GM Crops, Organic Agriculture and Breeding for Sustainability
Abstract
:1. Introduction
2. Biotechnologies
3. Unstable Solutions
4. Organic Agriculture
5. Evolutionary Plant Breeding
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Herrera-Estrella, L.; Depicker, A.; van Montagu, M.; Schell, J. Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 1983, 303, 209–213. [Google Scholar] [CrossRef]
- Tarnished Promise. Nature 2013, 497, 21. [CrossRef]
- GM crops: A story in numbers. Nature 2013, 497, 22. [CrossRef]
- Gurian-Sherman, D. Failure to Yield: Evaluating the Performance of Genetically Engineered Crops; UCS Publications; Two Brattle Square: Cambridge, MA, USA, 2009; p. 44. [Google Scholar]
- Xu, Z.; Hennessy, D.A.; Sardana, K.; Moschini, G. The Realized Yield Effect of Genetically Engineered Crops: U.S. Maize and Soybean. Crop Sci. 2013, 53, 735–745. [Google Scholar] [CrossRef]
- Mortensen, D.A.; Egan, J.F.; Maxwell, B.D.; Ryan, M.R.; Smith, R.G. Navigating a Critical Juncture for Sustainable Weed Management. BioScience 2012, 62, 75–84. [Google Scholar] [CrossRef]
- Gassmann, A.J.; Petzold-Maxwell, J.L.; Keweshan, R.S.; Dunbar, M.W. Field-Evolved Resistance to Bt Maize by Western Corn Rootworm. Proc. Natl. Acad. Sci. USA 2014, 111, 5141–5146. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, K.; Jiang, Y.; Xia, B.; Li, P.; Feng, H.; Wyckhuys, K.A.G.; Guo, Y. Mirid Bug Outbreaks in Multiple Crops Correlated with Wide-Scale Adoption of Bt Cotton in China. Science 2013, 328, 1151–1154. [Google Scholar]
- Buiatti, M.; Christou, P.; Pastore, G. The application of GMOs in agriculture and in food production for a better nutrition: two different scientific points of view. Genes Nutr. 2013, 8, 255–270. [Google Scholar] [CrossRef]
- Séralini, G-E.; Clair, E.; Mesnage, R.; Gress, S.; Defarge, N.; Malatesta, M.; Hennequin, D.; Spiroux de Vendômois, J. Long term toxicity of a Roundup herbicide and a Roundup-tolerant genetically modified maize. Food Chem. Toxicol. 2012, 50, 4221–4231. [Google Scholar] [CrossRef]
- Enserink, M.; Hines, P.J.; Vignieri, S.N.; Wigginton, N.S.; Yeston, J.S. The Pesticide Paradox. Science 2013, 341, 728–729. [Google Scholar] [CrossRef]
- Ellstrand, N.C. Over a Decade of Crop Transgenes Out-of-Place. In Regulation of Agricultural Biotechnology: The United States and Canada; Wozniak, C.A., McHughen, A., Eds.; Springer: Berlin, Germany, 2012; pp. 123–135. [Google Scholar]
- Telem, R.S.; Wani, S.H.; Singh, N.B.; Nandini, R.; Sadhukhan, R.; Bhattacharya, S.; Mandal, N. Cisgenics—A sustainable approach for crop improvement. Curr. Genomics 2013, 14, 468–476. [Google Scholar] [CrossRef]
- Georghiou, G.P. The Evolution of Resistance to Pesticides. Annu. Rev. Ecol. Syst. 1972, 3, 133–168. [Google Scholar]
- Frieden, T. Antibiotic Resistance Threats in the United States; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2013; p. 114. [Google Scholar]
- Coetzee, M.; Koekemoer, L.L. Molecular Systematics and Insecticide Resistance in the Major African Malaria Vector Anopheles funestus. Annu. Rev. Entomol. 2013, 58, 393–412. [Google Scholar] [CrossRef]
- Vanderplank, J.E. Plant Diseases: Epidemics and Control; Academic Press: New York, NY, USA; London, UK, 1963. [Google Scholar]
- Vanderplank, J.E. Disease Resistance in Plants; Academic Press: New York, NY, USA; London, UK, 1968. [Google Scholar]
- Robinson, R.A. Breeding for quantitative variables. Part 2: Breeding for durable resistance to crop pests and diseases. In Plant Breeding and Farmer Participation; Ceccarelli, S., Guimaraes, E.P., Weltzien, E., Eds.; FAO: Rome, Italy, 2009; pp. 367–390. [Google Scholar]
- Melander, A.L. Can insects become resistant to sprays? J. Econ. Entomol. 1914, 7, 167–173. [Google Scholar]
- Stern, V.M.; Reynolds, H.T. Resistance of the spotted alfalfa aphid to certain organo-phosphorus insecticides in Southern California. J. Econ. Entomol. 1958, 51, 312–316. [Google Scholar]
- Teetes, G.L.; Schaefer, C.A.; Gipson, J.R.; McIntyre, R.C.; Latham, E.E. Greenbug Resistance to Organophosphorous Insecticides on the Texas High Plains. J. Econ. Entomol. 1975, 68, 214–216. [Google Scholar]
- Newton, A.C.; Johnson, S.N.; Gregory, P.J. Implications of climate change for diseases, crop yields and food security. Euphytica 2011, 179, 3–18. [Google Scholar] [CrossRef]
- Behrens, M.R.; Mutlu, N.; Chakraborty, S.; Dumitru, R.; Jiang, W.Z.; LaVallee, B.J.; Herman, P.L.; Clemente, T.E.; Weeks, D.P. Dicamba resistance: Enlarging and preserving biotechnology-based weed management strategies. Science 2007, 316, 1185–1188. [Google Scholar] [CrossRef]
- Wright, T.R.; Shan, G.; Walsh, T.A.; Lira, J.M.; Cui, C.; Song, P.; Zhuang, M.; Arnold, N.L.; Lin, G.; Yau, K.; et al. Robust crop resistance to broadleaf and grass herbicides provided by aryloxyalkanoate dioxygenase transgenes. Proc. Natl. Acad. Sci. USA 2010, 107, 20240–20245. [Google Scholar] [CrossRef]
- Bradshaw, L.D.; Padgette, S.R.; Kimball, S.L.; Wells, B.H. Perspectives on glyphosate resistance. Weed Technol. 1997, 11, 189–198. [Google Scholar]
- Jasieniuk, M.; Maxwell, B.D. Population genetics and the evolution of herbicide resistance in weeds. Phytoprotection 1994, 75, 25–35. [Google Scholar] [CrossRef]
- Heap, I. International Survey of Herbicide Resistant Weeds. Available online: http://www.weedscience.org/summary/home.aspx (accessed on 29 March 2014).
- Schütte, G. Herbicide resistance: Promises and prospects of biodiversity for European agriculture. Agric. Hum. Values 2003, 20, 217–230. [Google Scholar] [CrossRef]
- De Oliveira, D.E.; van Montagu, M. GMOs and organic agriculture: Friends or foes for a sustainable agriculture? In Proceedings of the International Congress “In the Wake of the Double Helix: From the Green Revolution to the Gene Revolution”, Avenue media, Bologna, Italy, 27–31 May 2003; Tuberosa, R., Phillips, R.L., Gale, M., Eds.; pp. 689–698.
- Von Hertzen, L.; Hanski, I.; Haahtela, T. Natural immunity: Biodiversity loss and inflammatory diseases are two global megatrends that might be related. EMBO Reports 2011, 12, 1089–1093. [Google Scholar] [CrossRef]
- Good, A.G.; Beatty, P.H. Fertilizing Nature: A Tragedy of Excess in the Commons. PLoS Biol. 2011, 9, e1001124. [Google Scholar] [CrossRef]
- Shaver, J.M. Toward a greener agriculture. In Plant, Genes and Crop Biotechnology; Chrispeels, M.J., Sadava, D.E., Eds.; Jones and Bartlett Publishers: Burlington, MA, USA, 2003; Chapter 18; pp. 473–499. [Google Scholar]
- Crowder, D.W.; Northfield, T.D.; Strand, M.R.; Snyder, W.E. Organic agriculture promotes evenness and natural pest control. Nature 2010, 466, 109–113. [Google Scholar] [CrossRef]
- Letourneau, D.K.; Armbrecht, I.; Rivera, B.S.; Lerma, J.M.; Carmona, E.J.; Daza, M.C.; Escobar, S.; Galindo, V.; Gutiérrez, C.; López, S.D.; et al. Does plant diversity benefit agroecosystems? A synthetic review. Ecol. Appl. 2011, 21, 9–21. [Google Scholar] [CrossRef]
- Ammann, K. Integrated farming: Why organic farmers should use transgenic crops. Nat. Biotechnol. 2008, 25, 101–107. [Google Scholar]
- Ryffel, G.U. Orgenic plants: Gene-manipulated plants compatible with organic farming. Biotechnol. J. 2012, 7, 1328–1331. [Google Scholar] [CrossRef]
- Ammann, K. Why farming with high tech methods should integrate elements of organic agriculture. Nat. Biotechnol. 2009, 25, 378–388. [Google Scholar]
- Bedini, S.; Avio, L.; Sbrana, C.; Turrini, A.; Migliorini, P.; Vazzana, C.; Giovannetti, M. Mycorrhizal activity and diversity in a long-term organic Mediterranean agro ecosystem. Biol. Fert. Soils 2013, 49, 781–779. [Google Scholar] [CrossRef]
- Migliorini, P.; Moschini, V.; Tittarelli, F.; Ciaccia, C.; Benedettelli, S.; Vazzana, C.; Canali, S. Agronomic performance, carbon storage and nitrogen utilization of long-term organic and conventional stockless arable systems in Mediterranean area. Eur. J. Agron. 2014, 52, 138–145. [Google Scholar] [CrossRef]
- Migliorini, P.; Vazzana, C. Biodiversity Indicators for Sustainability Evaluation of Conventional and Organic Agro-ecosystems. Ital. J. Agron. 2007, 2, 105–110. [Google Scholar]
- De Ponti, T.; Rijk, B.; van Ittersum, M.K. The crop yield gap between organic and conventional agriculture. Agric. Syst. 2012, 108, 1–9. [Google Scholar]
- Bennett, M.; Franzel, S. Can organic and resource-conserving agriculture improve livelihoods? A synthesis. Int. J. Agric. Sustain. 2013, 11, 193–215. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the yields of organic and conventional agriculture. Nature 2012, 485, 229–232. [Google Scholar] [CrossRef]
- Pretty, J.N.; Noble, A.D.; Bossio, D.; Dixon, J.; Hine, R.E.; Penning de Vries, F.W.; Morison, J.I.L. Resource-Conserving Agriculture Increases Yields in Developing Countries. Environ. Sci. Technol. 2006, 40, 1114–1119. [Google Scholar] [CrossRef]
- Phalan, B.; Rodrigues, A.S.; Balmford, A.; Green, R.E.; Ewers, R.M. Comment on “Resource-conserving agriculture increases yields in developing countries”. Environ. Sci. Technol. 2007, 41, 1054–1055. [Google Scholar] [CrossRef]
- Pretty, J.; Hine, R.E.; Morison, J.I.L.; Noble, A.D.; Bossio, D.; Dixon, J.; Penning de Vries, F.W.T. Response to Comment on “Resource-Conserving Agriculture Increases Yields in Developing Countries”. Environ. Sci. Technol. 2007, 41, 1056–1057. [Google Scholar] [CrossRef]
- UNCTAD-UNEP. Organic Agriculture and Food Security in Africa. Available online: http://unctad.org/en/docs/ditcted200715_en.pdf (accessed on 29 March 2014).
- Fernandez-Cornejo, J.; Wechsler, S.J.; Livingston, M.; Mitchell, L. Genetically Engineered Crops in the United States. Economic Research Report No. (ERR-162) 60 pp, February 2014. Available online: http://www.ers.usda.gov/publications/err-economic-research-report/err162.aspx (accessed on 29 March 2014).
- Murphy, K.M.; Campbell, A.K.G.; Lyon, S.R.; Jones, S.S. Evidence of varietal adaptation to organic farming systems. Field Crops Res. 2007, 102, 172–177. [Google Scholar] [CrossRef]
- Wolfe, M.S.; Baresel, J.P.; Desclaux, D.; Goldringer, I.; Hoad, S.; Kovacs, G.; Löschenberger, F.; Miedaner, T.; Østergård, H.; Lammerts van Bueren, E.T. Developments in breeding cereals for organic agriculture. Euphytica 2008, 163, 323–346. [Google Scholar] [CrossRef]
- Burger, H.; Schloen, M.; Schmidt, W.; Geiger, H.H. Quantitative genetic studies on breeding maize for adaptation to organic farming. Euphytica 2008, 163, 501–510. [Google Scholar] [CrossRef]
- Bebber, D.P.; Ramotowski, M.A.T.; Gurr, S.J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 2013, 3, 985–988. [Google Scholar] [CrossRef]
- Keatinge, J.D.H.; Ledesma, D.R.; Keatinge, F.J.D.; Hughes, J.D’A. Projecting annual air temperature changes to 2025 and beyond: Implications for vegetable production worldwide. J. Agric. Sci. 2013, 152, 38–57. [Google Scholar]
- Canto, T.; Aranda, M.A.; Fereres, A. Climate change effects on physiology and population processes of hosts and vectors that influence the spread of hemipteran-borne plant viruses. Glob. Change Biol. 2009, 15, 1884–1894. [Google Scholar] [CrossRef]
- Nelson, G.C.; Rosegrant, M.W.; Koo, J.; Robertson, R.; Sulser, T.; Zhu, T.; Ringler, C.; Msangi, S.; Palazzo, A.; Batka, M.; et al. Climate Change: Impact on Agriculture and Costs of Adaptation; IFPRI Report: 1–19; International Food Policy Research Institute: Washington, DC, USA, 2009. [Google Scholar]
- Suneson, C.A. An Evolutionary Plant Breeding Method. Agron. J. 1956, 48, 188–191. [Google Scholar] [CrossRef]
- Webber, H.J. Plant-Breeding for Farmers. Cornell Univ. Bull. 1908, 251, 289–332. [Google Scholar]
- Ceccarelli, S. Evolution, plant breeding and biodiversity. J. Agric. Environ. Int. Dev. 2009, 103, 131–145. [Google Scholar]
- Ceccarelli, S.; Grando, S.; Maatougui, M.; Michael, M.; Slash, M.; Haghparast, R.; Rahmanian, M.; Taheri, A.; Al-Yassin, A.; Benbelkacem, A.; et al. Plant breeding and climate changes. J. Agric. Sci. 2010, 148, 627–637. [Google Scholar]
- Morran, L.T.; Parmenter, M.D.; Phillips, P.C. Mutation load and rapid adaptation favour outcrossing over self-fertilization. Nature 2009, 462, 350–352. [Google Scholar]
- Barrick, J.E.; Lenski, R.E. Genome dynamics during experimental evolution. Nat. Rev. Genet. 2013, 14, 827–839. [Google Scholar]
- Döring, T.D.; Knapp, S.; Kovacs, G.; Murphy, K.; Wolfe, M.S. Evolutionary Plant Breeding in Cereals—Into a New Era. Sustainability 2011, 3, 1944–1971. [Google Scholar]
- Ghani, A.H.; Parzies, H.K.; Ceccarelli, S.; Grando, S.; Geiger, H.H. Evaluation of floral characteristics of barley in the semi-arid climate of north Syria. Plant Breeding 2003, 122, 273–275. [Google Scholar]
- Virmani, S.S.; Athwal, D.S. Genetic variability in floral characteristics influencing outcrossing in Oriza sativa L. Crop Sci. 1973, 13, 66–67. [Google Scholar]
- Suso, M.J.; Harder, L.D.; Moreno, M.T.; Maalouf, F. New strategies for increasing heterozygosity in crops: Vicia faba mating system as a study case. Euphytica 2005, 143, 51–65. [Google Scholar]
- Palmer, R.; Perez, P.; Ortiz-Perez, E.; Maalouf, F.; Suso, M. The role of crop-pollinator relationships in breeding for pollinator-friendly legumes: From a breeding perspective. Euphytica 2009, 170, 35–52. [Google Scholar] [CrossRef]
- Wolfe, M.S. Crop strength through diversity. Nature 2000, 406, 681–682. [Google Scholar] [CrossRef]
- Finckh, M.R. Integration of breeding and technology into diversification strategies for disease control in modern agriculture. Eur. J. Plant Pathol. 2008, 121, 399–409. [Google Scholar] [CrossRef]
- Tooker, J.F.; Frank, S.D. Genotypically diverse cultivar mixtures for insect pest management and increased crop yields. J. Appl. Ecol. 2012, 49, 974–985. [Google Scholar] [CrossRef]
- Rahmanian, M.; Salimi, M.; Razavi, K.; Haghparast, R.; Ceccarelli, S. Evolutionary populations: Living Gene Banks in Farmers Fields. Available online: http://www.agriculturesnetwork.org/magazines/global/cultivating-diversity/plant-breeding (accessed on 7 July 2014).
- Fuglie, K.O.; Heisey, P.W.; King, J.L.; Pray, C.E.; Day-Rubenstein, K.; Schimmelpfennig, D.; Wang, S.L.; Karmarkar-Deshmukh., R. Research Investments and Market Structure in the Food Processing, Agricultural Input, and Biofuel Industries Worldwide; Economic Research Report No. 130; United States Department of Agriculture: Washington, DC, USA, 2011; pp. 1–147.
- De Schutter, O. Final Report: The Transformative Potential of the Right to Food; Report of the Special Rapporteur on the Right to Food, A/HRC/25/57; United Nations General Assembly, UN Human Rights Council: New York, NY, USA, 2014; pp. 1–28. [Google Scholar]
- Bocci, R. Seeds between freedom and rights. Scienze del Territorio 2014, 2, 115–122. [Google Scholar]
- FAO (Food and Agriculture Organization). International treaty on plant genetic resources for food and agriculture. Available online: http://www.planttreaty.org/texts_en.htm (accessed on 30 June 2014).
- Ray, D.K.; Ramankutty, N.; Mueller, N.D.; West, P.C.; Foley, J.A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 2012, 3, 1–7. [Google Scholar]
- Grassini, P.; Eskridge, K.M.; Cassman, K.G. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat. Commun. 2013, 4, 1–11. [Google Scholar]
- Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS One 2013, 8, e66428. [Google Scholar]
- Vermeulen, S.; Campbell, B.; Ingram, J. Climate change and food systems. Annu. Rev. Environ. Resour. 2012, 37, 195–222. [Google Scholar] [CrossRef]
- Hansen, J.; Kharecha, P.; Sato, M.; Masson-Delmotte, V.; Beerling, D.J.; Hearty, P.J.; Hoegh-Guldberg, O.; Hsu, S.-L.; Ackerman, F.; Parmesan, C.; et al. Assessing “Dangerous Climate Change”: Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature. PLoS One 2013, 8, e81648. [Google Scholar] [CrossRef] [Green Version]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ceccarelli, S. GM Crops, Organic Agriculture and Breeding for Sustainability. Sustainability 2014, 6, 4273-4286. https://doi.org/10.3390/su6074273
Ceccarelli S. GM Crops, Organic Agriculture and Breeding for Sustainability. Sustainability. 2014; 6(7):4273-4286. https://doi.org/10.3390/su6074273
Chicago/Turabian StyleCeccarelli, Salvatore. 2014. "GM Crops, Organic Agriculture and Breeding for Sustainability" Sustainability 6, no. 7: 4273-4286. https://doi.org/10.3390/su6074273
APA StyleCeccarelli, S. (2014). GM Crops, Organic Agriculture and Breeding for Sustainability. Sustainability, 6(7), 4273-4286. https://doi.org/10.3390/su6074273