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Abstract: Understanding the spatiotemporal evolution patterns and drivers of cropping
structures is crucial for adjusting cropping structure policies, ensuring the sustainability of
land resources, and safeguarding food security. However, existing research lacks sub-pixel
scale data on planting structure, where planted area data are mainly derived from manual
counting results. In this study, remote sensing technology was combined with geostatistical
methods to realize the spatiotemporal evolution of crop planting structure at sub-pixel
scale. Firstly, the spatial distribution of the multiple cropping structure in Henan Province
was extracted based on a mixed-pixel decomposition model, and spatiotemporal evolution
of the crop planting structure was analyzed using a combination of Sen’s slope estimator
and Mann–Kendall trend analysis, as well as centroid migration. Then, Pearson correlation
coefficients were calculated to explore the contribution of driving factors. The results
indicate the following: (1) from 2001 to 2022, the cropping structure in Henan Province
shows a slightly obvious increase. (2) The centroid of different cropping structures migrates
to the main production areas as a whole. (3) Among the driving factors, there was a positive
correlation with the labor force and a negative correlation with the urbanization rate. This
study provides new insights into the evolution of large-scale crop planting structures and
offers significant theoretical and practical value for sustainable agricultural development
and the optimization of agricultural planting structures.

Keywords: crop planting structure; mixed-pixel decomposition; evolution patterns; driving
factor; phenology

1. Introduction
Crop planting structures play a vital role in maintaining global food security and

offer critical information to assist governments in agricultural restructuring and water
resource management [1]. The planting structure denotes the yearly sequence and spatial
distribution of crops within an area or country over the course of a year [2]. This includes
spatial distribution information and cropping patterns such as continuous cropping, rota-
tion cropping, intercropping, and fallowing [3]. Analyzing the evolution characteristics and
driving factors of crop planting structures is vital for sustainable agricultural development,
which is of great significance in theoretical and practical implications for food security early
warning and assessment.

Currently, the primary methods for studying the spatiotemporal changes in crop
planting structures involve using multi-year statistical yearbook data and interpreting
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remotely sensed imagery [4]. The data for analyzing the evolution characteristics of
planting structures based on statistical data primarily come from the planting area and
yield data of administrative divisions in statistical yearbooks [5]. Jiang et al. analyzed
the spatiotemporal changes in crop planting structure across China over a 30-year period,
starting from 1985, based on county-level planting area statistics and concluded that
the cultivation of major crops in China has become increasingly concentrated and that
crop planting structures have been simplified [6]. Deng et al. used spatial autocorrelation
analysis and descriptive statistical using provincial-level regional statistics to study changes
in the spatial distribution of grain production (including wheat, maize, and rice) in China
over a period of more than 30 years starting from 1978, in which the cultivation of wheat
and maize gradually clustered in the main production areas [7]. Li et al. analyzed the
impact of spatial shifts in cultivated land on grain crops in China by converting county-level
average grain crop yields and sown areas into pixel-level data with 1 km spatial resolution
data, and the results showed that built-up areas affected the reduction of cultivated land
and crop planting structures [8]. However, the distribution of agricultural planting in
China exhibits significant regional differences and is not primarily based on administrative
divisions. Although this method can obtain multi-year continuous results of planting
structures, the data on administrative divisions cannot accurately reflect the refined spatial
distribution characteristics of different planting structures over large areas [9].

With ongoing advancements in sensor technology, remote sensing offers efficient and
extensive coverage of ground surfaces, enabling effective extraction of planting structure
information within a large study area [9,10]. Chen et al. used moderate resolution imaging
spectroradiometer (MODIS) MOD09Q1 data to analyze trends in the crop planting structure
in the Yangtze River Basin in the past 20 years. They employed a combined method
of differential algorithms, spectral mutation algorithms, and threshold algorithms and
briefly analyzed the effects of irrigation and changes in policy and food prices on the
structure of food cultivation [11]. Guo et al. deciphered the crop planting structure through
remote sensing data from 2000 to 2020 in Qinghai Province, China, and explored the
driving mechanisms affecting the crop planting structure, such as economic, environmental,
and agricultural production conditions [12]. Although high-resolution, remotely sensed
imagery can provide detailed information on land cover types, their longer temporal
resolution and narrower swath width limit the applicability of extraction methods to
larger study areas [13]. Low-resolution, remotely sensed imagery covers a wide range of
areas, but low spatial resolution is challenging for detailed vegetation extraction in complex
landscapes. Moreover, the extraction accuracy and resolution at regional and national scales
do not meet the demands of refined mapping [14]. Affected by the imaging principles
and sensor influences, mixed pixels commonly exist in remotely sensed imagery [15,16].
Therefore, accurately and synchronously obtaining planting structure information over
large areas is crucial for studying the evolution characteristics and driving factors of
planting structures.

To address these concerns, this study aims to develop a sub-pixel scale analytical model
based on a mixed-pixel decomposition method to extract the crop planting structures in
Henan Province from 2001 to 2022. This model is used to analyze the evolutionary trends
and driving factors in crop planting structures. Specifically, the study includes the following
objectives: (1) to analyze the temporal evolution trends in crop planting structures in Henan
Province over 2001–2022; (2) to track the centroid migration of multiple crop planting
structures; and (3) to comprehensively consider and analyze the driving factors leading to
the evolution of multiple cropping structures under various conditions, including natural
factors, social factors, and agricultural production factors. By integrating remote sensing
technology and geostatistical methods, this study holds significant theoretical and practical
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value for understanding the distribution and evolutionary characteristics of regional crop
planting structures, providing a scientific basis for optimizing crop planting structures and
promoting sustainable agricultural development.

2. Materials and Methods
2.1. Study Area

Henan Province (110◦21′–116◦39′ E, 31◦23′–36◦22′ N), China, is located in the central
part of China and covers an area of 167,000 km2 [17]. The province consists of 18 cities, with
Zhengzhou as its provincial capital (Figure 1a) [18]. The topography of Henan Province is
high in the west and low in the east, and the terrain within the region is diverse, including
plains, basins, and mountains [19]. The central and eastern parts of the province are part
of the North China Plain, which accounts for more than 50% of the total area of Henan
Province (Figure 1b). The region has a continental monsoon climate transitioning from
the northern subtropical zone to the warm temperate zone, characterized by four distinct
seasons, simultaneous rain and heat, and complex and diverse climatic features. Over the
past 10 years, the average annual temperature in the province has ranged from 15.1 ◦C to
15.9 ◦C, and the average annual precipitation has ranged from 512.6 mm to 1129.1 mm [20].
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The vast plains provide Henan Province with a large amount of flat land, combined
with favorable climatic characteristics, making it a major agricultural province and a
significant grain producer in China. The main land-use type in the study area is crop land
(Figure 1c), primarily for growing crops like winter wheat, summer maize, and rice. Henan
Province features 15 major soil types, including cinnamon soil, fluvo-aquic soil, brown
soil, and yellow cinnamon soil. Notably, fluvo-aquic soil, predominantly distributed across
river valleys and intermountain basins, constitutes more than 30% of the total soil area [21].
Henan Province accounts for only 1.73% of China total land area but houses approximately
7% of the national total population, and 10% of the country’s food production is grown
there [22]. For ten consecutive years, Henan’s grain output has exceeded 60 million tons,
with a sown area of over 14.7 million hectares, playing a crucial role in China’s food
security [23].

2.2. Data Sources and Descriptions

Long time-series normalized difference vegetation index (NDVI) datasets in this
study are used for planting structure extraction based on the mixed-pixel decomposition
model. The NDVI data are obtained from the MODIS MOD13Q1 NDVI composite product,
with a temporal resolution of 16 days and a spatial resolution of 250 m. Annual average
temperature and annual cumulative precipitation were calculated and downloaded from
Google Earth Engine (GEE). In particular, the annual average temperature was derived
from the daily temperature values provided by MODIS MOD11A1 product, while the
cumulative annual precipitation was obtained by summing daily precipitation data from
the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) [24]. Social and
agricultural production factors were sourced from the China Statistical Yearbook and the
Henan Statistical Yearbook. Detailed information on the multiple source data is provided in
Table 1. The time span for all of the above data ranges from 2001 to 2022.

Table 1. Data description and source used in the study.

Data Type Data Description Units

NDVI (normalized
difference vegetation

index) data
MOD13Q1 NDVI

Natural factors
Annual average temperature (AAT) ◦C

Annual cumulative precipitation
(ACP) mm

Population factors

Urbanization rate (UR) %
Sex ratio (SR) Female = 100

Natural growth rate (NGR) ‰
Resident rural population (RRP) 10,000 persons

Economic
factors

Gross domestic product (GDP) 100 million yuan
Disposable income of rural

residents (DIR) 10,000 yuan

Agricultural production
factors

Consumption of chemical fertilizers
(CCF) 10,000 tons

Total power of agricultural
machinery (TPAM) 10,000 kW
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2.3. Research Methodology

The primary framework for analyzing the evolution trends and driving factors, at
a sub-pixel scale, of planting structure information of main grain crops is provided in
Figure 2. Firstly, based on the phenological differences of various crops in the time series
profiles, the mixed-pixel decomposition method of N-FINDR [25] combined with the fully
constrained least squares (FCLS) [26] method was used to extract the spatial distribution
information of crop planting structures in Henan Province from 2001 to 2022. Secondly,
by calculating the cropping index (CI), the dynamic evolution of crop planting structures
over 22 years was investigated. Finally, the correlation between the cropping index and
ten driving factors was analyzed from the perspectives of natural factors, economic factors,
population factors, and agricultural production factors.
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2.3.1. The Mixed-Pixel Decomposition Method

This study utilized MODIS MOD13Q1 NDVI products to extract the spatial distri-
bution of various crop planting structures. First, a time series data cube was constructed
based on the original data of the study area, and the Savitzky–Golay filtering method [27]
was used to reconstruct the data. Among them, the annual time series cube data consist
of 23 periods of MOD13Q1 NDVI in one year [28]. Next, principal component analysis
(PCA) [29] was used to process the constructed time series dataset to determine the number
of “phenological endmembers” and reduce the dimensionality. Subsequently, the N-FINDR
method combined with the FCLS algorithm was used to extract the endmembers of differ-
ent planting structures, generating abundance spatial distributions for each phenological
endmember. Finally, the accuracy of the extraction results was verified using a confusion
matrix based on high-resolution remotely sensed imagery. The overall classification accu-
racy of this method was 85.65%, with a Kappa coefficient of 0.82. Yang et al. provided the
specific steps for sub-pixel extraction of crop planting structures [28].
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2.3.2. Centroid Migration Model

The centroid is the geometric center of one or more polygons; it can be used to
determine the specific location of a certain land cover type in space and is represented by
Xc and Yc, respectively [30,31]. The centroid migration model, on the other hand, tracks
the changes in the spatial and temporal patterns of multiple cropping structures in Henan
Province by determining the location of the centroid of a certain cropping structure and its
changing trend. In addition, the spatial and temporal changes of the centroid help in the
study of the impacts of natural and social factors on the planting structure. The formula for
calculating the centroid is as follows:

Xc =

n
∑

i=1
xiai

n
∑

i=1
ai

(1)

Yc =

n
∑

i=1
yiai

n
∑

i=1
ai

(2)

where n is the number of polygons, xi and yi are the coordinates of the centroid of each
polygon, respectively, and ai is the weight represented by the centroid of each polygon,
which is also the area of that planting type in that polygon. Among them, the calculation of
the centroid in this paper takes the municipal boundaries of Henan Province as the polygon
for calculation.

2.3.3. Sen + Mann–Kendall Trend Test

The Sen’s slope estimator is a nonparametric statistical computational method for
estimating the skewed trend in a long time series, which is highly robust and efficient to
compute [32]. The β of Sen’s slope is calculated as follows:

β = Median
(Xj − Xi

j − i

)
, ∀j > i (3)

where Xi and Xj are the ith and jth values in the time series, respectively, and Median(*)
is the median function. According to Equation (1), a value of β less than 0 indicates a
decreasing trend and vice versa.

The Mann–Kendall test is an effective nonparametric statistical method for analyzing
trends in time series data. The method does not require all data to follow a normal
distribution and is not significantly affected by missing data and data anomalies in the time
series, making it suitable for analyzing trend changes in long time series. The test statistic S
value is calculated as follows:

S =
n−1

∑
i=1

n

∑
j=i+1

sgn
(
Xj − Xi

)
(4)

where sgn(*) is a sign function. The formula is as follows:

sgn
(
Xj − Xi

)
=


−1, Xj − Xi < 0
0, Xj − Xi = 0
1, Xj − Xi > 0

(5)



Sustainability 2025, 17, 1227 7 of 20

Since the length of the time series is greater than 10, the test statistic Z is calculated
as follows:

Z =


S−1√
var(S)

, S > 0

0 , S = 0
S+1√
var(S)

, S < 0
(6)

where var(*) is the variance function. The formula is as follows:

var(S) =


1

18 [n(n − 1)(2n + 5)] , if data unique

1
18

[
n(n − 1)(2n + 5)−

g
∑

p=1
tp
(
tp − 1

)(
2tp + 5

)]
, ifdata not unique

(7)

where n is the number of time series data, g is the number of tied groups data, and tp is the
number of repetition points in the pth tied group.

The Sen’s slope estimator, while good at reducing noise interference, is limited in its
ability to determine the significance of the temporal trends. However, the Mann–Kendall
method does not require data to follow a specific temporal distribution, is not sensitive
to outliers, and can be supplemented by the insufficiency of Sen’s slope estimator to
achieve significance testing of temporal trends. As a result, the combination of the Sen’s
slope estimator and the Mann–Kendall test enables effective prediction of sequence trends
through significance testing. This method is widely used for analyzing changing trends in
long time series data such as temperature, precipitation, and vegetation index [33,34]. In
this paper, the significance level α = 0.05 is used. Z values greater than 1.96 indicate that
the trend passes 95% significance tests. Five classifications were obtained from the Sen’s
slope estimator values (β) and significance test statistics (Z), as shown in Table 2.

Table 2. Sen + Mann–Kendall test trend categories.

Sen’s β |Z| Trend Features

β > 0.001 1.96 < Z Significant increase
Z ≤ 1.96 Weak increase

−0.001 ≤ β ≤ 0.001 Z No change

β < 0.001 Z ≤ 1.96 Weak decrease
1.96 < Z Significant decrease

2.3.4. Pearson’s Correlation Coefficient

The Pearson’s correlation coefficient is a statistical measure used to quantify the degree
of linear correlation between two elements [35]. It is usually denoted by r, and its theoretical
range is between −1 and 1. A value of 1 for r indicates a positive correlation, meaning that
one element increases as the other increases. Conversely, −1 is a negative linear correlation,
while 0 indicates that there is no linear relationship between the two. The formula for r is
shown below:

r =

n
∑

i=1

(
Xi − X

)(
Yi − Y

)
√

n
∑

i=1

(
Xi − X

)√(
Yi − Y

) (8)

where Xi and Yi are the data values of variables X and Y, respectively; n is the number of
data for X or Y, which in this paper is the number of years in the time series; and X and Y
are the average of all data for variables X and Y, respectively. What is more, the correlations
were tested for significance, denoted by p and labeled with *.
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3. Results
3.1. Spatial Distribution of Different Crop Planting Structures

Based on the mixed-pixel decomposition method, the spatial distributions of paddy
rice, rapeseed–cotton, winter wheat–summer maize, and winter wheat–small oilseeds were
extracted in Henan Province from 2001 to 2022. Figure 3 shows the spatial distribution
of abundance values for paddy rice. Paddy rice cultivation in Henan Province primarily
consists of single-season crops, with the main production areas located in the southern
part, along the Yellow River, and at the edges of mountainous regions. Xinyang City is a
major rice-producing city in Henan Province. In northern Henan, rice is mainly planted
in the middle and lower reaches of the Yellow River, where water resources are abundant.
In 2001, the abundance of rice fields was notably higher in the southern region, with a
limited distribution along the Yellow River; however, the overall abundance remained
relatively low. From 2004 to 2010, there was a slight expansion in the extent of paddy fields,
particularly in the southern region where the intensity of cultivation increased and the
area under cultivation expanded. Between 2013 and 2016, the planting density in both
the southern region and along the Yellow River continued to rise, leading to increasingly
contiguous blue areas. Additionally, the abundance near the southern mountain margins
also increased, suggesting that rice cultivation had extended into more marginal but suitable
areas. By 2019–2022, paddy planting in Xinyang approached its peak abundance, while the
intensity of cultivation in the Yellow River basin further intensified. Some northern regions
also saw an increase in cultivation intensity, as indicated by the deepening blue color.
However, there has been no significant expansion in rice cultivation into mountainous
areas, indicating that geographical constraints continue to limit paddy planting.
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Figure 3. Paddy rice abundance distribution in Henan Province over multiple years.

Figure 4 shows the spatial distribution of abundance values for rapeseed–cotton.
The area of rapeseed–cotton cultivation is relatively small compared to other planting
patterns in the province and is primarily distributed in the southern and western regions.
Between 2001 and 2013, there was a notable increase in the cultivation of canola seed–cotton,
particularly in the southern region. This trend suggests an expansion or intensification
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in planting activities. From 2016 to 2022, the spatial distribution of canola seed–cotton
cultivation remained largely stable, with the southern and western regions continuing to be
predominant. However, no significant expansion into other areas was observed during this
period, indicating a stabilization of canola seed–cotton cultivation within these key regions.
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Figure 4. Rapeseed–cotton abundance distribution in Henan Province over multiple years.

Figures 5 and 6 show the spatial distribution of abundance values for winter wheat–
summer maize and for winter wheat–small oilseeds, respectively. Winter wheat is the
main crop in Henan Province during the winter, while corn is the primary crop during the
summer. The spatial distribution of winter wheat–summer corn covers all prefecture-level
cities in Henan. The spatial distribution of this cropping pattern has remained largely
stable from 2001 to 2022, underscoring the predominant and consistent role of the winter
wheat–summer maize rotation in Henan’s agricultural landscape. Small oilseeds, such as
soybeans and peanuts, are also major summer crops in Henan, and their planting pattern
rotates with winter wheat due to differences in planting phenology. The winter wheat–
small oilseeds planting areas are mainly concentrated in the central and eastern plains of
the province, including prefecture-level cities like Zhumadian, Nanyang, and Shangqiu. In
terms of planting areas, the acreage of corn and small oilseeds in the summer is generally
complementary, as crop prices can influence farmers’ planting preferences. Between 2001
and 2013, the cultivated area for winter wheat and small oilseed crops experienced a
substantial expansion, particularly in the eastern plains region. From 2016 to 2022, the
spatial distribution of these crops has tended to stabilize, with high-density cultivation
areas persisting in the central and eastern plains. This suggests that the land use within
this agricultural system has undergone significant optimization.
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3.2. Centroid Migration for Different Crop Planting Structures

Analyzing the centroids and migration patterns of different crop planting structures
provides insight into the planting habits and main grain areas within the study region. The
migration trajectories can elucidate the relationship between crop planting structures and
driving factors. In this study, the cumulative abundance values of different crop planting
structures were calculated at the prefecture-level city scale in Henan Province, serving as
the weights for the centroid. The centroids and migration patterns of different cropping



Sustainability 2025, 17, 1227 11 of 20

structures were then determined based on the weights. Figure 7 shows the centroids and
their migration trajectories for various crop planting structures from 2001 to 2022.
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As shown in Figure 7, the centroids of the four crop planting structures are either
within or near cities with larger planting areas. The centroid of paddy rice is located in
the southeast of Zhumadian and close to Xinyang, with the geographic centroid of 114.43
E/32.84 N in 2001. Starting in 2017, the centroid (114.65 E/32.51 N) started to migrate to
Xinyang, reflecting its status as a major rice-growing city. The migration trajectory of the
paddy rice centroid continues to move towards the southeast of Henan Province, indicating
a reduction in rice planting in other prefecture-level cities while Xinyang continued to
increase. In 2001, the centroid of winter wheat and summer maize was located within
Xuchang (113.89 E/34.22 N), which is also near the center of Henan Province. This suggests
that winter wheat and summer maize are widely planted across various prefecture-level
cities in Henan Province. However, the centroid is slightly eastward due to the mountainous
terrain in the west and the predominance of rice planting in the east. Although the migration
trajectory lacks regularity, it shows a trend of shifting towards the eastern part of Henan
Province, driven by the increasing planting area of winter wheat and summer maize in
that region year by year. The centroid (114.01 E/33.43 N) of the rapeseed and cotton crop
planting structure was located in Zhumadian in 2001 and began to migrate towards the
southwest in a spiral pattern. This migration indicates a lower proportion of rapeseed
and cotton planting compared to rice in Xinyang, resulting in a more northerly centroid
compared to rice. The centroid of the winter wheat and small oil crop structure was located
in Luohe in 2001 (114.03 E/34.00 N) and had been continuously shifting southwards. This
shift is attributed to Zhumadian and Nanyang being major production areas for small
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oilseed crops such as peanuts and soybeans. The centroid migration shows a trend of
transferring to specific agricultural areas in Henan Province, which may mean that the
integration or intensification of crop planting structure in Henan Province becomes higher.

3.3. Evolution Rrend for Different Crop Planting Structures

Based on the crop planting structure information of several major grain crops, the
cropping index was calculated. The cropping index calculation assigns weights to single-
season and double-season crop categories based on their abundance. Using the Sen’s slope
estimator combined with the M-K test method and the trend analysis criteria in Table 1, a
trend analysis and significance of the cropping index for Henan Province from 2001 to 2022
was conducted.

Figure 8 shows the trend changes and distribution of the cropping index in Henan
Province over the 22 years starting from 2001. The overall trend shows an increase, with
the areas of the cropping index increasing significantly and outnumbering those with a
decrease. Specifically, areas with a weak increase account for nearly 64%, while those with
a weak decrease make up 14.9%, and regions with no change are minimal: numerically
close to 0%. The regions with a decrease are mainly distributed around urban areas
and some mountainous regions in Henan Province. This is because each year’s data
are masked according to cultivated land classification data, and relevant endmembers
are added during the unmixing process to prevent interference from other land cover
types. The results indicate that cultivated land around cities decreases with urbanization,
leading to a significant decrease in the cropping index, with a significant decrease at
2.19%. Additionally, the high proportion of weak increases suggests that farmers’ planting
intentions and habits have remained largely unchanged. Henan Province’s cropping
structure continues to be dominated by single-season rice and double-season winter wheat
and summer crops in rotation.
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3.4. Analysis of Crop Planting Structure Driving Factors

Pearson’s correlation coefficient was conducted between the cropping index and 10 fac-
tors, as shown in Figure 9. Among the natural factors, the cultivation index (CI) showed
different correlations with annual average temperature (AAT) and annual cumulative
precipitation (ACP). Among them, the correlation of CI with annual average temperature
showed a negative correlation (−0.46), while it showed a weak positive correlation (0.12)
with annual cumulative precipitation. Meanwhile, the mean annual temperature passed a
very high level of significance test.
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Figure 9. Pearson’s correlation coefficient of cropping index and 10 driving factors. The color and
ellipses of the elliptical glyphs denote the magnitude and the direction of the relationship. The
shorter the short axis, the closer the correlation coefficient is to 1 and vice versa. The bluer the color
is, the stronger the positive correlation. The asterisk indicates the significance level of the correlation
(* p < 0.05; ** p < 0.01; *** p < 0.001). CI, cropping index; AAT, annual average temperature; ACP,
annual cumulative precipitation; UR, urbanization rate; SR, sex ratio; NGR, natural growth rate;
RRP, resident rural population; CCF, consumption of chemical fertilizers; TPAM, total power of
agricultural machinery; GDP, gross domestic product; DIR, disposable income of rural residents.

The social factors include demographic and economic factors, where the sex ratio
(SR), natural growth rate (NGR), and resident rural population (RRP) showed positive
correlations with the replanting index, while those that showed negative correlations were
urbanization rate (UR), gross domestic product (GDP), and disposable rural income (DIR).
The drivers that are positively correlated are all closely related to the main rural labor force
because the main population in agricultural production is adult males. The drivers related
to the urbanization rate, on the other hand, show a negative correlation, and along with the
increase in the urbanization rate, the replanting index shows a decreasing trend, which is in
line with the real situation. In addition, the natural growth rate, resident rural population,
gross product, and rural and disposable income reached a very high significance test level.
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Agricultural production factors, including consumption of chemical fertilizers (CCFs)
and total power of agricultural machinery (TPAM), showed moderate negative correlations,
with correlation coefficients of −0.27 and −0.33, respectively, and both of them exhibited
moderate test levels. The results indicated that the reduction in total mechanized power
and agricultural fertilizer use was accompanied by an increase in the replanting index,
indicating that farmers had to improve their personal income through their labor.

4. Discussion
4.1. Evolution Trend Test and Driver Analysis at the Sub-Pixel Scale

Trend analysis and driver analysis at the sub-pixel scale crop planting structure are
the main highlights of this study. Firstly, compared to the narrow swath and low temporal
resolution of high spatial resolution images and the severe mixed-pixel problem of low-
spatial-resolution images, MODIS balances the spatial and temporal resolution well, making
it widely used for large-area crop planting structure extraction [36]. Secondly, mixed pixels
are prevalent in remotely sensed imagery, affecting the accuracy of crop planting structure
extraction [37]. The overall accuracy of MODIS mixed-pixel decomposition methods using
a linear mixture model exceeds 85%, which is higher than that achieved by the MODIS
decision tree method [28]. Additionally, China’s agricultural model is predominantly
smallholder family farming characterized by a small scale, complex cropping structures,
and high subjectivity in planting decisions [38,39]. This increases the difficulty of extracting
cropping structures. Therefore, using a mixed-pixel decomposition method enables the
simultaneous extraction of crop structure information over large areas. Furthermore, the
differences and separability in the NDVI time series of different crops help to improve the
accuracy of crop structure extraction [40,41].

4.2. Driving Factors’ Selection and Changes in Crop Planting Structure

Several factors influence crop planting patterns, including natural resources, mete-
orological conditions, farming practices, and socio-economic factors [42,43]. Figure 10
shows the natural driving factors in Henan Province over 22 years, including the annual
mean temperature and annual cumulative precipitation. These data were primarily de-
rived from remotely sensed imagery and were subjected to linear fitting analysis. Due to
varying meteorological conditions across different years, Henan Province’s annual mean
temperature and annual cumulative precipitation data exhibit fluctuations. The annual
mean temperature ranges between 14 ◦C and 20 ◦C. Specifically, the lowest annual mean
temperature was 14.65 ◦C in 2008, while it exceeded 19 ◦C in 2022. The annual cumulative
precipitation shows an upward trend with the linear fitting analysis, fluctuating between
600 mm and 1100 mm. The minimum and maximum precipitation values were recorded
in 2001 and 2021, respectively. Studies have suggested that global warming impacts crop
planting structure changes, constituting a new challenge for the agricultural sector [42].

The level of regional economic development and farmers’ incomes can influence
changes in the crop planting structure [12]. Figure 11 shows the economic driving factors.
Both the gross domestic product and rural disposable income show a significant upward
trend. The gross domestic product of Henan Province increased from CNY 553.301 billion
to CNY 6134.505 billion, more than tenfold, from 2001 to 2022, indicating rapid economic
development. Rural disposable income also increased rapidly, rising from an average of
CNY 2000 per capita to CNY 18,697 over 22 years, nearly a tenfold increase in income.
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With the continuous advancement in urbanization, the continuous improvement in
economic development levels, and the increase in the floating population, the permanent
rural population has decreased year by year. Thus, population change is one of the drivers
of crop planting structure [44]. Figure 12 shows population-related driving factors. With
the rapid economic development of China and the influence of social and governmental
policies, the results of the linear fitting curves indicate that the urbanization rate in Henan
Province has shown a significant upward trend, while the sex ratio and natural growth
rate have generally shown a downward trend in the linear fitting. From 2001 to 2022,
the urbanization rate increased from 24.43% to 57.07%, indicating a clear progression in
urbanization. Due to the influence of social and cultural factors and agricultural production
capacity, there is a gender imbalance in China, with the sex ratio indicating a slight male
predominance in Henan Province; however, this trend is declining. Particularly in 2022,
the gender ratio plummeted, with the sex ratio at 100.77 (female = 100). As birth rates
decline, healthcare improves, and the population ages, the natural growth rate has shown
a noticeable decline, especially since 2016. By 2022, the natural growth rate was −0.08,
marking the beginning of an era of negative population growth in Henan Province.

Pesticides, fertilizers, and mechanical appliances required in the agricultural produc-
tion process may affect crop planting structure [45,46]. Figure 13 shows the agricultural
driving factors, including the consumption of chemical fertilizers and the total power of
agricultural machinery. The consumption of chemical fertilizers follows an initial increase
and then a decline, while the total power of agricultural machinery exhibits a phased
development pattern characterized by a sudden increase, followed by a decrease, and then
another increase. The minimum consumption of chemical fertilizers was 4.4173 million
tons in 2001, peaking at 7.16 million tons in 2015. This subsequent decline is attributed
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to the implementation of the “Zero Growth Action Plan for Fertilizer Use by 2020” and
the “Zero Growth Action Plan for Pesticide Use by 2020” by the Ministry of Agriculture
and Rural Affairs of the People’s Republic of China starting in 2015. With the advance-
ment and widespread adoption of agricultural machinery technology in China, the total
power of agricultural machinery has continuously increased since 2001, reaching a peak of
117.1008 million kilowatts in 2015. Despite a significant decline in 2016, the total power
has continued to increase thereafter. Some studies have shown that the total power of
agricultural machinery and pesticide use are the main factors affecting the pattern of grain
production in counties in Henan Province [47].
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4.3. Uncertainty and Limitations

Although this study provided an analysis of evolutionary trends and drivers of plant-
ing structure information at the sub-image metric scale, there may still be some uncertainties
and limitations. Changes in planting structure are the result of a combination of multiple
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driving factors, including policy, technological advancements, social demand, economic
efficiency, and natural conditions [48]. Although this study selected ten driving factors,
the selection is limited, and some factors interact with each other. Therefore, more drivers
should be considered in further research, for example, irrigation water consumption, and
effective irrigation areas. Policy and unexpected natural disasters are also important factors
in adjusting planting structure, and these factors are difficult to quantify. However, in this
study, we conducted linear autocorrelation analysis on different driving factors, which to
some extent reflects the impact of government policy adjustments on planting structure.
For example, the minimum amount of agricultural fertilizer was 4.41 million tons in 2001,
reaching a peak of 7.16 million tons in 2015. Because the Ministry of Agriculture and Rural
Affairs of the People’s Republic of China promulgated the “Zero Growth Action Plan for
Fertilizer Use by 2020” in 2015 [49,50], the amount of agricultural fertilizer began to decline.
Although this study achieved good overall accuracy in extracting the spatial distribution
of cropping patterns at the sub-pixel scale in Henan province, future advancements in
high-resolution remote sensing technology will improve the accuracy of extracting crop-
ping pattern information over large areas, enabling more accurate analysis of evolution
trends and driving factors. Furthermore, given that the linear mixing model is a mathemat-
ical framework, it inherently lacks the capability to precisely characterize the abundance
values associated with diverse crop planting patterns. In subsequent research, we aim to
further employ deep learning methodologies for the sub-pixel extraction of crop planting
structures, including but not limited to GACNet (generate adversarial-driven cross-aware
network) [51], CVANet (cascaded visual attention network) [52], and CATNet (cascaded
attention transformer network) [53].

5. Conclusions
This study proposed the mixed-pixel decomposition method to extract spatial distri-

bution information of planting structure at sub-pixel scales from 2001 to 2022, exploring the
dynamic evolution of cropping patterns in Henan Province and analyzing the correlation
between multiple cropping index and 10 driving factors. The main conclusions are as
follows: (1) the cropping index of the planting structure in Henan Province shows an
overall increasing trend, with a slight increase of nearly 60%. With the urbanization process,
the areas with a decreased cropping index in planting structure are mainly distributed
around urban areas. (2) The centroid of cropping patterns in various regions gradually
migrates to the main production areas with local characteristics, where spatial aggregation
was obvious. (3) Among the driving factors affecting the cropping index, natural growth
rate and the resident rural population show a significant positive correlation, while ur-
banization rate, gross domestic product, and disposable income of rural residents show a
significant negative correlation. This study has important guiding significance for adjusting
the planting structure at national and local levels, and it helps dynamically analyze food
security and predict the impact of global uncertainties on food security.
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