wmax, or 0
otherwise.

Under the support of the scenario set S , the SAA model can be formulated as follows:

[P2]min 1
|S| · ∑

s∈S
∑

j∈N
∑

t∈T
xjt(s) · ce

t · P
60 · ∆t (A1)

subject to

∑
t∈T

zjt(s) = 1, ∀j ∈ N , ∀s ∈ S (A2)

∑
j∈N

xjt(s) ≤ ∑
i∈M

idleit, ∀t ∈ T , ∀s ∈ S (A3)

xjt(s) ≥ zjt(s), ∀j ∈ N , t ∈ T , s ∈ S (A4)

sj(s) = ∑
t∈T

t · zjt(s), ∀j ∈ N , ∀s ∈ S (A5)

sj(s) ≥ rj(s), ∀j ∈ N , ∀s ∈ S (A6)

xjt′ (s) ≥ 1 − M · (1 − zjt(s)),

∀j ∈ N , ∀t ∈ T , ∀t
′ ∈ [t, t + ⌈pj⌉ − 1], ∀s ∈ S (A7)

sj(s)− αj(s) · M ≤ rj(s) + wmax, ∀j ∈ N , ∀s ∈ S (A8)

∑
s∈S

αj(s) ≤ ε · |S|, ∀j ∈ N (A9)

xjt(s), zjt(s), yj(s) ∈ {0, 1}, ∀j ∈ N , ∀t ∈ T , ∀s ∈ S (A10)

sj(s) ∈ R+, ∀j ∈ N , ∀s ∈ S (A11)

Constraint (A2) ensures that each EV j ∈ N must be charged in each scenario s ∈ S
throughout the entire time horizon.Constraint (A3) guarantees that the number of EVs
charged at any time t ∈ T is not larger than that of the given EV chargers for each scenario
s ∈ S . Constraints (A4)–(A6) calculate the start charging time of EV j ∈ N for each
scenario s ∈ S . Constraint (A7) guarantees that the charging duration of EV j ∈ N is
continuous and uninterrupted for each scenario s ∈ S . Constraints (A8)–(A9) guarantee
that the probability of the start charging time being greater than rj + wmax cannot be greater
than the given risk level ε under the scenario set S . Constraints (A10)–(A11) give the range
of variables.

Appendix B. Numerical Results
This section presents the results of two numerical experiments conducted to eval-

uate the performance of the proposed approach. The results are summarized in
Tables A1 and A2, which highlight key metrics and trends observed during the experi-
ments.
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Table A1. Numerical results for the case where aj is scaled in interval [20, 60].

Instances
(M,N )

KSAA DF1a DF2 DF1b

objKSAA time(s) objDF1a time(s) gap1(%) objDF2 time(s) gap2(%) objDF1b time(s) gap3(%) IRL (%)

Normal distribution

(2,3) 106.21 243 119.24 4 12.27 119.24 4 12.27 111.46 9 4.94 0.13
(2,5) 237.17 617 248.84 7 4.92 260.51 7 9.84 241.06 8 1.64 0.00
(2,7) 325.89 1559 352.54 12 8.18 371.99 12 14.15 344.76 14 5.79 0.47
(3,5) 236.78 742 248.84 8 5.09 252.73 8 6.74 241.06 10 1.81 0.00
(3,7) 303.53 1523 336.98 13 11.02 340.87 13 12.30 325.31 15 7.18 0.47
(3,9) 379.34 3257 395.29 18 4.20 403.07 18 6.26 383.62 20 1.13 0.30
(4,7) 301.58 2739 317.53 13 5.29 329.20 13 9.16 305.86 15 1.42 0.47
(4,9) 378.95 2382 395.29 20 4.31 403.07 20 6.36 383.62 21 1.23 0.30

(4,11) 501.87 3389 518.41 21 3.29 526.19 21 4.84 506.74 23 0.97 0.10
(5,9) 379.54 4363 395.29 18 4.15 403.07 18 6.20 383.62 26 1.08 0.30

(5,11) 501.88 2991 518.41 19 3.29 526.19 19 4.84 506.74 21 0.97 0.10
(5,13) 540.37 7159 553.40 21 2.41 561.18 21 3.85 545.62 23 0.97 0.51

Lognormal distribution

(2,3) 104.07 326 115.35 4 10.84 119.24 4 14.58 107.57 6 3.36 0.13
(2,5) 233.28 620 244.95 6 5.00 256.62 6 10.01 237.17 18 1.67 0.00
(2,7) 319.48 1562 - 12 - - 12 - 340.87 12 6.70 0.50
(3,5) 233.28 670 244.95 8 5.00 248.84 8 6.67 237.17 9 1.67 0.00
(3,7) 301.58 1546 329.20 13 9.16 333.09 13 10.45 305.86 14 1.42 0.50
(3,9) 376.03 2399 391.40 18 4.09 395.29 18 5.12 379.73 20 0.98 0.30
(4,7) 298.47 1536 309.75 13 3.78 313.64 13 5.08 301.97 15 1.17 0.50
(4,9) 376.23 2786 387.51 19 3.00 391.40 19 4.03 379.73 21 0.93 0.30

(4,11) 499.35 3666 510.63 22 2.26 518.41 21 3.82 502.85 24 0.70 0.11
(5,9) 375.84 2876 387.51 17 3.11 391.40 17 4.14 379.73 19 1.04 0.30

(5,11) 499.35 6589 510.63 20 2.26 514.52 20 3.04 502.85 22 0.70 0.11
(5,13) 537.84 7421 545.62 104 1.45 549.51 106 2.17 541.73 101 0.72 0.57

Average 347.83 2623 364.24 18 5.15 370.83 18 7.21 354.03 20 2.09 0.27

Note: “-” indicates that the generated instance is not feasible for the model.
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Table A2. Numerical results for the case where aj is scaled in interval [20, 30].

Instances
(M,N )

KSAA DF1a DF2 DF1b

objKSAA time(s) objDF1a time(s) gap1(%) objDF2 time(s) gap2(%) objDF1b time(s) gap3(%) IRL (%)

Normal distribution

(2,3) 139.78 256 151.64 4 8.49 155.53 4 11.27 143.86 6 2.92 0.13
(2,5) 269.57 1547 281.24 9 4.33 292.91 7 8.66 273.46 9 1.44 0.00
(2,7) 355.70 1390 378.46 12 6.40 401.80 12 12.96 378.46 13 6.40 0.47
(3,5) 269.18 678 281.24 7 4.48 285.13 7 5.93 273.46 9 1.59 0.00
(3,7) 332.95 1403 362.90 13 9.00 366.79 13 10.17 355.12 14 6.66 0.47
(3,9) 445.50 3661 471.76 16 5.89 487.32 16 9.39 452.31 18 1.53 0.30
(4,7) 329.06 1168 343.45 10 4.37 355.12 10 7.92 331.78 20 0.83 0.47
(4,9) 443.75 3494 460.09 108 3.68 467.87 105 5.44 448.42 79 1.05 0.30

(4,11) 579.64 4394 607.84 25 4.87 - 24 - 596.17 24 2.85 0.10
(5,9) 444.34 2609 460.09 19 3.55 467.87 19 5.30 448.42 23 0.92 0.30

(5,11) 579.64 4028 596.17 27 2.85 607.84 27 4.87 584.50 29 0.84 0.10
(5,13) 670.36 5808 686.89 28 2.47 - 28 - 675.22 28 0.72 0.51

Lognormal distribution

(2,3) 136.47 287 147.75 4 8.27 151.64 4 11.12 139.97 5 2.57 0.13
(2,5) 266.65 726 281.24 7 5.47 289.02 8 8.39 269.57 9 1.09 0.00
(2,7) 348.31 1402 - 12 - - 12 - 370.68 12 6.42 0.50
(3,5) 266.26 773 281.24 8 5.62 281.24 8 5.62 269.57 9 1.24 0.00
(3,7) 331.00 1765 359.01 13 8.46 362.90 13 9.64 335.67 15 1.41 0.50
(3,9) 440.83 3371 456.20 18 3.49 471.76 18 7.02 448.42 20 1.72 0.30
(4,7) 326.33 1788 339.56 13 4.05 343.45 13 5.24 331.78 15 1.67 0.50
(4,9) 441.03 2601 452.31 19 2.56 456.20 19 3.44 444.53 23 0.79 0.30

(4,11) 577.10 2992 - 17 - - 17 - - 16 - 0.11
(5,9) 440.64 2760 452.31 19 2.65 456.20 19 3.53 444.53 21 0.88 0.30

(5,11) 577.11 3809 588.39 25 1.95 596.17 25 3.30 580.61 27 0.61 0.11
(5,13) 667.44 8469 683.00 26 2.33 683.00 25 2.33 671.33 27 0.58 0.57

Average 403.28 2549 414.67 19 4.78 398.99 19 7.08 402.95 20 2.03 0.27

Note: “-” indicates that the generated instance is not feasible for the model.
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