The Potential Use of Agroforestry Community Gardens as a Sustainable Import-Substitution Strategy for Enhancing Food Security in Subarctic Ontario, Canada
Abstract
:1. Introduction
1.1. Food Security in Sub-Arctic First Nations
1.2. Subarctic Agriculture
1.3. Agroforestry
1.4. Study Objectives
2. Methods
2.1. Case Study Area: Fort Albany First Nation
2.2. Agroforestry Design
2.3. Agroforestry Site Selection
2.4. Plant Species Composition
2.5. Soil Sampling Design
2.6. Soil Sample Collection Methods
2.7. Soil Analysis
2.8. Data Analyses
3. Results
3.1. Species Composition
Site | Dominant Vegetation | Other Vegetation | ||
---|---|---|---|---|
% † | Species Name | % † | Species Name | |
A | 90 | Agrostis Stolinifera ‡ (creeping bentgrass) Symphyotrichum lanceolatum (panicled aster) Galeopsis tetrahit ‡ (hemp nettle), Erysimum cheiranthoides ‡ (wormseed) Cirsium arvense ‡ (Canada thistle) | 10 | Solidago spp. (goldenrod) Taraxacum officianales ‡ (dandelion) Symphyotrichum novae-angliae (New England aster) Chenopodium album ‡ (pigweed) Vicia cracca ‡ (cow vetch) |
B | 80 | Symphyotrichum lanceolatum (panicled aster) Cirsium arvense ‡ (Canada thistle) | 20 | Solidago spp. (goldenrod) Vicia cracca ‡ (cow vetch) Galeopsis tetrahit ‡ (hemp nettle) Erysimum cheiranthoides ‡ (wormseed) Taraxicum officianales ‡ (dandelion) |
C | Symphyotrichum lanceolatum (panicled aster) Solidago spp. (goldenrod) Taraxicum officianales ‡ (dandelion) Vicia cracca ‡ (cow vetch) Cirsium arvense ‡ (Canada thistle) Agrostis Stolinifera ‡ (creeping bentgrass) Eupatorium maculatum (spotted Joe-Pye weed) | N/A |
3.2. Potential Productivity of Garden Area
Soil Property | Site | n | Minimum | Mean | Maximum | Optimal Value |
---|---|---|---|---|---|---|
Sand (%) | Site A | 3 | 16.40 | 19.03 | 21.50 | 40 |
Site B | 3 | 17.50 | 19.80 | 22.30 | ||
Site C | 3 | 13.30 | 17.23 | 22.80 | ||
Silt (%) | Site A | 3 | 59.20 | 66.80 | 71.30 | 40 |
Site B | 3 | 61.10 | 62.10 | 62.70 | ||
Site C | 3 | 65.80 | 66.40 | 67.60 | ||
Clay (%) | Site A | 3 | 10.90 | 14.17 | 19.30 | 20 |
Site B | 3 | 15.00 | 18.10 | 20.10 | ||
Site C | 3 | 11.30 | 16.37 | 19.10 | ||
P (ppm) | Site A | 18 | 8.40 | 15.61 | 27.00 | 35–70 [39] |
Site B | 18 | 7.70 | 12.68 | 19.00 | ||
Site C | 3 | 7.60 | 8.17 | 9.20 | ||
K (ppm) | Site A | 18 | 32.00 | 40.11 | 50.00 | 70–200 [39] |
Site B | 18 | 31.00 | 37.50 | 49.00 | ||
Site C | 3 | 27.00 | 32.67 | 38.00 | ||
Mg (ppm) | Site A | 18 | 200.00 | 292.22 | 340.00 | 100–120 [39] |
Site B | 18 | 200.00 | 278.89 | 370.00 | ||
Site C | 3 | 240.00 | 313.33 | 370.00 | ||
pH | Site A | 18 | 7.60 | 7.68 | 7.90 | 7 [37] |
Site B | 18 | 7.60 | 7.74 | 8.00 | ||
Site C | 3 | 7.60 | 7.77 | 7.90 |
Soil Property | Site | n | Minimum | Mean | Maximum | Optimal Value |
---|---|---|---|---|---|---|
IN (ppm) | Site A | 18 | 285.00 | 370.00 | 440.00 | 17.5–100 [39] |
Site B | 18 | 260.00 | 326.11 | 380.00 | ||
Site C | 3 | 140.00 | 288.33 | 395.00 | ||
C:N | Site A | 18 | 13.40 | 14.46 | 15.34 | <35 [40] |
Site B | 18 | 13.58 | 15.05 | 16.68 | ||
Site C | 3 | 14.65 | 14.97 | 16.39 | ||
Soil Organic Matter (%) | Site A | 18 | 14.00 | 17.52 | 21.90 | N/A |
Site B | 18 | 11.67 | 16.07 | 18.97 | ||
Site C | 3 | 7.52 | 14.14 | 18.97 | ||
Soil structural integrity | Site A | 18 | 15.46 | 21.64 | 25.77 | >9 [33] |
Site B | 18 | 14.55 | 20.04 | 22.36 | ||
Site C | 3 | 9.08 | 17.08 | 22.91 | ||
Bulk Density (g/cm3) | Site A | 18 | 0.56 | 0.66 | 0.74 | <1.4 [37] |
Site B | 18 | 0.52 | 0.65 | 0.80 | ||
Site C | 3 | 0.60 | 0.68 | 0.73 | ||
Soil Water Content (%) | Site A | 18 | 74.95 | 92.22 | 105.92 | ~40–45 [41] |
Site B | 18 | 71.88 | 87.57 | 96.85 | ||
Site C | 3 | 89.73 | 94.45 | 102.94 |
4. Discussion
4.1. Species Composition
4.2. Potential Productivity of Garden Area
4.2.1. Soil Texture
4.2.2. Soil Fertility (N, P, K, Mg, pH)
5. Conclusions
5.1. Recommendations for Agroforestry Community Gardens in Fort Albany
5.2. Feasibility of AFCGs in Other Northern Communities
Acknowledgements
Conflicts of Interest
References
- Honigmann, J. Foodways in a Muskeg Community: An Anthropological Report on the Attawapiskat Indians; Northern Co-ordination and Research Centre, Department of Northern Affairs and National Resources: Ottawa, Canada, 1961; pp. 137–142. [Google Scholar]
- Spiegelaar, N.F.; Tsuji, L.J. Impact of Euro-Canadian agrarian practices: In search of sustainable import-substitution strategies to enhance food security in subarctic Ontario, Canada. Available online: http://rrh.org.au (accessed on 8 May 2013).
- Gates, A.; Hanning, R.M.; Gates, M.; Isogai, A.; Metatawabin, J.; Tsuji, L.J. A school nutrition program improves vegetable and fruit knowledge, preferences, and exposure in First Nation youth. Open Nut. J. 2011, 5, 22–27. [Google Scholar]
- Gates, A.; Hanning, R.M.; Gates, M.; Skinner, K.; Martin, I.D.; Tsuji, L.J. Vegetable and fruit intakes of on-reserve schoolchildren compared to Canadian averages and current recommendations. Int. J. Environ. Res. Public Health 2012, 9, 1379–1397. [Google Scholar] [CrossRef]
- Gates, A.; Hanning, R.M.; Gates, M.; McCarthy, D.; Tsuji, L.J. Inadequate nutrient intakes in youth of a remote First nation community: Challenges and the need for sustainable changes in program and policy. ISRN Pub. Health 2012. [Google Scholar] [CrossRef]
- Gates, M.; Hanning, R.; Gates, M.; McCarthy, D.; Tsuji, L.J. Assessing the impact of pilot school snack programs on milk and alternatives intake in two remote First Nations communities in northern Ontario, Canada. J. Sch. Health 2013, 82, 69–76. [Google Scholar]
- Tsuji, L.; Nieboer, E. A question of sustainability in Cree harvesting practices: The seasons, technological and cultural changes in the western James Bay region of northern Ontario, Canada. Can. J. Native Stud. 1999, 19, 169–192. [Google Scholar]
- Skinner, K.; Hanning, R.M.; Tsuji, L.J. Barriers and supports for healthy eating and physical activity for first nation youths in Northern Canada. Int. J. Circumpolar Health 2006, 65, 148–161. [Google Scholar]
- Bellows, A.; Hamm, H. Local autonomy and sustainable development: testing import substitution in localizing food systems. Agric. Hum. Values 2001, 18, 271–284. [Google Scholar] [CrossRef]
- Polack, R.; Wood, S.; Bradley, E. Fossil fuels and food security: Analysis and recommendations for community organizers. J. Commun. Pract. 2008, 16, 359–374. [Google Scholar] [CrossRef]
- Indian and Northern Affairs Canada (INAC). Nutrition and Food Security in Fort Severn, Ontario. Available online: http://dsp-psd.pwgsc.gc.ca/Collection/R2-350-2004E.pdf (accessed on 12 May 2013).
- Shuur, E.; Bockheim, J.; Canadell, J.; Euskirchen, E.; Field, C.; Goryachkin, S.; Hagemann, S.; Kuhry, P.; Lafleur, P.; Lee, H.; et al. Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. BioSci 2008, 58, 701–714. [Google Scholar] [CrossRef]
- Oelbermann, M.; English, M.; Schiff, S. Evaluating carbon dynamics and microbial activity in arctic soils under warmer temperature. Can. J. Soil Sci. 2008, 88, 31–44. [Google Scholar] [CrossRef]
- Guyot, M.; Dickson, C.; Paci, C.; Furgal, C.; Chan, H. Local observations of climate change and impacts on traditional food security in two northern aboriginal communities. Int. J. Circumpolar Health 2006, 65, 403–415. [Google Scholar]
- Morrison, D. Working Group on Indigenous Food Sovereignty Final Activity Report. Available online: http://www.indigenousfoodsystems.org/content/bc-food-systems-network-working-group-indigenous-food-sovereignty-final-report (accessed on 23 June 2013).
- Robertson, G. Abatement of Nitrous Oxide, Methane, and the other non-CO2 Greenhouse Gases: The Need for a Systems Approach. In The Global Carbon Cycle: Integrating Humans, Climate and the Natural World; Field, C., Raupach, M., Eds.; Island Press: Washington, DC, USA, 2004; pp. 493–506. [Google Scholar]
- Gordon, A.; Newman, S. Temperate Agroforestry Systems; CAB International: Cambridge, MA, USA, 1997. [Google Scholar]
- Young, A. Agroforestry for Soil Management; CAB International: Wallingford, UK, 1997. [Google Scholar]
- Statistics Canada, Population Projections by Aboriginal Identity in Canada, 2006–2011; Government of Canada: Ottawa, Canada, 2011.
- Vogl, C.; Vogl-Lukasser, B.; Puri, R. Tools and methods for data collection in ethnobotanical studies of homegardens. Field Methods 2004, 16, 285–306. [Google Scholar] [CrossRef]
- Huai, H.; Hamilton, A. Characteristics and functions of traditional homegardens: A review. Front. Biol. Chin. 2009, 4, 151–157. [Google Scholar] [CrossRef]
- Ninez, V. Household gardens: Theoretical and policy considerations. Agric. Syst. 1987, 23, 167–186. [Google Scholar] [CrossRef]
- Boncodin, R.; Campilan, D.; Prain, G. Dynamics in Tropical Homegardens. Available online: http://www.ruaf.org/node/110 (accessed on 26 March 2013).
- Food and Agricultural Association (FAO). Improving Nutrition through Home Gardening. Available online: http://www.fao.org/ag/AGN/nutrition/household_gardens_en.stm (accessed on 20 March 2013).
- Quinkenstein, A.; Wöllecke, J.; Böhm, C.; Grünewald, H.; Freese, D.; Schneider, B.; Hüttl, R. Ecological benefits of the alley cropping agroforestry system in sensitive regions of Europe. Environ. Sci. Policy 2009, 12, 1112–1121. [Google Scholar] [CrossRef]
- Kumar, G.; Murkute, A.; Gupta, S.; Singh, S. Carbon sequestration with special reference to agroforestry in cold deserts of Ladakh. Curr. Sci. 2009, 97, 1063–1068. [Google Scholar]
- Long, A.; Nair, R. Trees outside forests: Agro-, community, and urban forestry. New For. 1999, 17, 145–174. [Google Scholar] [CrossRef]
- Hanson, H.C. Muskeg as sharp-tailed grouse habitat. Wilson Bull. 1953, 65, 235–241. [Google Scholar]
- Abraham, K.; Keedy, C. The Hudson Bay Lowland. In World’s Largest Wetlands: Ecology and Conservation; Fraser, L.H., Keddy, P.A., Eds.; Cambridge University Press: Cambridge, UK, 2005; pp. 148–188. [Google Scholar]
- Hori, Y.; Tam, B.; Gough, W.A.; Ho-Foong, E.; Karagatzides, E.; Liberda, E.; Tsuji, L.J. The use of traditional environmental knowledge to assess the impact of climate change on subsistence fishing in the james bay region of Northern Ontario, Canada. Available online: http://www.rrh.org.au/publishedarticles/article_print_1878.pdf (accessed on 22 March 2012).
- Fernandes, E.; Nair, P. An evaluation of the structure and function of homegardens. Agric. Sci. 1986, 21, 279–310. [Google Scholar]
- Association for Temperate Agroforestry (AFTA). What is Agroforestry? Available online: http://www.aftaweb.org/ (accessed on 26 March 2013).
- Schroth, G.; Sinclair, F. Trees, Crops and Soil Fertility: Concepts and Research Methods; CAB International Publishing: Cambridge, MA, USA, 2003. [Google Scholar]
- Anderson, J.; Ingram, J. Tropical Soil Biology and Fertility: A Handbook of Methods; CAB International: Cambridge, MA, USA, 1998. [Google Scholar]
- Carter, M.; Gregorich, E. Soil Sampling and Methods of Analysis, 2nd ed.; Taylor and Francis Group: Boca Raton, FL, USA, 2008. [Google Scholar]
- Ryan, J.; Estefan, G.; Rashid, A. Soil and Plant Analysis Laboratory Manual, 2nd ed.; International Center for Agricultural Research in the Dry Areas (ICARDA) and the National Agricultural Research Center (NARC); ICARDA: Aleppo, Syria, 2001. [Google Scholar]
- Gardiner, D.; Miller, R. Soils in Our Environment; Pearson Education, Inc.: Upper Saddle River, NJ, USA, 2008. [Google Scholar]
- Cain, M.L.; Subler, S.; Evans, J.P.; Fortin, M.-J. Sampling spatial and temporal variation in soil nitrogen availability. Oecol 1998, 118, 397–404. [Google Scholar]
- Agriculture Analytical Services Lab of Penn State University (AASL). Soil Test Recommendations for Commercial Vegetables. Available online: http://www.aasl.psu.edu/Veg%20Recs_page.htm (accessed on 12 August 2013).
- Foth, H.; Ellis, B. Soil Fertility; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Hussack, J. Personal Communication. Crop Advisor, Clark Agri Services Inc.: Wellandport, Canada, 23 February 2011. [Google Scholar]
- Chmielewski, J.; Semple, J. The biology of Canadian weeds. 113. Symphyotrichum. lanceolatum (Wild.) Nesom (Aster lanceolatus Willd.) and S. lateriflorum (L.) Löve & Löve (Aster lateriflorus (L.) Britt.). Can. J. Plant Sci. 2001, 81, 829–849. [Google Scholar] [CrossRef]
- Government of Saskatchewan. Canada Thistle and its Control. Available online: http://www.agriculture.gov.sk.ca/Canada_Thistle_Control (accessed on 19 March 2013).
- Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA). Ontario Weeds: Wormseed mustard. Available online: http://www.omafra.gov.on.ca/english/crops/facts/ontweeds/wormseed_mustard.htm (accessed on 19 March 2013).
- United States Department of Agriculture: Forest Service Fire Effects Information System (USDA). Index of Species Information: Agrostis Stolinifera. Available online: http://www.fs.fed.us/database/feis/plants/graminoid/agrsto/all.html (accessed on 19 March 2013).
- United States Department of Agriculture: Natural Resource Conservation Service (USDA). Plant Database. Available online: http://plants.usda.gov/java/ (accessed on 19 March 2013).
- Brady, N.; Weil, R. Elements of the Nature and Properties of Soils; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 2000. [Google Scholar]
- Havlin, J.; Beaton, J.; Tisdale, S.; Nelson, W. Soil Fertility and Fertilizers: An Introduction to Nutrient Management, 7th ed.; Pearson Education, Inc.: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Spiertz, J. Nitrogen, Sustainable Agriculture and Food Security: A review. Agron. Sustain. Dev. 2010, 30, 34–55. [Google Scholar] [CrossRef]
- Chapin, S.; Vitousek, P.; van Cleve, K. The nature of nutrient limitation in plant communities. Am. Nat. 1986, 127, 48–58. [Google Scholar]
- Smith, C.; Munson, A.; Coyea, M. Nitrogen and phosphorus release from humus and mineral soil under black spruce forests in central quebec. Soil Biol. Biochem. 1998, 30, 1491–1500. [Google Scholar] [CrossRef]
- Rodriguez-Gonzaleza, P.; Stella, J.; Campeloc, F.; Ferreiraa, M.; Albuquerquea, A. Subsidy or stress? Tree structure and growth in wetland forests along a hydrological gradient in Southern Europe. For. Ecol. Manag. 2010, 259, 2015–2025. [Google Scholar] [CrossRef]
- Minister of Supply and Services Canada (MSSC), A National Ecological Framework for Canada: Hudson Plains Ecozone and James Bay Lowland; Minister of Supply and Services Canada: Ottawa, Canada, 1996.
- Western, A.; Grayson, R.; Blöschl, G. Scaling of soil moisture: A hydrologic perspective. Annu. Rev. Earth Plant Sci. 2002, 30, 149–180. [Google Scholar] [CrossRef]
- Flanagan, P.; van Cleve, K. Nutrient cycling in relation to decomposition and organic-matter quality in taiga ecosystems. Can. J. For. Res. 1983, 13, 795–817. [Google Scholar] [CrossRef]
- Moore, T. Litter decomposition in a Subarctic Spruce-Lichen Woodland, Eastern Canada. Ecology 1984, 65, 299–308. [Google Scholar] [CrossRef]
- Wright, R. Evaluation of crop rotation for control of colorado potato beetles (Coleoptera: Chrysomelidae) in commercial potato fields on long island. J. Econ. Entomol. 1984, 77, 1254–1259. [Google Scholar]
- Liebman, M.; Dyck, E. Crop Rotation and Intercropping Strategies for Weed Management. Ecol. Appl. 1993, 3, 92–122. [Google Scholar] [CrossRef]
- Turtola, E.; Paajanen, A. Influence of improved subsurface drainage on phosphorus losses and nitrogen leaching from a heavy clay soil. Agric. Water Manag. 1995, 28, 295–310. [Google Scholar] [CrossRef]
- Kuzovkina, Y.; Volk, T. The characterization of willow (Salix L.) varieties for use in ecological engineering applications: Co-Ordination of structure, function and autoecology. Ecol. Eng. 2009, 35, 1178–1189. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Spiegelaar, N.F.; Tsuji, L.J.S.; Oelbermann, M. The Potential Use of Agroforestry Community Gardens as a Sustainable Import-Substitution Strategy for Enhancing Food Security in Subarctic Ontario, Canada. Sustainability 2013, 5, 4057-4075. https://doi.org/10.3390/su5094057
Spiegelaar NF, Tsuji LJS, Oelbermann M. The Potential Use of Agroforestry Community Gardens as a Sustainable Import-Substitution Strategy for Enhancing Food Security in Subarctic Ontario, Canada. Sustainability. 2013; 5(9):4057-4075. https://doi.org/10.3390/su5094057
Chicago/Turabian StyleSpiegelaar, Nicole F., Leonard J.S. Tsuji, and Maren Oelbermann. 2013. "The Potential Use of Agroforestry Community Gardens as a Sustainable Import-Substitution Strategy for Enhancing Food Security in Subarctic Ontario, Canada" Sustainability 5, no. 9: 4057-4075. https://doi.org/10.3390/su5094057
APA StyleSpiegelaar, N. F., Tsuji, L. J. S., & Oelbermann, M. (2013). The Potential Use of Agroforestry Community Gardens as a Sustainable Import-Substitution Strategy for Enhancing Food Security in Subarctic Ontario, Canada. Sustainability, 5(9), 4057-4075. https://doi.org/10.3390/su5094057