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Abstract: Occupancy is one of the primary contributors to the energy performance gap, 
defined as the difference between actual and predicted energy usage, in buildings. This 
paper limits its scope to residential buildings, where occupant-centric consumption often 
goes unaccounted for in standard energy metrics. This paper starts from the hypothesis 
that a simple occupant energy efficiency label is needed to capture the essence of occupant 
behaviour. Such a label would help researchers and practitioners study a wide range of 
behavioural patterns and may better frame occupant interventions, potentially contrib-
uting more than expected to the field. Focusing on the residential sector, this research rec-
ognises that the complexity of occupant behaviour and its links to different scientific cal-
culations requires that researchers deal with several intricate factors in their building per-
formance assessments. Moreover, complexity arising from changing attitudes and behav-
iours—based on building typology, social environment, seasonal effects, and personal 
comfort levels—further complicates the challenge. Starting with these problems, this pa-
per proposes a framework for an occupant energy labelling (OEL) model to overcome 
these issues. The contribution of the paper is twofold. Firstly, the literature is reviewed in 
depth to reveal current research related to occupant behaviour for labelling of humans 
based on their energy consumption. Secondly, a case study with energy simulations is 
implemented in the UK, using the CREST tool, to demonstrate the feasibility and potential 
of OEL. The results show that labelling occupants may help societies reduce building en-
ergy consumption by combining insights from energy statistics, surveys, and bills gath-
ered with less effort, and can assist decision-makers in determining the best match be-
tween buildings and occupants. While the focus of this study is on residential buildings, 
future research is recommended to explore the applicability of OEL in office environ-
ments, where occupant behaviour and energy dynamics may differ significantly. 
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1. Introduction 
Humanity, spending most of its time indoors, is the primary source of energy con-

sumption and greenhouse gas emissions worldwide. As a result of human activities, par-
ticularly the release of greenhouse gases, the global surface temperature has risen to 1.1 
°C above the 1850–1900 level [1]. Additionally, in 2022, there was a significant increase in 
the level of greenhouse gases [2]. Moreover, August 2024 tied with August 2023 as the 
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warmest August on record globally, with an average ERA5 surface air temperature of 
16.82 °C, which is 0.71 °C higher than the August average for the period 1991–2020 [3]. 
Within this, human activity buildings are responsible for approximately 40% of total en-
ergy use. Occupants, being at the centre of building operation and management, are key 
drivers for this energy consumption [4]. Development, sustainability and consequently 
energy efficiency are still leading topics in academic research. The growing importance of 
these topics forces more research efforts, development of further policies, and deeper in-
terventions. In recent years, big steps have been taken forward in order to achieve inter-
national targets for controlling energy consumption, decreasing green gas emissions 
whilst minimising waste for a sustainable world. 

Numerous studies in the building science literature cover a broad spectrum of topics 
related to occupant behaviour (OB). Some of the most frequently areas of research with 
the most cited articles include energy efficiency, carbon emissions, thermal comfort, in-
door environmental quality, health and well-being, technology interaction, social and psy-
chological factors, policy and regulations, sustainability and environmental impacts, re-
mote work, mobility and space utilisation as well as data-driven modelling and simula-
tion [5–8]. Much of the work on OB is highly complex and falls within the domains of 
social and behavioural sciences [9], building science [10], sensing and control technologies 
[11], and data science [12]. Within the social dimension, the study of occupant behaviour 
encompasses various sub-fields, such as user behaviour, attitudes, and individual or 
household consumption patterns. Basic energy-related occupant behaviour includes ac-
tions such as adjusting thermostat settings, opening/closing windows, controlling light-
ing, manipulating blinds, control of HVAC systems, and moving between spaces. In ad-
dition, behavioural adaptations such as clothing choices, beverage consumption, and met-
abolic rate changes can impact personal comfort levels, which in turn affect building en-
ergy consumption. Finally, the direct and indirect drivers of occupant behaviour, whether 
at the individual, local, whole-space, or zonal level, can have varying impacts on building 
energy consumption. Understanding these factors is important for effective building en-
ergy management and carbon emissions reduction strategies [12]. To investigate the com-
plexities in these various fields, a range of specialised methods for data gathering and 
analysis are employed, such as surveys, interviews, sensor data collection, simulations, 
and more. Each of these approaches requires distinct expertise due to the complexity of 
analysis and the harmonisation of methods across different domains. 

Much of the work on OB is highly complex and intrinsically interdisciplinary [13]. 
However, understanding the basics of OB is essential for building science professionals to 
comprehend the physical load that occupants create for buildings, such as thermal load, 
ventilation load, and CO2 production. These factors directly impact control measures such 
as thermostat settings, window position etc., which in turn affect the energy use and over-
all carbon emissions of the building. Furthermore, understanding the expectations of oc-
cupants regarding thermal building performance and required comfort conditions is cru-
cial to developing effective energy efficiency and carbon emissions reduction strategies. 
According to Delgado and Shealy [14], although energy policy and products typically re-
ceive the most attention, the bulk of a building’s life cycle costs are incurred during the 
operations and maintenance phase. Supporting this perspective, household behavioural 
factors significantly influence residential energy consumption [15]. Given the substantial 
energy consumption during the operational phase and the critical role of occupants, there 
could be a shift in residential energy policy from a focus on technological solutions to one 
emphasising behavioural change [15]. 

On average, more than 70% of the building stock in the European Union (EU) consists 
of residential buildings [16]. This makes residences one of the key types of buildings when 
researching occupant behaviour, although privacy is always seen as a big concern. From 
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this point of view, any attempt to decrease energy consumption in residences will have a 
wider effect compared to any other building type. Occupants have different reasons for 
using different spaces. For instance, a residence is the most relaxing space compared to 
other social spaces. Activities, clothing conditions and privacy are all organised by the 
specific occupants of a residence. Moreover, occupants feel free to activate, control and 
change thermal conditions as well as lighting, visual and acoustics. This provides a certain 
control of indoor environmental quality conditions. Weber and Perrels [17] and Kim et al. 
[18] pointed out the importance and effect of lifestyle over energy consumptions related 
to occupant behaviour. Rather than technical issues which may be quantified and could 
be reported regularly, socio cultural factors may not be addressed as easily. Household 
socio-economic characteristics, such as the number of residents, their ages, income, em-
ployment, place of residence of occupants are found to have a significant effect on energy 
consumption [19,20]. Moreover, dwelling attributes such as size, energy class, location, 
etc., also have a significant positive effect on energy consumption [15,21]. 

Despite the breadth of existing occupant behaviour studies, there remains a clear gap 
in delivering a systematic approach that links occupant-specific consumption metrics with 
broader energy efficiency strategies. To provide a direct statement on how the proposed 
occupant energy labelling (OEL) framework fills specific gaps in existing methodologies, 
OEL introduces quantifiable thresholds for occupant-driven consumption, thus bridging 
the disconnect between purely technological solutions and the nuanced behavioural di-
mension. Unlike existing methodologies, OEL not only highlights variability in occupant 
behaviour but also operationalises these insights into a labelling system, making it more 
feasible to incorporate behavioural factors into building policies, performance assess-
ments, and targeted interventions. Moreover, it can be adapted to dwellings with differing 
numbers of occupants—ranging from individuals to larger family groups—thereby rec-
ognising that collective household dynamics can diverge significantly from patterns ob-
served in single-occupant households. In doing so, OEL provides a comprehensive tool to 
identify, compare, and potentially influence occupant-driven energy consumption—a 
contribution that stands apart from the more fragmented approaches prevalent in current 
research. 

A critical aspect of understanding OB lies in recognising the influence of socio-eco-
nomic conditions and personal habits on building energy use. While maintaining comfort 
is the primary motive behind energy consumption in buildings, comfort itself is shaped 
by a wide range of occupant-centric parameters, such as metabolic rate, clothing choices, 
health status, cultural attitudes, and everyday routines [4,10]. At the same time, factors 
like income, vulnerability, and life stage further complicate how individuals or house-
holds interact with indoor environments. In some cases, energy use patterns may adapt 
to the most sensitive or at-risk member in a group—adjusting thermal settings for a baby’s 
needs, for example—while in others, financial constraints might limit an occupant’s ability 
to maintain ideal comfort conditions. These realities underscore that occupant popula-
tions are far from homogeneous, making it both challenging and controversial to catego-
rise people solely by region or building type [5]. Consequently, efforts to reduce energy 
use must consider the nuanced interplay of occupant demographics, personal habits, and 
socio-economic contexts to ensure equitable and effective outcomes. 

Considering the complexity of OB and its links and dependencies to different scien-
tific calculations requires that researchers deal with several intricate factors in their build-
ing performance assessments. Moreover, the complexity of changing attitudes and behav-
iours based on building typology, social environment, seasonal effects and due to per-
sonal comfort levels make the problem harder. Starting with these problems, this paper 
proposes a framework for an OEL model to overcome these problems. 
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1.1. Motivation 

Despite the complex and often unpredictable behaviour of people, several methods 
are used to predict energy consumption of humans in buildings. These range from very 
static ‘block schemes’ to stochastic and highly dynamic models. However, only a limited 
number of metrics has been introduced to quantify the energy consumption in buildings 
as directly related to humans. For this reason, building simulations plays a major role [22]. 
Simulations mostly contribute to bottom-up approaches which are based on deep analysis 
of several parameters related to humans and buildings in different ways as explained in 
the earlier section. 

Human behaviour is complex, and human actions are governed by several factors. 
Investigating each factor separately and trying to correlate drivers and corresponding ac-
tions is an important limitation for researchers. On the other hand, if the researchers had 
a simple occupant energy efficiency label developed from the statistics including different 
building types, with a variety of users in different strata, then this would allow them to 
more easily quantify the energy consumption through simulations for any given building. 

In the realm of energy efficiency, traditional methodologies often focus on a bottom-
up approach, meticulously detailing each occupant’s activity and its specific energy im-
pacts [23]. However, this method can be cumbersome and imprecise due to the complex 
variability in human behaviour across different settings. To address these challenges, this 
paper introduces a novel approach called occupant energy labelling (OEL), which lever-
ages a top-down strategy. This method significantly simplifies the process by gathering 
broad usage statistics of how occupants interact within indoor environments, rather than 
dissecting each interaction individually. OEL offers a substantial advantage in its ability 
to apply a unified framework across various contexts and scenarios without the need for 
setting up individual simulations for each undefined occupant pattern. This approach not 
only streamlines research and application but also enhances the feasibility of implement-
ing energy efficiency measures at a larger scale. Moreover, the energy usage of occupants 
is subject to change throughout their lifetimes, influenced by key factors such as age, social 
roles, and interactions with other occupants. These interactions vary significantly depend-
ing on the type of building whether it is a residential home or a professional workplace. 
For example, an individual might exhibit different energy consumption behaviours at 
home compared to their workplace due to differing environmental and social influences. 
The variability and complexity of these factors make it challenging to accurately catego-
rise people into static groups or predict their energy use with traditional methods. Thus, 
OEL represents a transformative shift towards a more adaptable and scalable model for 
assessing and enhancing energy efficiency in various occupant-driven environments. This 
introduction of OEL in this paper marks a critical step forward in energy efficiency re-
search, offering a more practical and less labour-intensive alternative to the traditional, 
detail-oriented bottom-up approach. 

1.2. Aim and Objectives 

This paper aims to define the main framework for OEL and to understand the extent 
to which OEL represents occupant behaviour-dependent energy consumption in residen-
tial buildings. 

Occupants are typically individuals belonging to social groups. Their specific inter-
actions and personal traits and social behaviours may change over time. Moving from this 
point, the paper seeks to explore how a number of occupants, each of them with different 
habits and backgrounds, impacts building energy consumption within certain time inter-
vals. 

The study investigates the feasibility of labelling occupants based on their energy 
consumption, which is influenced by their behaviours. This involves developing a 
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quantitative approach that considers energy consumption for specific end uses, such as 
thermal energy for space heating, domestic hot water, lighting, appliances, total energy 
consumption and gas demand. These metrics will include peak and minimum values, and 
their variations based on the dwelling characteristics. 

Drawing on the insights mentioned above, this research will examine the effects of 
changing occupant numbers in a single residence on energy consumption and aims to 
identify specific intervals. In doing so, it will establish correlations between occupant 
numbers and energy demands across different end uses, providing a comprehensive un-
derstanding of behavioural impacts. 

The findings of this study are expected to lay the groundwork for a concept, frame-
work, and metric related to OEL. In particular, the metrics will facilitate actionable in-
sights by quantifying the influence of occupant behaviour on specific energy uses and 
their implications for conservation strategies. 

The research not only explores the OEL framework but also aims to define a new 
metric. It is believed that the outcomes of this research will benefit societies and commu-
nities dealing with topics such as fuel poverty, optimised energy consumption, and build-
ing energy efficiency. 

The paper presents the general layout of the research, covering the early steps of oc-
cupant labelling. Labelling will provide opportunities to capitalise on profiles, patterns, 
and interactions based on the numbers and habits of occupants, which, when classified, 
can better align with building energy conservation goals. By incorporating measurable 
values for each energy use type, the labelling system aims to deliver targeted interventions 
to improve building performance. 

The work will help researchers, through the use of data from labelled occupants, with 
building performance simulation. The paper also explores why occupant labelling should 
extend beyond occupant profiling. Different from occupant profiling, occupant labelling 
for energy aims not only to define the underlying factors but also to quantify the outcomes 
of these factors affecting energy consumption. By focusing on measurable outputs such as 
energy consumption per end use, averages, peak/minimum values, and the effects of 
dwelling characteristics, the study moves beyond theoretical profiling to enable practical 
applications in energy management. 

Considering all, the paper has the following main objectives: (i) to develop a frame-
work for OEL in residential buildings; (ii) to quantify the influence of occupant behaviour 
on energy consumption through measurable outputs; (iii) to examine the effects of chang-
ing occupant numbers within residence/s and establish correlations between occupant 
levels and energy demands; (iv) to move beyond occupant profiling by introducing a new 
metric that focuses on measurable energy outcomes rather than theoretical classifications; 
(v) to define further steps for development of OEL. 

1.3. Research Methodology 

The research presented in this paper consists of a theoretical part which develops the 
OEL framework, and an applied part with demonstrates the feasibility of that framework. 
A literature review was conducted to connect to earlier research about the topic, structur-
ing driving factors of occupants for energy consumption in residential buildings. This 
analyses the underlying factors and considers the performance metrics used for calcula-
tion and also investigates the effects of occupant behaviour on building energy consump-
tion as reported in previous academic work. The outcomes are used to develop the OEL 
framework and defines the theoretical approach. 

Secondly, a case study is implemented. For this purpose, the CREST Demand Tool, v 
2.3 [24] developed by Loughborough University, is used. Different archetypes of resi-
dences (with their thermal performance statistically provided for the UK context) are 
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simulated with different numbers of occupants for the month of January. For this purpose, 
more than 9000 simulations were conducted. The outcomes of the simulations were ana-
lysed statistically using Multivariate Analysis of Variance (MANOVA), correspondence, 
and decision tree approaches. 

1.4. The Need for Occupant Energy Labelling (OEL) 

A primary goal of building performance metrics and test methods is to reduce Green 
House Gas (GHG) emissions and increase energy efficiency by quantifying the impact and 
thus supporting the appropriate deployment of emerging technologies and the effective 
application of products and systems [25]. Developing tailored metrics across various 
fields is crucial for ensuring comprehensive energy conservation in a well-adapted and 
efficient manner. 

Several factors influence when, how, and to what degree an occupant engages with 
their building [26]. To represent the users in building performance simulation, occupancy 
profiles and patterns are typically used to simulate different types of user behaviours. 
However, occupancy profiles in building simulations aim to improve energy predictions 
by modelling occupant behaviour, but they often rely on assumptions or static schedules 
rather than real data, even though occupant behaviour is unpredictable and changes over 
time [11,27]. However, most profiles or patterns are not correlated with buildings or their 
energy classes. On the other hand, energy consumption is always correlated to the occu-
pants of buildings. 

OEL is a necessary attribute to be developed because building performance is directly 
influenced by occupant behaviour. To accurately determine final energy consumption and 
efficiency, buildings and occupants must be evaluated together. While building perfor-
mance can be estimated prior to occupancy using simulation-based assumptions, real-life 
performance gaps often arise due to various factors. Bottom-up approaches require sig-
nificant data collection and analysis, while top-down methods can utilise existing data 
sources, such as Time User Surveys (TUS) and real-time consumption metrics like bill 
analysis. However, bottom-up approaches may struggle to account for variations across 
different cultures, geographies, and societies. By focusing on the total energy consump-
tion of communities rather than individual buildings, energy use can be more effectively 
assessed through building energy labels. Extending this approach to include occupant la-
belling and integrating both building and occupant data has the potential to reduce over-
all energy consumption at a societal level. 

Changing occupant behaviour to reduce energy consumption can be achieved 
through awareness campaigns, financial incentives, and technological tools like energy 
monitors and smart thermostats. Educational efforts and nudging techniques, such as de-
fault energy-efficient settings and reminders, can subtly encourage sustainable habits. By 
defining OEL, awareness of energy use can be enhanced, helping occupants better under-
stand their consumption patterns and their role in reducing demand. Furthermore, differ-
ent dwelling types may require distinct profiles for energy efficiency, as building charac-
teristics and usage patterns influence how occupants interact with energy systems. These 
strategies, combined with tailored profiles, can promote immediate reductions in energy 
use while fostering long-term behavioural changes aligned with energy efficiency goals. 

1.5. Development of Occupant Energy Labelling (OEL) 

This concept of OEL was developed around six main building performance aspects 
that are of high importance in residential buildings, namely lighting demand, appliance 
demand, total electricity demand of the dwelling, hot water demand, thermal energy for 
space heating, and gas demand. To study the impact of occupancy on each of these, sim-
ulations were conducted with varying numbers of occupants (from one to five) across four 
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different house types in the UK, each with different overall floor areas and thermal enve-
lope characteristics. The effects of occupancy on total energy consumption were examined 
through multiple simulations. 

The simulations explore the impact of varying occupants in different types of resi-
dences, identifying which areas of the residence are influenced and how these effects cor-
relate with human behaviour. The findings then inform the development of OEL param-
eters, where building energy labels and occupant energy labelling are combined to guide 
reduced energy consumption. This approach is expected to contribute to the works to fa-
cilitate the pairing of appropriate building types with the corresponding number and type 
of occupants, ultimately minimising energy use at a societal level. The outcomes are an-
ticipated to establish a framework for developing OEL. The framework does not aim to 
define exact parameters but provides a foundation for detailing the parameters that can 
be used for OEL. Currently, this approach is limited by the capabilities of the simulation 
tools, the number of simulations and case study. As the model evolves, additional param-
eters can be included to further refine occupant energy labelling. Moreover, this labelling 
system considers not only individual impacts but also the combined effects of multiple 
occupants. This means that the energy consumption patterns of occupants living together, 
such as families, are evaluated based on their collective schedules to create a comprehen-
sive OEL. 

2. Literature Review 
“Buildings don’t use energy: people do” [28]. 

The concept of ’occupancy’ extends beyond a mere designation, encapsulating the 
nuanced interplay between individuals and the built environment [29]. This interaction 
becomes particularly pertinent as buildings evolve in complexity and connectivity, 
prompting a shift in design and operational strategies to accommodate more than just the 
decisions of traditional individual stakeholders. Concurrently, the nuances of occupant 
behaviour—shaped by variables such as age, income, and health—have a direct correla-
tion with building energy consumption and the pursuit of thermal comfort. The user-
friendliness of controls, the nature of the space occupied, and the influence of external 
expenses like energy costs, further steer occupants’ approaches to regulating their indoor 
climate [30]. Understanding the impact of occupant behaviour on building energy use re-
quires a combined analysis with indoor climate studies [31]. Energy consumption is 
higher in homes continuously occupied during the day, including weekends, compared 
to those left unoccupied or with varying occupancy patterns [32]. 

Occupant behaviour is influenced by several factors and several research projects 
have attempted to reveal these underlying factors. IEA Annex 66 [33] suggested that 
building performance which is affected by climate, building envelope and building equip-
ment is considered to be driven by technical and physical factors, whilst energy which is 
used based on operation, maintenance and occupant behaviour related to indoor environ-
mental conditions as well as social factors are considered to be influenced by factors. It 
means that building energy use is affected by humans when it comes to humans directly 
responding to thermal performance [33]. The Annex 66 report details that occupant be-
haviour is triggered by on external factors, namely comfort, culture and economy which 
cause movements and actions for energy consumption. Impacts of human behaviour are 
observed by energy usage which is a basis of a building performance. The report defines 
behaviour based on physiology, psychology and economy. 

Based on research by Fabi et al. [34] factors that influence occupant behaviour can 
broadly be termed as “drivers” and encompass both external and individual elements. 
These drivers cover physical environmental factors, contextual factors, psychological fac-
tors, physiological factors and social factors, which are the catalysts that provoke a 
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response from building occupants, prompting them to take action [34]. They suggest that 
occupants react to Indoor Environmental Quality (IEQ) conditions to balance their com-
forts. 

Steemers and Yun have provided valuable insights into the factors influencing en-
ergy demand through a series of studies. In their initial paper [35], they argue that while 
climate and building characteristics are commonly considered primary determinants of 
energy demand, the influence of occupant behaviour alongside socio-economic factors 
plays a crucial and often underappreciated role. Building upon this foundation, their sub-
sequent research [36] delves deeper into how occupant behaviour, in conjunction with 
socio-economic and physical factors, significantly impacts domestic cooling energy de-
mand. 

D’Oca and Hong [37] categorised the driving factors into five categories: physical 
(indoor and outdoor environment), psychological (preferences, attitudes), physiological 
(age, sex), contextual (type of environment where the occupants are located), and social 
(income, lifestyle). 

Humphreys [38] believes environmental comfort is flexible, subject to cultural and 
historical variation, and not completely constrained by human physiology. Hong et al. 
[39] summarised the effects of energy-related occupant behaviour in buildings based on 
main drivers shaped around time (day, week, month), environment (climate, indoor, out-
door, weather), system (properties, state), occupant (attributes, attitudes, location, state) 
and buildings (component, properties, location). 

Wei et al. [40] provide a comprehensive overview of the literature on factors influ-
encing of occupant space-heating behaviour, identifying two main categories and nine 
sub-categories that encompass a total of 27 drivers. These drivers include the following: 
outdoor climate, indoor relative humidity, dwelling type, dwelling age, dwelling size, 
room type, house insulation, type of heating system, type of temperature control, type of 
heating fuel, occupant age, occupant gender, occupant culture/race, occupant education 
level, social grade, household size, family income, previous dwelling type, house owner-
ship, thermal sensation, perceived indoor air quality (IAQ) and noise, health, time of day, 
time of week, occupancy, heating price, energy use awareness. Based on their findings, 
Wei et al. [40] attempted to establish a link between these influencing factors and building 
performance simulation inputs. 

Research spanning multiple domains that thoroughly analyse the interactions be-
tween occupants and buildings, incorporating insights from various disciplines, was ex-
tensively discussed by O’Brien et al. [41] and Schweiker et al. [42]. All these studies indi-
cate that the drivers of energy consumption by occupants are complex, dependent on mul-
tiple factors, and require expertise from diverse disciplines. Employing bottom-up ap-
proaches to define each detail over an extended period remains a challenging and difficult 
task. 

Occupant Energy Labelling (OEL) 

Representing the current behaviours of occupants within a specific context does not 
inherently guarantee energy efficiency, nor does it provide a comprehensive forecast of 
their future behaviours if the context changes [43]. For this reason, the authors believe that 
there is a need for occupant energy labelling, which generally involves setting minimum 
and maximum figures, rather than pinpointing precise figures for energy consumption. 
For this purpose, this section will delve into the literature for a better understanding of 
the content. A limited amount of work on OEL is available in the English-language litera-
ture from indexed papers. Although the titles may not explicitly reference OEL, they often 
explore related concepts, such as occupant building interaction [5,12], occupant modelling 
[44] statistical analysis [45], data mining [46,47], machine learning [48], developing KPIs 
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[49] and clustering [50]. A more closely related approach can be described as cluster anal-
ysis, which has been employed in several studies. 

A detailed review by Xu et al. [51] identifies the interaction between occupant behav-
iours (effects of multi-occupant behavioural interactions) as one of the research gaps. Un-
derstanding the variability in occupant energy consumption behaviours over their life-
times is crucial for developing effective energy efficiency strategies. This variability is in-
fluenced by a myriad of factors, including metabolic changes due to ageing, family dy-
namics, the developmental stages of children, and financial constraints, which together 
can significantly affect an individual’s energy use. Moreover, relocating to different geo-
graphical areas and experiencing climate variations also plays a role in shaping overall 
energy consumption patterns. These factors not only influence occupant behaviour but 
also challenge the initial classifications used in energy consumption studies. 

The existing literature, including the work by Schweiker et al. [42], identifies several 
key factors affecting energy consumption: geographic location, building and system de-
sign, the occupants themselves, and temporal changes. With a specific focus on the occu-
pants, this research aims to delve deeper into how their indoor energy consumption cor-
relates with their economic status, educational background, perceptions of indoor envi-
ronment quality (IEQ), physiological factors, life stages, and the number of occupants 
sharing a space. These elements are intertwined, suggesting that understanding and in-
fluencing occupant behaviour could lead to more effective energy efficiency interventions. 

However, addressing these elements individually, as in a bottom-up approach, pre-
sents significant challenges. This method requires an exhaustive detailing of every possi-
ble scenario, entangling the study in the complexities of disparate fields and potentially 
overlooking the holistic view of energy consumption patterns. In contrast, this research 
posits that a top-down approach, predicated on labelling occupants for energy efficiency 
using statistical data, offers a more viable solution. By establishing a framework for min-
imum and maximum energy consumption based on broad interactions and behaviours, 
this method seeks to normalise consumption patterns, thereby simplifying the process of 
estimating energy consumption with minimal adjustments. 

The hypothesis underpinning this research suggests that labelling occupants from a 
top-down perspective, as opposed to unravelling the myriad complexities inherent in a 
bottom-up approach, is not only more efficient but also more beneficial in crafting over-
arching energy efficiency strategies. To test this hypothesis, the study employs a case 
study methodology, aiming to demonstrate the advantages of the proposed top-down ap-
proach. The findings from this case study are anticipated to provide compelling evidence 
supporting the adoption of OEL as a standardised method for improving energy effi-
ciency, thus advocating for a strategic shift in how energy consumption patterns are ana-
lysed and addressed. 

To contextualise the need for OEL and its advantages over existing approaches, it is 
essential to examine the methodologies currently used to analyse energy consumption. 
Building energy labelling provides a holistic view of energy efficiency and facilitates 
benchmarking across buildings. However, it often overlooks occupant-specific behav-
iours and does not account for behavioural variations over time. Similarly, appliance en-
ergy labelling offers granular insights at the device level, helping users select energy-effi-
cient products, yet it neglects overall energy use and how occupants interact with devices. 
More behaviour-focused methods, such as occupant profiling and cluster analysis, link 
energy consumption to behavioural patterns or group trends, offering valuable insights 
into how individuals or groups use energy. Nonetheless, these methods frequently lack 
numerical thresholds, broader applicability, or the ability to drive actionable interven-
tions. 
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OEL aims to address these limitations by introducing a behaviour-centric and metric-
driven framework that combines the strengths of existing methods while overcoming 
their shortcomings. OEL integrates behavioural variability with measurable metrics, such 
as minimum and maximum energy consumption values, across specific end uses like heat-
ing, lighting, and appliances. This quantitative focus distinguishes OEL from occupant 
profiling and clustering, which often remain descriptive. Furthermore, OEL does not only 
aim to identify patterns but also seeks to provide actionable outcomes, such as tailored 
conservation strategies and benchmarks for improving energy efficiency. 

What makes OEL unique is its dual approach: it considers both individual and group 
dynamics while accounting for variations in dwelling types, occupant numbers, and tem-
poral behaviours. Unlike traditional methods that focus on static building or appliance 
characteristics, OEL actively incorporates the behavioural dimension, bridging the gap 
between physical systems and occupant interactions. This makes OEL particularly suita-
ble for addressing the energy performance gap, as it captures the real-world impact of 
occupant behaviour on energy use. 

To enhance the clarity of this section, Table 1 summarises the focus, strengths, and 
weaknesses of existing labelling approaches. It underscores the limitations of these meth-
ods and highlights the need for a structured, comprehensive framework like OEL. By 
combining occupant behaviour analysis with quantifiable metrics, OEL provides a foun-
dation for more effective energy efficiency strategies, paving the way for applications in 
both residential and, potentially, commercial contexts. 

Table 1. Different labelling approaches. 

Approach  Focus Strengths Weaknesses 

Building Energy Labels 
Overall building perfor-

mance 

Provides a holistic view of 
building energy efficiency; 

enables benchmarking across 
buildings. 

Ignores occupant-specific be-
haviours; does not account 
for behavioural variations 

over time. 

Appliance Energy Labels Device-specific consumption 
Focuses on granular details; 

helps users choose energy-ef-
ficient appliances. 

Does not capture overall en-
ergy use; neglects how occu-
pants interact with devices. 

Occupant Energy Profiling 
Behavioural energy use pat-

terns 

Links behavioural habits 
with energy consumption; 

enables targeted feedback for 
occupants. 

Often lacks numerical thresh-
olds for energy use; limited 
to profiling without actiona-

ble metrics. 

Cluster Analysis Grouping based on energy 
use 

Identifies consumption 
trends within groups; high-
lights shared characteristics. 

Overlooks individual behav-
iours and contextual factors; 
may oversimplify complex 

patterns. 

3. Methodology 
Occupants are the main reason of the building’s energy use. Referring to the meta-

phor of Plato’s Cave, the effect of occupancy on energy consumption in buildings can be 
observed as consumption in numerical values although underlying factors with drivers 
cannot be easily defined or tracked. As demonstrated in the earlier literature review sec-
tion, this energy usage dependency can be classified in different ways and parameters. 
Although a wide range of literature can be found in the domain, a holistic approach is 
missing. 

For this purpose, a hypothetic case study is structured based on simulations. For this 
study 4 different types of houses from across the UK are selected with their different ar-
chetypes, square metre floor area and thermal performances. Different numbers of 
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occupants are simulated for a month in January in Loughborough, the default location 
used in the simulation tool. The weather data for 2015 are used. All simulations are per-
formed with CREST demand tool V. 2.3 [24] developed by Loughborough University. The 
CREST model is an integrated thermal–electrical demand model based on a bottom-up 
activity-based structure, using stochastic programming techniques to represent dwelling 
diversity, producing calibrated and validated output at high-resolution, based on re-
duced-order thermal–electrical networks to represent thermal dynamics, and developed 
as free open-source software to promote transparency and further research. 

The CREST Tool was chosen for this study due to its specific strengths in addressing 
the research objectives and its alignment with the study’s scope and constraints. Its ease 
of setup and demonstrated reliability in prior research make it a practical choice for con-
ducting simulations efficiently. One of the primary reasons for selecting CREST is its ex-
tensive use of UK-specific data derived from national statistics, ensuring that the simula-
tions reflect realistic occupant behaviour patterns within the context of the UK housing 
sector. Moreover, CREST’s ability to perform rapid simulations allows researchers to con-
duct numerous runs within a reasonable timeframe, which is crucial for exploring multi-
ple scenarios and refining energy consumption models. The software’s built-in library of 
building types and occupancy profiles—based on comprehensive UK surveys—provides 
a robust foundation for capturing the variability in occupant behaviour across different 
dwelling types. These features significantly reduce the need for manual input, streamlin-
ing the setup process while maintaining data accuracy. From a methodological perspec-
tive, the open-source calculation methodology of CREST enhances transparency and al-
lows for reproducibility of results, which are critical for academic rigor. Additionally, the 
tool’s preloaded database of dwelling parameters, tailored to UK conditions, ensures that 
building characteristics are accurately reflected in the simulations. 

The decision to use CREST also stems from its comparative advantages over other 
simulation tools. Many alternative tools lack the specific focus on UK housing and the 
integration of occupant behaviour patterns, making them less suitable for this study’s ob-
jectives. CREST’s strengths in data relevance, simulation speed, and alignment with na-
tional statistics made it the most appropriate choice for developing the occupant energy 
labelling (OEL) framework. Lastly, initial test runs using CREST yielded consistent and 
satisfactory results, further reinforcing its suitability for this research. By leveraging 
CREST’s capabilities, the study ensures a methodologically sound approach to exploring 
occupant behaviour-driven energy consumption, providing actionable insights for the 
OEL framework. 

Three primary methods MANOVA, correspondence analysis, and decision trees 
were employed to capture the multifaceted relationships between occupant numbers, res-
idential typologies, and various energy consumption categories (e.g., heating, lighting, 
appliances, domestic hot water), as well as gas and water usage, in order to assess how 
different factors coalesce into occupant-cantered energy patterns. MANOVA (Multivari-
ate Analysis of Variance) was used first to simultaneously evaluate differences across mul-
tiple dependent variables, offering insights into whether occupant composition and 
dwelling type significantly influence overall consumption. In this step, typical statistical 
indices—including mean squares, F-factors, and partial eta squared values—were calcu-
lated, and reliability relationships of correlations were plotted to gauge the robustness of 
observed patterns. Correspondence analysis was then performed to uncover patterns and 
associations within categorical data, thereby helping to visualise and interpret how par-
ticular occupant or residence categories align with specific energy consumption traits. Fi-
nally, decision trees provided a classification-based approach that pinpoints which varia-
bles (e.g., occupant count, building attributes) exert the greatest predictive power over 
energy usage, thereby identifying the most dominant correlations among different 
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consumption behaviours. Taken together, these complementary methods establish a ro-
bust analytical framework for determining whether occupants can be effectively labelled 
based on distinct consumption behaviours, laying the groundwork for an occupant-cen-
tric energy labelling system. 

Research is based on residential buildings for several reasons. Research on residential 
energy consumption is particularly challenging due to diverse theoretical frameworks, 
inconsistent terminology, and limited knowledge about occupant behaviour [52]. How-
ever, focusing on residential buildings is crucial. Firstly, residences account for approxi-
mately 70–80% of all buildings, making them a prime area for energy research. Secondly, 
since residents typically pay their own energy bills, their behaviours reflect real-world 
decision-making and financial incentives. Finally, studies on occupant behaviour in resi-
dential buildings reveal significant opportunities for energy savings. These buildings ex-
hibit more diverse patterns of occupancy hours and activities compared to office build-
ings, underlining the importance of understanding how individuals interact with their 
homes to optimise energy use [11]. 

Case Study 

The developed model facilitates simulations of occupants, randomly selected from 
diverse profiles, across four distinct building typologies prevalent in the UK: detached, 
improved detached, semi-detached, and terraced houses. The thermal characteristics ap-
plied to each house typology in the simulations are detailed in Table 2. 

Table 2. Thermal values of the houses used for simulation. 

Residence 
Type 

Dwelling 
(DW) 

Transfer 
Coefficient 

Between 
(W/K) 

Building 
Thermal 

Capacitance 
(J/K) 

Coefficient 
Representing 
Ventilation 
Heat Loss 

(W/K) 

Ventilation 
Rate (Air 

Changes per 
Hour) (h−1) 

Global Irra-
diance Mul-

tiplier 
(m2) 

Floor Area  
Living Space) 

(m2) 

Volume  
(Living 
Space) 

(m3) 

Detached Dwelling 1 437.5 22,638,446.4 73.6 1 4.2 136 571.20 
Improved 
Detached 

Dwelling 2 128.7 24,646,439.6 74.4 0.4 4.5 136 571.2 

Semi De-
tached 

Dwelling 3 247.6 12,876,155.4 46.7 1 4.3 87 365.4 

Terraced Dwelling 4 197.3 11,863,842.6 10,40 1 2.7 58 243.6 

Weather data files from 2015 were utilised for a comprehensive series of simulations 
conducted using the CREST tool. Given that in the UK, heating loads are emphasised 
while cooling loads are often disregarded, these simulations specifically focused on a one-
month period during winter, in January. This particular month was subjected to thorough 
analysis. The simulations examined the energy dynamics of the four distinct categories of 
houses, considering variations in occupancy levelsranging from one to five occupants. 
This assessment spanned the entire 31 days of January 2015. Furthermore, to enrich the 
dataset and provide a more nuanced understanding of energy use, each case simulation 
was expanded to include 10 different scenarios of occupant behaviour patterns. In this 
manner, more than 6000 measurement values have been obtained for each energy con-
sumption. This approach increased the volume of data tenfold, offering a deeper insight 
into the variability of energy consumption across different living situations. 

The simulations are categorised based on the type of housing (DW): 

• Detached House   (represented as DW1) 
• Improved Detached House  (represented as DW2) 
• Semi-Detached House   (represented as DW3) 
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• Terraced House   (represented as DW4) 

Occupancy levels (OC) range from one to five, with the following classifications: 

• 1 occupant    (represented as OC1) 
• 2 occupants    (represented as OC2) 
• 3 occupants    (represented as OC3) 
• 4 occupants    (represented as OC4) 
• 5 occupants    (represented as OC5) 

4. Research Results 
These classifications are depicted in the graphics. For each simulation run, ten ran-

dom occupant behaviour patterns (based on activity) are simulated to gather a more com-
prehensive dataset for accurate analysis. The simulations measure factors effecting energy 
consumption in residences namely: lighting demand, appliance demand, total electricity 
demand of the dwelling, domestic hot water demand, thermal energy used for space heat-
ing and gas demand. Averages can be found in the tables (Tables 3–8) The total electricity 
demand of the dwelling is the sum of lighting demand and appliance demand, while the 
gas demand includes energy used for domestic hot water and thermal energy. Besides 
kWh based energy consumptions with different number of occupants in four different 
type of houses are represented in Figure 1. Supplementary materials related to the some 
parts of the research is provided and linked in supplementary material title at the end of 
the manuscript. 

Table 3. Lighting demand (average in kWh/day). 

 OC1 OC2 OC3 OC4 OC5 Average 
DW1 1.680 2.986 3.524 3.884 4.478 3.310 
DW2 1.682 2.990 3.644 4.124 4.537 3.395 
DW3 1.822 2.978 3.632 4.189 4.672 3.459 
DW4 1.662 3.149 3.460 4.455 4.632 3.472 
Total 1.711 3.026 3.565 4.163 4.580 3.409 

Table 4. Appliance demand (average in kWh/day). 

 OC1 OC2 OC3 OC4 OC5 Average 
DW1 7.081 8.877 10.311 11.009 12.380 9.932 
DW2 7.035 9.247 9.707 11.000 12.145 9.827 
DW3 7.059 9.073 10.289 11.401 12.006 9.965 
DW4 7.081 9.137 10.704 10.982 12.654 10.112 
Total 7.064 9.083 10.253 11.098 12.296 9.959 

Table 5. Total electricity demand of the dwelling (average in kWh/day). 

 OC1 OC2 OC3 OC4 OC5 Average 
DW1 8.761 11.863 13.835 14.893 16.858 13.242 
DW2 8.717 12.237 13.351 15.124 16.681 13.222 
DW3 8.881 12.051 13.921 15.589 16.678 13.424 
DW4 8.744 12.286 14.164 15.437 17.286 13.583 
Total 8.776 12.109 13.818 15.261 16.876 13.368 
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Table 6. Domestic hot water demand (average in litres/day). 

 OC1 OC2 OC3 OC4 OC5 Average 
DW1 65.944 117.860 158.239 208.311 227.263 155.523 
DW2 65.674 120.347 158.044 200.941 231.516 155.304 
DW3 66.515 124.112 156.628 209.184 244.493 160.186 
DW4 69.341 126.317 166.268 203.717 234.641 160.057 
Total 66.868 122.159 159.795 205.538 234.478 157.768 

Table 7. Thermal energy used for space heating (average in kWh/day). 

 OC1 OC2 OC3 OC4 OC5 Average 
DW1 55.637 56.303 53.168 51.707 50.774 53.518 
DW2 30.791 28.087 27.378 26.099 24.328 27.337 
DW3 37.510 35.289 33.219 31.777 29.591 33.477 
DW4 20.996 18.737 17.803 15.234 14.574 17.469 
Total 36.233 34.604 32.892 31.204 29.817 32.950 

Table 8. Gas demand (average in m3/day). 

 OC1 OC2 OC3 OC4 OC5 Average 
DW1 7.202 7.574 7.434 7.534 7.512 7.451 
DW2 4.214 4.215 4.320 4.423 4.383 4.311 
DW3 5.031 5.077 5.042 5.160 5.109 5.084 
DW4 3.061 3.100 3.231 3.115 3.212 3.144 
Total 4.877 4.992 5.007 5.058 5.054 4.997 
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Figure 1. kWh-based energy consumption (thermal energy used for space heating, lighting, appli-
ances, total electricity demand). 

4.1. Analysis of Simulation Results 

This section covers the statistical analyses of the data obtained from the simulations. 
The statistical methods applied are multivariate variance analysis, correspondence analy-
sis and decision tree. 

4.1.1. Multivariate Variance Analysis (MANOVA) 

According to the results of multiple comparisons, both dwelling type (DW) and the 
number of occupants (OC) have a significant effect on the dependent variables (consump-
tion) (p < 0.05). However, the interaction between dwelling type (DW) and the number of 
occupants (OC) does not seem to have an effect on the dependent variables (p = 0.099). 
When the partial eta squared values are examined, it is seen that dwelling type has a 
slightly greater effect on the dependent variables compared to the number of occupants 
(Table 9). 

Table 9. Multivariate test results (the effect of factors on consumption). 

Multivariate Tests a 

Effect (Pillai’s Trace) Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

Intercept 0.952 30,581.502 4.000 6177.000 0.000 0.952 
DW 0.567 360.373 12.000 18,537.000 0.000 0.189 
OC 0.427 184.751 16.000 24,720.000 0.000 0.107 

DW * OC 0.010 1.270 48.000 24,720.000 0.099 0.002 
a Design: Intercept + DW + OC + DW * OC. 

4.1.2. Variance Analysis 

Upon examining the variance analysis table, it can be stated that housing type has a 
significant effect on lighting energy consumption (F(3, 6180) = 3.000, p = 0.029, ηp2 = 0.001) 
and heating energy consumption (F(3, 6180) = 2617.120, p = 0.0001, ηp2 = 0.560). Notably, 
heating energy consumption shows a substantial effect based on housing type (ηp2 = 
0.560). The number of occupants significantly affects all dependent variables (consump-
tion) (p < 0.05). When examining the partial eta squared (ηp2) values, the energy types 
most affected by different levels of occupant count (OC) are, in order: hot water usage (ηp2 
= 0.349), lighting (ηp2 = 0.263), electrical appliances (ηp2 = 0.122), and heating energy con-
sumption (ηp2 = 0.037) (Table 10). 

It is understood that the energy type that best explains the total variation in the 
model, in terms of the types of energy considered, is the energy used for heating the space 
(ηp2 = 0.567; Radj2 = 0.566). This is followed by the amount of hot water used (ηp2 = 0.350; 
Radj2 = 0.348), lighting energy (ηp2 = 0.266; Radj2 = 0.263), and energy used by electrical 
appliances (ηp2 = 0.123; Radj2 = 0.121). 

Table 10. Analysis of variance table (the effect of different levels of factors on consumption). 

Tests of Between-Subjects Effects 

Source Dependent Variable Type III Sum of 
Squares 

df Mean Square F Sig. Partial Eta 
Squared 

Corrected 
Model 

Lighting demand 6267.290 a 19 329.857 117.712 0.000 0.266 
Appliance demand 20,121.400 b 19 1059.021 45.792 0.000 0.123 

Hot water demand (litres) 22,047,374.802 c 19 1,160,388.147 175.510 0.000 0.350 
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Thermal energy for space 
heating 

1,110,998.200 d 19 58,473.589 426.485 0.000 0.567 

Intercept 

Lighting demand 72,052.646 1 72,052.646 25,712.497 0.000 0.806 
Appliance demand 614,911.613 1 614,911.613 26,589.010 0.000 0.811 

Hot water demand (litres) 154,321,987.170 1 154,321,987.170 23,341.348 0.000 0.791 
Thermal energy for space 

heating 6,731,451.777 1 6,731,451.777 49,096.789 0.000 0.888 

DW 

Lighting demand 25.216 3 8.405 3.000 0.029 0.001 
Appliance demand 64.470 3 21.490 0.929 0.426 0.000 

Hot water demand (litres) 34,402.188 3 11,467.396 1.734 0.158 0.001 
Thermal energy for space 

heating 
1,076,466.354 3 358,822.118 2617.120 0.000 0.560 

OC 

Lighting demand 6190.280 4 1547.570 552.261 0.000 0.263 
Appliance demand 19,828.727 4 4957.182 214.350 0.000 0.122 

Hot water demand (litres) 21,949,601.328 4 5,487,400.332 829.975 0.000 0.349 
Thermal energy for space 

heating 32,715.471 4 8178.868 59.654 0.000 0.037 

DW * OC 

Lighting demand 51.794 12 4.316 1.540 0.102 0.003 
Appliance demand 228.203 12 19.017 0.822 0.628 0.002 

Hot water demand (litres) 63,371.286 12 5280.941 0.799 0.652 0.002 
Thermal energy for space 

heating 1816.375 12 151.365 1.104 0.352 0.002 

Error 

Lighting demand 17,317.857 6180 2.802    
Appliance demand 142,921.971 6180 23.127    

Hot water demand (litres) 40,859,245.205 6180 6611.528    
Thermal energy for space 

heating 
847,313.492 6180 137.106    

Total 

Lighting demand 95,637.793 6200     
Appliance demand 777,954.985 6200     

Hot water demand (litres) 217,228,607.177 6200     
Thermal energy for space 

heating 8,689,763.469 6200     

Corrected 
Total 

Lighting demand 23,585.147 6199     
Appliance demand 163,043.372 6199     

Hot water demand (litres) 62,906,620.008 6199     
Thermal energy for space 

heating 
1,958,311.692 6199     

a R Squared = 0.266 (Adjusted R Squared = 0.263). b R Squared = 0.123 (Adjusted R Squared = 0.121). 
c R Squared = 0.350 (Adjusted R Squared = 0.348). d R Squared = 0.567 (Adjusted R Squared = 0.566). 

4.1.3. Energy Consumption by Housing Type (DW) 

It was found that the dwelling type had a significant effect on two of the dependent 
variables: lighting energy and the energy used for space heating. In terms of lighting en-
ergy consumption, the energy used in DW4-type dwellings was significantly higher than 
that in DW1-type dwellings (p = 0.044). For space heating energy, significant differences 
were observed between all pairwise combinations of dwelling types (p < 0.05). The dwell-
ing type with the highest space heating energy consumption was DW1, while DW4 had 
the lowest consumption. The smallest difference in average consumption was between 
DW3 and DW2, while the largest difference occurred between DW1 and DW4. 
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4.1.4. Energy Consumption by Number of Occupants (OC) 

The analyses based on energy consumption patterns among different user types, la-
belled OC1 through OC5 reveals that OC5 is generally the highest consumer of energy 
across various categories (lighting, electrical devices, hot water, and space heating), while 
OC1 is typically the lowest. The energy consumption differences between (pairwise com-
parisons of) OC5-OC4, OC3-OC2, and OC4-OC3 are relatively small, but the gap widens 
significantly between (pairwise comparisons of) OC5-OC1. It is evident that the number 
of individuals in a group has a noticeable impact on energy consumption. While adding 
or removing a single person has a minimal effect, increasing or decreasing the number by 
two or more people leads to a substantial change in average energy usage, particularly for 
electrical devices, hot water, and space heating. 

4.1.5. Cross-Validation of Occupants (OC) Across Different Housing Types (DW) 

The differences in average lighting energy consumption, based on binary combina-
tions of different levels of housing types, were examined according to occupant types. It 
was found that there were no significant differences in lighting energy consumption 
across different housing types for occupants classified as OC1, OC2, and OC3 (p > 0.05). 
However, a significant difference was identified in the average lighting energy consump-
tion for OC4 occupants between the DW4 and DW1 housing types (p = 0.0001). On the 
other hand, no significant differences were observed in lighting energy consumption for 
OC4 occupants when comparing other housing types (p > 0.05). In terms of energy con-
sumption from electrical devices and hot water, no significant differences were found 
when comparing different levels of housing types based on occupant types (p > 0.05). Con-
versely, for energy consumption related to space heating, significant differences were 
found across all binary combinations of different housing types based on occupant types 
(p < 0.05). 

4.1.6. Cross-Validation of Housing Types (DW) Across Different Occupants (OC) 

The differences in average lighting energy consumption were examined based on bi-
nary combinations of different occupant types for each housing type. Comparisons of av-
erage energy consumption across different occupant types were made according to hous-
ing types. In terms of lighting energy consumption, significant differences in average con-
sumption were found for the binary combinations of all occupant types, except for OC3-
OC4 in the DW1 housing type (p > 0.05), with other combinations showing significant 
differences (p < 0.05). In the DW2 housing type, the differences in average consumption 
between all combinations of occupant types were significant (p < 0.05). Similarly, in the 
DW3 housing type, the average consumption differences between all occupant type com-
binations were also significant (p < 0.05). In the DW4 housing type, significant differences 
were found for all occupant type combinations except for OC2-OC3 and OC4-OC5 (p > 
0.05), with the remaining combinations showing significant differences (p < 0.05). 

Regarding the energy consumed by electrical appliances, significant differences were 
found in average consumption for all occupant type combinations in the DW1 housing 
type, except for OC3-OC4 (p > 0.05), with other combinations showing significant differ-
ences (p < 0.05). In the DW2 housing type, significant differences were observed for all 
occupant type combinations except for OC3-OC2 (p > 0.05). In the DW3 housing type, 
significant differences were found for all combinations except for OC4-OC5 (p > 0.05). In 
the DW4 housing type, all occupant type combinations showed significant differences ex-
cept for OC3-OC4 (p > 0.05). 

In terms of domestic hot water consumption, significant differences were observed 
between all combinations of occupant types in the DW1 housing type (p < 0.05). 
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Regarding energy consumption for space heating, significant differences were found 
in average consumption between all combinations of occupant types in the DW1 housing 
type, except for OC1-OC2 and OC1-OC3 (p > 0.05), while the remaining combinations 
showed significant differences (p < 0.05). In the DW2 housing type, significant differences 
were found between all combinations except for OC2-OC3 and OC2-OC4 (p > 0.05). Simi-
larly, in the DW3 housing type, significant differences were found between all combina-
tions except for OC1-OC2 and OC2-OC3 (p > 0.05). In the DW4 housing type, significant 
differences were observed for all combinations except for OC1-OC2, OC3-OC2, OC3-OC4, 
and OC4-OC5 (p > 0.05). 

The highest average differences in lighting energy consumption for each housing 
type were found in the combinations of OC5-OC1, OC4-OC1, and OC3-OC1 occupant 
types, respectively. The lowest average difference was observed between OC4-OC3 in the 
DW1 housing type, and between OC5-OC4 in the DW2, DW3, and DW4 housing types. 

4.2. Correspondence Analysis 

In this research, correspondence analysis was conducted using two different ap-
proaches. In the first approach, energy consumption sources, housing types (DW), and 
occupants (OC) were evaluated independently (Figure 2). In the second approach, energy 
consumption sources, housing types (DW), and occupants (OC) were examined in relation 
to each other (Figure 3). The consumption averages obtained from a dataset with a uni-
form distribution (exact balance across all categories) were used as weights. For both 
graphics the blue colours represent the columns (energy types), while the red colours in-
dicate the variables in the rows (occupant types—OC and housing types—DW). 

4.2.1. Evaluation of Energy Consumption Types for DW and OC Categories Inde-
pendently 

The first dimension explains 98.4% of the variation, while the second factor accounts 
for 1.5%. Thus, there is only a 0.05% loss in the total variation explained (Table 11). 

Table 11. Reliability table (1). 

 eValue % Cum % 
1 0.028698 98.42317 98.42317 
2 0.000446 1.528009 99.95118 
3 0.000014 0.04882 100 
 0.029158   

When examining the line graph, it appears that in the first dimension (x-axis), the 
variables OC4, OC5, DW2, and DW4 are separating from the variables OC2, OC1, and 
DW1. In the second dimension (y-axis), it seems that the variables OC4, OC5, and DW1 
are differentiating from the variables DW2, DW4, OC2, and OC1 (Figure 3). 
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Figure 2. Combined graph (1) (X axis represents Dimension1, and Y axis represents Dimension2). 

 

Figure 3. Combined graph (2) (X axis represents Dimension1, and Y axis represents Dimension2). 
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The combined graph (1) (Figure 2) indicates that the DW3 and OC3 variables, posi-
tioned near the graph’s centre, reflect average energy consumption levels. In the upper-
right section, the DW1 housing type stands out for its significantly higher energy usage 
for space heating, highlighting a notable relationship between this housing type and space 
heating demand. Additionally, the OC5 variable shows a stronger association with OC4 
regarding hot water consumption. The graph also suggests that hot water usage varies 
more prominently across different occupant types. 

The energy used for lighting is closely associated with DW2 and DW4 housing types, 
though the relationship is stronger for DW4. For energy consumption related to electrical 
devices, OC1 and OC2 occupant types show a notable correlation, with OC2 exhibiting a 
stronger association than OC1. 

In the first dimension of the column graph (x-axis), space heating energy is distin-
guished from hot water and lighting energy. In the second dimension (y-axis), space heat-
ing and hot water consumption are separated from lighting and electrical device usage. 
The distribution of these energy types across different corners of the graph suggests they 
exhibit distinct consumption patterns. 

4.2.2. Evaluation of Energy Consumption Types Through Pairwise Combinations of DW 
and OC Categories 

The first dimension explains 98.1% of the variation, while the second factor accounts 
for 1.8%. Thus, there is only a 0.8% loss in explaining the total variation (Table 12). 

Table 12. Reliability table (2). 

 eValue % Cum % 
1 0.056113 98.13821 98.13821 
2 0.001017 1.777902 99.91612 
3 0.000048 0.083884 100 
 0.057177   

In the first dimension of the bar chart (x-axis), space heating and electrical appliance 
energy use are distinguished from hot water and lighting energy. Similarly, the second 
dimension (y-axis) differentiates space heating and hot water consumption from lighting 
and electrical appliance usage. The distribution of these energy types across different cor-
ners of the chart confirms that they exhibit distinct consumption patterns. The DW3-OC3 
combination, located near the centre of the chart, can be described as having average val-
ues across the energy types consumed. See Figure 3. 

• In the upper-left corner, the hot water consumption is highest for the DW3-OC5 and 
DW2-OC5 combinations. 

• In the upper-right section, the energy used for space heating shows the strongest re-
lationship with the DW2-OC5 and DW3-OC5 combinations. 

• In the lower-left corner, lighting energy consumption is closely associated with DW4-
OC4 and DW4-OC5, with DW2-OC5 also playing a significant role. 

• In the lower-right section, the energy consumed by electrical appliances is most 
closely related to the DW-OC1 combination, as indicated by its proximity to the 
origin and narrower angles, suggesting a stronger relationship than with other com-
binations. 

4.3. Decision Tree 

The decision tree method creates a tree-based classification model to group cases or 
predict the values of a dependent (target) variable based on the values of independent 
(predictor) variables. In this study, the decision tree method was used to determine which 
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factors significantly affect the target variable and at which levels these effects are concen-
trated. 

Comprehensive Inclusion of Independent Variables in the Model 

In the model conducted using the Chi-Square Automatic Interaction Detection 
(CHAID) method, housing type (DW) and various types of energy consumption were 
used as independent variables. The results indicate that the most influential variables in 
predicting the consumer type are hot water consumption, lighting energy, and energy 
used by electrical appliances. The model resulted in a structure with a depth of three, 
comprising a total of 54 nodes and 37 terminal nodes. The number of nodes represents 
each point where a split occurs, while terminal nodes are those where no further splits are 
possible, and final predictions are made. Terminal nodes represent homogeneous groups 
at the model’s endpoints, with each terminal node corresponding to a distinct group or 
final classification. The presence of 54 nodes and 37 terminal nodes demonstrates that the 
model performs highly detailed groupings and involves numerous splits before reaching 
the final outcome. 

In the model’s risk table (Table 13), the estimated risk is 0.580 without applying cross-
validation, and 0.597 with cross-validation. These values can be considered high. How-
ever, the fact that the two risk estimates are equal or very close, despite the high risk, 
indicates that the model is internally consistent. 

Table 13. Risk Table. 

Risk 
Method Estimate Std. Error 

Resubstitution 0.580 0.006 
Cross-Validation 0.597 0.006 

Growing method: CHAID. Dependent variable: occupant type (OC). 

The comparison of actual and predicted user types reveals that the model, while cor-
rectly identifying OC1 as a medium level, underestimates the other types, especially OC4. 
This suggests that the model struggles to distinguish between different user types, partic-
ularly OC4. With an overall accuracy of only 42.0%, the model’s reliability is low (Table 
14). 

Table 14. Accuracy differences across user categories. 

Classification 

Observed 
Predicted 

OC1 OC2 OC3 OC4 OC5 Percent Correct 
OC1 895 224 100 20 1 72.2% 
OC2 332 382 265 142 119 30.8% 
OC3 161 261 376 199 243 30.3% 
OC4 48 163 271 295 463 23.8% 
OC5 47 72 214 252 655 52.8% 

Overall Percentage 23.9% 17.8% 19.8% 14.6% 23.9% 42.0% 

Growing method: CHAID. Dependent variable: occupant type (OC). 

Based on these outcomes created decision tree model can be found below (Figure 4). 
A classification tree was used to divide users into 10 distinct groups based on their daily 
hot water consumption. Each group represents approximately 10% of the total users. The 
consumption ranges for these groups are as follows: Group 1: ≤41 L/day, Group 2: 41–66 
L/day, Group 3: 66–92 L/day, Group 4: 92–117 L/day, Group 5: 117–141 L/day, Group 6: 
141–168 L/day, Group 7: 168–201 L/day, Group 8: 201–239 L/day, Group 9: 239–294 L/day, 
Group 10: >294 L/day.
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Figure 4. The decision tree model. 
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For the first group, users with hot water consumption of 41 Litres/day or less consti-
tute 10% of all users, with a 76.3% probability of belonging to the OC1 user type. Follow-
ing this, 19.0% of the group is composed of OC2 users, while the proportions of OC3 
(7.4%), OC4 (1.7%), and OC5 (1.7%) are considerably lower. Since this group is sufficiently 
homogeneous, it is designated as a terminal node, meaning no further splitting was re-
quired. 

The second group’s differentiation is primarily based on lighting energy consump-
tion. This consumption is categorised into three levels: (i) 1.1731 kWh or less, (ii) 1.1731–
2.2474 kWh, and (iii) more than 2.2474 kWh. Within the second group, the first subgroup 
comprises 2.0% of the population and has a 55.6% probability of belonging to the OC1 
user type. Due to its homogeneity, this subgroup is considered a terminal node and re-
quires no further division. 

The second subgroup within the second group is further divided into two homoge-
neous groups based on electrical appliance energy consumption. This consumption is cat-
egorised into two levels: (i) 8.744 kWh or less, and (ii) more than 8.744 kWh. In the first of 
these subgroups, there is a 55.6% probability of belonging to the OC2 user type, slightly 
surpassing the 32.5% probability of being OC1. In the second subgroup, the probability of 
being OC2 is 36.4%, marginally exceeding the 33.3% probability of being OC1 (Node 40 
and Node 41). Due to their homogeneity, both subgroups were deemed terminal nodes 
and required no further division. 

Within the tenth group, characterised by the highest hot water consumption, there is 
a 50.3% probability of belonging to the OC5 user type, compared to a 32.7% probability of 
being OC4. At the second level of this group, lighting energy consumption emerges as the 
primary differentiating factor. For those with lighting energy consumption of 4.8692 kWh 
or less, the probability of being OC5 is 42.3%, and OC4 users have a 34.3% probability. 
Conversely, when lighting energy consumption exceeds 4.8692 kWh, the probability of 
being OC5 increases to 59.2%, while the probability of being OC4 decreases to 31.0%. 

For this research, mandatory inclusion of housing type (DW) as an independent var-
iable was also applied, along with regression tree methods. Due to the extensive nature of 
the research and the constraints of graphical layout, a detailed outcome cannot be pro-
vided here. Since this study was conducted within the context of OEL, its primary focus 
was on establishing the underlying infrastructure necessary for this labelling, rather than 
presenting numerical results. As seen in the initial decision tree example, it was observed 
that when classifying energy consumption, it is possible to establish relationships between 
the consumption levels of individuals within a group and those in other groups, or in 
other words, to correlate different consumption patterns. With more detailed and real-
world datasets, it would be possible to classify users into different energy consumption 
classes based on their consumption levels and corresponding groupings, and to compare 
these classes across various housing types. 

5. Discussion 
Based on the preliminary outcomes of the simulations, which are limited within op-

erational constraints, the basic findings can be summarised as follows: 
Analysis methods: Multivariate Variance Analysis (MANOVA), correspondence 

analysis, and decision tree methods can assist building energy researchers in developing 
occupant labelling from various perspectives. The first two methods can help researchers 
define correlations and assess their effects on consumption, either individually or in con-
junction with building type and occupant type. In contrast, decision tree analysis can fa-
cilitate the clustering and classification of occupants based on their energy consumption 
across different factors. Additionally, decision trees can enable researchers to make 



Sustainability 2025, 17, 1216 24 of 31 
 

predictions about occupant consumption based on historical statistical data. Large da-
tasets, such as TUS, can be utilised for this type of analysis. 

Complexity of occupant behaviour: Individual actions and building energy con-
sumption patterns interact in detail, complicating reliable forecasting. While bottom-up 
methodologies offer valuable insights, they require extensive data that are often challeng-
ing to collect. On the other hand, top-down approaches tend to yield more consistent re-
sults and facilitate easier data acquisition, making them more practical for large-scale ap-
plications. However, applying bottom-up research across diverse contexts introduces ad-
ditional challenges. Variations in cultural, geographical, and climatic factors can limit the 
transferability of findings between regions, complicating efforts to develop universally 
applicable models. Furthermore, occupant behaviour is not static; it evolves throughout 
an individual’s life cycle and in response to shifting social norms, leading to noticeable 
changes over time, particularly in longitudinal studies. In addition to these temporal and 
contextual factors, the type and condition of a building also shape occupant behaviour. 
For example, individuals often exhibit greater energy consciousness when they are di-
rectly responsible for paying their utility bills, yet this behaviour may diminish in envi-
ronments like offices where they do not bear the cost. Similarly, social norms and cultural 
backgrounds influence how individuals behave in shared spaces, prompting them to ad-
just their actions to align with communal expectations. 

Effect of occupant numbers on energy consumption: Research shows that the number 
of occupants directly influences energy consumption. However, the extent of this impact 
is non-linear and varies depending on the type of building. This observation highlights 
that allocating space per person, measured in square metres, is not a practical criterion for 
predicting energy efficiency or consumption. Such an approach fails to capture the non-
linear dynamics of occupant interaction and energy use, which can significantly affect 
overall consumption patterns. 

Consequently, labelling individual occupants as a strategy to address energy con-
sumption issues is not effective. Instead, Sections 4.1.5 and 4.1.6 present a detailed statis-
tical analysis, suggesting that OEL is more suitable for understanding the collective con-
sumption behaviours of a group, such as a family, rather than individual usage within 
that group. Therefore, labelling efforts should reflect the life cycle of the group, their 
shared activities, and how these behaviours evolve over time. 

Furthermore, occupant labelling must account for the different types of energy con-
sumption within a residence, as these vary with the number of occupants. For example, 
domestic hot water and electricity consumption typically increase with more occupants, 
while some forms of energy use, such as thermal energy, may plateau beyond a certain 
point. This complexity emphasises the need for nuanced approaches that go beyond sim-
ple schemes to accurately represent real consumption patterns. 

Diverse energy consumption in buildings: Energy is consumed in various ways 
within a building, influenced both by its structural attributes and the behaviours of its 
occupants. The total energy consumption varies significantly across buildings with differ-
ent thermal properties, indicating that both the number of occupants and dwelling char-
acteristics are important. These factors together influence different types of energy de-
mands, yet their effects are complex and show considerable variability. 

Impact of statistical profiles on simulation outcomes: Although the simulations are 
based on statistically created profiles, combining different statistical profiles of occupant’s 
results in variations that are not merely additive. The difference in energy consumption 
between individual and average per person demonstrates that the integration of various 
behaviours can significantly alter the overall energy dynamics, challenging the simplicity 
of subtracting personal consumption from the average. 
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Based on these research outcomes, it becomes apparent that the bottom-up approach, 
which involves an intricate detailing of a myriad of factors across various fields to estimate 
energy consumption, encounters significant challenges. This methodology requires pre-
cise control and understanding of a vast array of changing parameters to make accurate 
predictions. However, the research also indicates that these parameters need to be flexible 
to accommodate differences in building types, which vary in area, volume, thermal capac-
ity, and other physical properties. Furthermore, even when the number of people and 
their activity patterns remain constant, the correlation between the number of occupants 
and energy consumption is not straightforward or directly proportional. This complexity 
is compounded by the fact that occupants’ energy consumption behaviours can change 
significantly over different life stages. On the other hand, using statistical data to analyse 
different types of buildings and the number of occupants provides more robust insights 
for estimating energy consumption. This strategic shift leads to the development of OEL. 
This innovative approach aids policymakers by offering a more predictable and scalable 
tool for estimating future energy consumption needs. In contrast to the granular focus of 
the bottom-up approach, the top-down strategy used to estimate energy consumption 
simplifies the development of OEL patterns. These patterns can be effectively tailored 
based on age, gender, life period, perceptions of indoor environment quality (IEQ), and 
the number of occupants in the same indoor environments. 

OEL represents a transformative advancement over traditional methods, providing 
a framework that allows for the standardisation of energy consumption estimates across 
diverse populations and building types. This model not only enhances the accuracy of 
predictions but also supports the implementation of energy policies that can dynamically 
adjust to changes in occupant behaviour and building characteristics. 

Although the focus on residential buildings might appear to limit the model’s 
broader applicability, this targeted scope underscores the unique challenges and ad-
vantages of OEL within a highly variable domestic environment. Unlike commercial or 
institutional settings—where occupant turnover, schedules, and responsibilities can vary 
significantly—the residential context highlights how personal habits, cultural factors, and 
household compositions critically influence energy use. At the same time, these conditions 
reveal the potential limitations of OEL, given that daily routines in homes are less stand-
ardised. Moreover, because residents generally pay their own utility bills, they tend to 
adopt more energy-conscious behaviours compared to occupants in other building types, 
such as offices where utility costs are typically covered by owners. Additionally, social 
norms in residential settings are usually less stringent, allowing occupants greater free-
dom in their actions. Furthermore, residential buildings outnumber other types, making 
them a prime focus for occupant-centred energy research. By concentrating on residences, 
the OEL approach captures a wide range of occupant-driven variables, offering deeper 
insights into how nuanced behaviours shape overall consumption patterns. Future inves-
tigations could therefore examine the extension of the OEL framework to other building 
types, while retaining its adaptability to the specific behaviours, schedules, and usage pat-
terns inherent in each context. 

From a policy perspective, the introduction of occupant energy labelling (OEL) pro-
vides an opportunity to integrate occupant-focused insights into frameworks such as 
building codes, incentive programs, and energy-saving campaigns. By capturing how in-
dividuals or household groups consume energy, OEL may support more refined strate-
gies that motivate behavioural change and complement existing technology-centric 
measures. At the same time, these potential advantages must be weighed against privacy 
considerations, as labelling occupants based on their energy use may raise concerns re-
garding data collection and user consent. Ensuring that OEL implementations follow es-
tablished global standards for data protection—through anonymisation practices, clear 
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communication about data handling, and transparent consent procedures—would help 
maintain public trust. Striking an appropriate balance between leveraging occupant-spe-
cific information for policy gains and preserving individual privacy can position OEL as 
a responsible and effective tool in global energy efficiency efforts. 

6. Limitations 
This research is subject to several limitations. Accurately capturing the impact of oc-

cupants on energy consumption requires further studies supported by more granular 
data. Additionally, these datasets should be tested using various simulation tools across 
different geographic locations and climatic regions over extended periods. Such an ap-
proach would enable a more precise understanding of how individual behaviours influ-
ence energy consumption under varying conditions. A comprehensive understanding of 
energy consumption dynamics also necessitates detailed investigations into occupants’ 
behavioural patterns and specific energy usage habits. Moreover, indoor environmental 
quality (IEQ) should be examined, as it plays a critical role in occupant comfort, which, in 
turn, influences energy-related decisions. These studies would provide deeper insights 
into the interaction between occupant behaviour and energy efficiency strategies, foster-
ing more effective interventions. 

It is important to note that this research does not focus on presenting numerical out-
comes from simulations. Instead, it aims to explore whether OEL can be achieved through 
statistical analysis of existing data. As such, this study should be regarded as an initial 
step toward developing a structured framework for OEL, laying the groundwork for more 
advanced research in the future. 

7. Future Work 
As occupant behaviour is inherently dynamic and influenced by a range of cultural, 

climatic, and temporal factors, the occupant energy labelling (OEL) model must continu-
ously evolve to remain robust and widely applicable. Accordingly, the following avenues 
of future work are outlined to address additional complexities, validate the model in di-
verse contexts, and ensure its practicality for policymakers and industry stakeholders. 

Expanding datasets and climatic contexts: To enhance the universality of the occu-
pant energy labelling (OEL) model, future studies must be conducted and should include 
data from multiple climatic zones and diverse cultural backgrounds. This broader dataset 
is expected to capture varying thermal preferences, cultural habits, and lifestyle factors, 
thereby improving the model’s adaptability and robustness. 

Long-term behaviour analysis: Although the current study provides valuable in-
sights into occupant behaviour, long-term and historical data collection needs to be prior-
itised in future work. Extended datasets can help identify enduring trends, seasonal vari-
ations, and the impact of major life events on occupant energy consumption patterns. 

Validation and predictive capabilities: While the proposed framework and simula-
tions offer promising outcomes, further research is needed that involves validating the 
model with real-case scenarios to verify its predictive accuracy. Such real-world valida-
tion will enhance the OEL model’s reliability and offer concrete evidence of its practicality 
in actual residential settings. 

Integration of indoor environmental quality variables: Indoor environmental quality 
(IEQ) factors, including air quality, lighting, thermal comfort, and acoustics, significantly 
shape how occupants behave and use energy within a dwelling. Comfort conditions are 
highly subjective: even when common guidelines exist, each individual’s perception of 
temperature, airflow, or lighting levels can vary widely. In households where multiple 
people share the same space, thermal settings and other comfort parameters often adapt 
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to the most vulnerable member, for example, a family may heat a room more than usual 
to accommodate an infant’s comfort needs, inadvertently increasing overall energy usage. 
Moreover, location-based considerations such as the dwelling’s orientation, surrounding 
noise levels, and natural daylight availability can further influence occupant behaviour. 
Visual comfort and acoustic privacy, for instance, may lead occupants to modify window 
positions, blinds, or partitions, each affecting energy consumption patterns. 

Recent global events, including a pandemic, have highlighted the importance of per-
sonal space and indoor air quality in safeguarding occupants’ health and well-being. As 
individuals spend longer periods indoors, whether working, studying, or isolating, ven-
tilation practices and occupant density both become critical factors in shaping energy con-
sumption, comfort, and safety. Therefore, future iterations of the OEL model must inte-
grate these multifaceted IEQ variables, not only to provide a more comprehensive under-
standing of behaviour-driven energy use but also to ensure that occupant-centric inter-
ventions prioritise health, comfort, and overall quality of life. 

Policy and industry applications: Beyond academic discourse, ongoing research 
needs to explore diverse pathways for integrating the OEL model into policy frameworks 
and real-world building practices to drive occupant-centred energy efficiency initiatives. 
One potential avenue lies in developing standardised guidelines for occupant labelling 
that can be systematically adopted in building codes, incentive programs, and sustaina-
bility certifications. By establishing clear benchmarks and thresholds, the OEL model 
could guide policymakers in devising occupant-focused standards complementary to tra-
ditional building performance requirements while recognising occupant variability. 
Building practitioners could then leverage OEL metrics in designing or retrofitting resi-
dential spaces, tailoring energy systems and operational strategies to different occupant 
groups. Furthermore, incentive mechanisms such as tax rebates or reduced utility tariffs 
could be aligned with OEL-based ratings, rewarding households that achieve or maintain 
efficient occupant labels, while utilities or local governments might offer tiered benefits or 
targeted outreach programs to occupants identified as high energy users. Over time, wide-
spread adoption of OEL metrics could also inform consumer choices in the real estate 
market, where potential buyers or renters would have access to occupant-centric effi-
ciency data, thus fostering a competitive environment for occupant-friendly designs. Ul-
timately, expanding OEL into policy and industry realms aims not only to formalise oc-
cupant-focused labelling in regulations but also to create synergy among various stake-
holders, policymakers, building owners, occupants, and utility companies, in adopting 
data-driven and behaviourally informed solutions for sustainable living. 

Further real-case studies: Lastly, repeated and diversified real-case studies must be 
incorporated in upcoming research to validate the model’s accuracy and practicality in 
various housing types and demographic profiles in different cultures. These case studies 
will help refine the OEL framework and potentially unveil context-specific best practices 
for reducing residential energy consumption. This will also help to understand long-term 
trends in occupant behaviour. 

8. Conclusions 
Energy consumption in buildings results from the dynamic interaction between oc-

cupants and the built environment, with both occupant behaviour and household charac-
teristics playing critical roles. Given the diversity of occupant behaviour, labelling energy 
consumption solely at the individual level may not capture this complexity. Instead, col-
lective labelling, such as for families or groups of cohabitants, or households, can provide 
more accurate assessments of energy consumption patterns. 

The intensity and variability of energy consumption are significantly influenced by 
the number of occupants in a household. Furthermore, energy use varies not only with 
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the number of occupants but also across different consumption activities. While this re-
search does not directly address the influence of personal background, culture, geogra-
phy, or life stages, these factors undeniably shape consumption patterns. Individuals’ en-
ergy use evolves throughout their lives, suggesting that future research should account 
for these changes to refine occupant energy models. 

This study represents an early attempt to explore whether OEL is feasible. Although 
it is based on limited data and statistical analysis, the findings suggest several outcomes 
for future development. A more advanced OEL framework should integrate behavioural 
insights, demographic statistics, and indoor environmental quality (IEQ) variables to re-
flect the diversity of occupant behaviour and its impact on energy use. 

OEL has significant potential to correlate occupants with buildings, optimising en-
ergy management and promoting efficiency. This idea can also be extended by developing 
models applicable to urban settings, incorporating various occupant types and district-
wide dynamics. Finally, the research suggests that OEL might serve as a valuable metric 
for estimating total energy consumption across large groups, with immense potential for 
further development. However, as this study only provides an initial framework, much 
work remains to be performed to fully realise the potential of OEL. 

The final outcomes of the research are listed below: 

• Energy consumption in buildings results from the interaction between humans and 
buildings, heavily influenced by occupants. Therefore, occupant behaviour varies 
based on the different characteristics of the house. 

• Occupancy is not a singular concept. For this reason, groups of people living to-
gether, such as families, should be labelled collectively to accurately assess energy 
consumption. 

• Energy intensity and consumption rates fluctuate with the number of occupants. 
• The energy intensity associated with various consumption topics in residences may 

be affected by the number of occupants. 
• Although not directly explored here, factors such as personal background, culture, 

and geography significantly influence energy consumption patterns. 
• Although not directly explored here, a person’s lifetime can impact energy consump-

tion; the same individual may consume energy differently at various stages of life. 
• Although not directly explored here, OEL should take into account indoor environ-

mental quality IEQ variables for individual calculations. 
• OEL should consider statistics regarding the demographics and behaviours of indi-

viduals. 
• Decision tree analysis based on large datasets, such as TUS surveys, may help cluster 

occupants and enable decision makers to estimate the energy consumption break-
down of occupants according to their varying consumption patterns. 

• OEL may have potential to correlate occupants with buildings optimising energy 
consumption. 

Supplementary Materials: The following supporting information can be downloaded at 
www.mdpi.com/xxx/s1. 
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