Landslide Susceptibility Mapping Based on Selected Optimal Combination of Landslide Predisposing Factors in a Large Catchment
Abstract
:1. Introduction
2. Study Area
3. Data Source and Preprocessing
4. Methodology
4.1. Selection of Predisposing Factors
Groups | Factors | Subclasses | Area (hm2) | Factors | Subclasses | Area (hm2) |
---|---|---|---|---|---|---|
Topography | Slope | 0–5° | 7680.06 | Aspect | <0° (Flat) | 34,934.22 |
5–10° | 16,243.80 | 0–22.5 (N1) | 39,252.06 | |||
10–15° | 28,682.50 | 22.5–67.5° (NE) | 42,176.25 | |||
15–20° | 44,728.50 | 67.5–112.5° (E) | 52,289.10 | |||
20–25° | 60,272.50 | 112.5–157.5° (SE) | 50,455.53 | |||
25–30° | 70,456.10 | 157.5–202.5° (S) | 41,343.39 | |||
30–35° | 71,933.70 | 202.5–247.5° (SW) | 39,180.60 | |||
35–40° | 58,948.10 | 247.5–292.5° (W) | 41,553.45 | |||
40–45° | 37,528.60 | 292.5–337.5° (NW) | 46,666.89 | |||
45–50° | 19,707.60 | 337.5–360° (N2) | 42,801.39 | |||
50–55° | 8795.88 | Terrain (relief amplitude) | <100 m | 235,095.12 | ||
55–60° | 3632.94 | 100–200 m | 189,105.30 | |||
>60° | 2042.82 | >200 m | 9745.65 | |||
Geological lithology | Lithology | Hard | 113,977.35 | Faults (buffer distance) | 0–3000 m | 262,886.31 |
Middle hard | 277,983.36 | 3000–6000 m | 73,262.25 | |||
Middle soft | 36,291.87 | 6000–9000 m | 23,076.63 | |||
Soft | 2397.60 | 9000–12000 m | 17,117.37 | |||
12000–15000 m | 15,132.96 | |||||
>15000 m | 39,119.94 | |||||
Terrain cutting | Road (buffer distance) | >1000 m | 59,003.19 | Drainage network (buffer distance) | <200 m | 58,350.06 |
1000–2000 m | 48,580.38 | 200–400 m | 53,166.96 | |||
2000–3000 m | 43,454.52 | 400–600 m | 51,164.73 | |||
3000–4000 m | 70,729.56 | 600–800 m | 46,314.72 | |||
>4000 m | 208,882.44 | 800–1000 m | 44,561.34 | |||
>1000 m | 177,095.07 | |||||
Natural environment | Precipitation | <800 mm | 33,498.17 | Vegetation (coverage) | <0.2 | 275.31 |
800–900 mm | 131,643.14 | 0.2–0.3 | 25,049.16 | |||
900–1000 mm | 121,177.49 | 0.3–0.4 | 80,806.50 | |||
1000–1200 mm | 84,867.92 | 0.4–0.5 | 189,018.27 | |||
>1200 mm | 59,463.28 | 0.5–0.6 | 122,846.40 | |||
>0.6 | 12,652.02 |
4.2. Modified Information Value (MIV) Model
4.2.1. Information Value (IV) Model
4.2.2. The Establishment of the Modified Information Value (MIV) Model
4.3. The Selection of Optimal Factor Combination
4.3.1. Factor Combination
4.3.2. Selection of Optimal Combination Based on ROC Curve Test
4.4. Landslide Sustainability Zoning Based on the Optimal Combination
5. Results
5.1. Spatial Distribution Characteristics of Information Value
5.1.1. In Topography Group
5.1.2. In Geological Lithology Group
5.1.3. In Terrain Cutting Group
5.1.4. In Natural Environment Group
5.2. Optimal Combination Selection Based on ROC Curve Test
Group ID | Factor Combination | AUC Value | Group ID | Factor Combination | AUC Value |
---|---|---|---|---|---|
1 | A, B, C, D | 0.878 | 17 | A, B, C, D, E, F, G | 0.877 |
2 | A, B, C, D, E | 0.872 | 18 | A, B, C, D, E, F, H | 0.938 |
3 | A, B, C, D, F | 0.875 | 19 | A, B, C, D, E, F, I | 0.878 |
4 | A, B, C, D, G | 0.888 | 20 | A, B, C, D, E, G, H | 0.943 |
5 | A, B, C, D, H | 0.943 | 21 | A, B, C, D, E, G, I | 0.889 |
6 | A, B, C, D, I | 0.890 | 22 | A, B, C, D, E, H, I | 0.940 |
7 | A, B, C, D, E, F | 0.867 | 23 | A, B, C, D, F, G, H | 0.946 |
8 | A, B, C, D, E, G | 0.881 | 24 | A, B, C, D, F, G, I | 0.893 |
9 | A, B, C, D, E, H | 0.939 | 25 | A, B, C, D, G, H, I | 0.950 |
10 | A, B, C, D, E, I | 0.882 | 26 | A, B, C, D, F, H, I | 0.943 |
11 | A, B, C, D, F, G | 0.883 | 27 | A, B, C, D, E, F, G, H | 0.943 |
12 | A, B, C, D, F, H | 0.870 | 28 | A, B, C, D, E, F, G, I | 0.886 |
13 | A, B, C, D, F, I | 0.886 | 29 | A, B, C, D, E, G, H, I | 0.944 |
14 | A, B, C, D, G, H | 0.947 | 30 | A, B, C, D, E, F, H, I | 0.940 |
15 | A, B, C, D, G, I | 0.897 | 31 | A, B, C, D, F, G, H, I | 0.947 |
16 | A, B, C, D, H, I | 0.944 | 32 | A, B, C, D, E, F, G, H, I | 0.944 |
6. Discussions
Class ID | Zone | Section Area (hm2) | Landslide Area (hm2) | Landslide Density | Landslide Ratio (%) |
---|---|---|---|---|---|
1 | Very Low | 11,926.62 | 0.03 | 0.01% | 0.01 |
2 | Low | 156,442.41 | 0.81 | 0.02% | 0.32 |
3 | Moderate | 148,201.92 | 16.45 | 0.11% | 6.58 |
4 | High | 82,849.23 | 34.21 | 0.41% | 13.67 |
5 | Very High | 30,855.06 | 198.68 | 2.33% | 79.41 |
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dahl, M.P.J.; Mortensen, L.E.; Veihe, A.; Jensen, N.H. A simple qualitative approach for mapping regional landslide susceptibility in the Faroe Islands. Nat. Hazards Earth Syst. Sci. 2010, 10, 159–170. [Google Scholar] [CrossRef]
- Lepore, C.; Kamal, S.A.; Shanahan, P.; Bras, R.L. Rainfall-induced landslide susceptibility zonation of Puerto Rico. Environ. Earth Sci. 2012, 66, 1667–1681. [Google Scholar] [CrossRef]
- Mezughi, T.H.; Akhir, J.M.; Rafek, A.G.; Abdullah, I. Landslide susceptibility assessment using frequency ratio model applied to an area along the E-W Highway (Gerik-Jeli). Am. J. Environ. Sci. 2011, 7, 43–50. [Google Scholar] [CrossRef]
- Gong, J.H.; Wang, D.C.; Li, Y.; Zhang, L.H.; Yue, Y.J.; Zhou, J.P.; Song, Y.Q. Earthquake-induced geological hazards detection under hierarchical stripping classification framework in the Beichuan area. Landslides 2010, 7, 181–189. [Google Scholar] [CrossRef]
- Bathrellos, G.D.; Gaki-Papanastassiou, K.; Skilodimou, H.D.; Skianis, G.A.; Chousianitis, K.G. Assessment of rural community and agricultural development using geomorphological-geological factors and GIS in the trikala prefecture (central Greece). Stoch. Environ. Res. Risk Assess. 2013, 27, 573–588. [Google Scholar] [CrossRef]
- Khezri, S. Landslide susceptibility in the Zab Basin, northwest of Iran. Procedia Soc. Behav. Sci. 2011, 19, 726–731. [Google Scholar] [CrossRef]
- Niu, Q.F.; Cheng, W.M.; Lan, H.X.; Liu, Y.; Xie, Y.W. Susceptibility assessment of secondary geological disaster based on information value methodology for Yushu earthquake region. J. Mt. Sci. 2011, 29, 243–249. (In Chinese) [Google Scholar]
- Sujatha, E.R.; Rajamanickam, V. Landslide susceptibility mapping of Tevankarai Ar sub-watershed, Kodaikkanal taluk, India, using weighted similar choice fuzzy model. Nat. Hazards 2011, 59, 401–425. [Google Scholar] [CrossRef]
- Bathrellos, G.D.; Kalivas, D.P.; Skilodimou, H.D. GIS-based landslide susceptibility mapping models applied to natural and urban planning in Trikala, central Greece. Estud. Geol. 2009, 65, 49–65. [Google Scholar] [CrossRef]
- Dubey, C.S.; Chaudhry, M.; Sharma, B.K.; Pandey, A.C.; Singh, B. Visualization of 3-D digital elevation model for landslide assessment and prediction in mountainous Terrain: A case study of Chandmari landslide, Sikkim, eastern Himalayas. Geosci. J. 2005, 9, 363–373. [Google Scholar] [CrossRef]
- Romeo, R.W.; Floris, M.; Veneri, F. Area-scale landslide hazard and risk assessment. Environ. Geol. 2006, 51, 1–13. [Google Scholar] [CrossRef]
- Hart, A.B.; Hearn, G.H. Landslide assessment for land use planning and infrastructure management in the Paphos District of Cyprus. Bull. Eng. Geol. Environ. 2013, 72, 173–188. [Google Scholar] [CrossRef]
- Lan, H.X.; Wu, F.; Zhou, C.; Wang, L.J. Spatial hazard analysis and prediction on rainfall-induced landslide using GIS. Chin. Sci. Bull. 2003, 48, 703–708. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Fan, J.R.; Zhang, J.Q.; Su, F.H. Topographic factors analysis of Lushan earthquake-hit area. J. Mt. Sci. 2013, 31, 624–631. (In Chinese) [Google Scholar]
- Gall, M.; Borden, K.A.; Emrich, C.T.; Cutter, S.L. The unsustainable trend of natural hazard losses in the United States. Sustainability 2011, 3, 2157–2181. [Google Scholar] [CrossRef]
- Lin, S.K. Vulnerability, Risks, and Complexity: Impacts of Global Change on Human Habitats. Sustainability 2013, 5, 160–162. [Google Scholar] [CrossRef]
- Kayastha, P. Landslide susceptibility mapping and factor effect analysis using frequency ratio in a catchment scale: A case study from Garuwa sub-basin, East Nepal. Arab. J. Geosci. 2015, 59, 401–425. [Google Scholar] [CrossRef]
- Bathrellos, G.D.; Gaki-Papanastassiou, K.; Skilodimou, H.D.; Papanastassiou, D.; Chousianitis, K.G. Potential suitability for urban planning and industry development using natural hazard maps and geological-geomorphological parameters. Environ. Earth Sci. 2012, 66, 537–548. [Google Scholar] [CrossRef]
- Kritikos, T.; Davies, T. Assessment of rainfall-generated shallow landslide/debris-flow susceptibility and runout using a GIS-based approach: Application to western southern ALPS of New Zealand. Landslides 2014. [Google Scholar] [CrossRef]
- Chen, W.; Li, W.P.; Hou, E.K.; Zhao, Z.; Deng, N.D.; Bai, H.Y.; Wang, D.Z. Landslide susceptibility mapping based on GIS and information value model for the Chencang District of Baoji, China. Arab. J. Geosci. 2014, 7, 4499–4511. [Google Scholar] [CrossRef]
- Melo, R.; Vieira, G.; Caselli, A.; Ramos, M. Susceptibility modelling of hummocky terrain distribution using the information value method (Deception Island, Antarctic Peninsula). Geomorphology 2012, 155–156, 88–95. [Google Scholar] [CrossRef]
- Xu, W.B.; Yu, W.J.; Jing, S.C.; Zhang, G.P.; Huang, J.X. Debris flow susceptibility assessment by GIS and information value model in a large-scale region, Sichuan Province (China). Nat. Hazards 2013, 65, 1379–1392. [Google Scholar] [CrossRef]
- Sharma, L.P.; Patel, N.; Ghose, M.K.; Debnath, P. Development and application of Shannon’s entropy integrated information value model for landslide susceptibility assessment and zonation in Sikkim Himalayas in India. Nat. Hazards 2015, 75, 1555–1576. [Google Scholar] [CrossRef]
- Oliveira, S.C.; Zêzere, J.L.; Catalão, J.; Nico, G. The contribution of PSInSAR interferometry to landslide hazard in weak rocks dominated areas. Landslides 2015, 12, 703–719. [Google Scholar] [CrossRef]
- Huang, Y.; Zheng, L.; Wang, D.C.; Chen, W.G.; Wang, Q. Spatial Distribution of Fragmentation by Diversion-Typed Hydroelectric Plant Exploitation in East Baoxing Catchment from 1999 to 2013. Sustainability 2015, 7, 3515–3527. [Google Scholar] [CrossRef]
- Li, W.L.; Huang, R.Q.; Tang, C.; Xu, Q.; Westen, C.V. Co-seismic Landslide Inventory and Susceptibility Mapping in the 2008 Wenchuan Earthquake Disaster Area, China. J. Mt. Sci. 2013, 10, 339–354. [Google Scholar] [CrossRef]
- Lan, H.X.; Zhou, H.C.; Gao, X.; Cheng, W.M.; Wang, Z.H.; Yang, Z.H.; Li, L.P.; Wu, Y.M. Secondary geological hazard assessment and hazard mitigation countermeasures in Lushan, Ya’an Earthquake, Sichuan Province. Prog. Geogr. 2013, 32, 499–504. (In Chinese) [Google Scholar]
- Ayalew, L.; Yamagishi, H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda Yahiko Mountains, Central Japan. Geomorphology 2005, 65, 15–31. [Google Scholar] [CrossRef]
- Papadopoulou-Vrynioti, K.; Bathrellos, G.D.; Skilodimou, H.D.; Kaviris, G.; Makropoulos, K. Karst collapse susceptibility mapping considering peak ground acceleration in a rapidly growing urban area. Eng. Geol. Eng. Geol. 2013, 158, 77–88. [Google Scholar] [CrossRef]
- Yin, K.L.; Yan, T.Z. Statistical prediction model for slope instability of metamorphosed rocks. In Proceedings of the 5th International Symposium on Landslides, Lausanne, Switzerland, 10–15 July 1988; Bonnard, C., Ed.; Balkema: Rotterdam, The Netherland, 1988; Volume 2, pp. 1269–1272. [Google Scholar]
- Park, S.H.; Goo, J.M.; Jo, C.H. Receiver Operating Characteristic (ROC) Curve: Practical Review for Radiologists. Korean J. Radiol. 2004, 5, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Fratinni, P.; Crosta, G.; Carrara, A. Techniques for evaluating the performance of landslide susceptibility models. Eng. Geol. 2010, 111, 62–72. [Google Scholar] [CrossRef]
- Pereira, S.; Zêzere, J.L.; Bateira, C. Technical Note: Assessing predictive capacity and conditional independence of landslide predisposing factors for shallow landslide susceptibility models. Nat. Hazards Earth Syst. Sci. 2012, 12, 979–988. [Google Scholar] [CrossRef]
- Xu, C.; Dai, F.C.; Xu, X.; Lee, Y.H. GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China. Geomorphology 2012, 145–146, 70–80. [Google Scholar] [CrossRef]
- Wu, X.L.; Niu, R.Q.; Ren, F.; Peng, L. Landslide susceptibility mapping using rough sets and back-propagation neural networks in the Three Gorges, China. Environ. Earth Sci. 2013, 70, 1307–1318. [Google Scholar] [CrossRef]
- Chalkias, C.; Ferentinou, M.; Polykretis, C. GIS supported landslide susceptibility modeling at regional scale: An expert-based fuzzy weighting method. ISPRS Int. J. Geo-Inf. 2014, 3, 523–539. [Google Scholar] [CrossRef]
- Lee, S.; Pradhan, B. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 2007, 4, 33–41. [Google Scholar] [CrossRef]
- Rozos, D.; Bathrellos, G.D.; Skillodimou, H.D. Comparison of the implementation of rock engineering system and analytic hierarchy process methods, upon landslide susceptibility mapping, using GIS: A case study from the eastern Achaia county of Peloponnesus, Greece. Environ. Earth Sci. 2011, 63, 49–63. [Google Scholar] [CrossRef]
- Xu, C.; Dai, F.C.; Yao, X.; Chen, J.; Tu, X.B.; Cao, Y.B.; Xiao, J.Z. GIS based certainty factor analysis of Landslide triggering factors in Wenchuan earthquake. Chin. J. Rock Mech. Eng. 2010, 29, 2972–2981. (In Chinese) [Google Scholar]
- Miao, C.Y.; Ni, J.R.; Borthwick, A.G.L. Recent changes in water discharge and sediment load of the Yellow River basin, China. Prog. Phys. Geogr. 2010, 34, 541–561. [Google Scholar] [CrossRef]
- Akbar, T.A.; Ha, S.R. Landslide hazard zoning along Himalayan Kaghan Valley of Pakistan—By integration of GPS, GIS, and remote sensing technology. Landslides 2011, 8, 527–540. [Google Scholar] [CrossRef]
- Mercer, J.; Kurvits, T.; Kelman, I.; Mavrogenis, S. Ecosystem-based adaptation for food security in the aims SIDS: Integrating external and local knowledge. Sustainability 2014, 6, 5566–5597. [Google Scholar] [CrossRef] [Green Version]
- Miao, C.Y.; Yang, L.; Chen, X.H. The vegetation cover dynamics (1982–2006) in different erosion regions of the Yellow River basin, China. Land Degrad. Dev. 2012, 23, 62–71. [Google Scholar] [CrossRef]
- Cui, P.; Chen, X.Q.; Zhang, J.Q.; Yang, Z.J.; You, Y.; Fan, J.R.; Su, F.H.; Kong, Y.D.; Zhu, X.H. Activities and Tendency of Mountain Hazards Induced by the Ms7.0 Lushan Earthquake, 20 April 2013. J. Mt. Sci. 2013, 31, 257–265. (In Chinese) [Google Scholar]
- Miao, C.Y.; Ashouri, H.; Hsu, K.; Sorooshian, S.; Duan, Q.Y. Evaluation of the PERSIANN-CDR daily rainfall estimates in capturing the behavior of extreme precipitation events over China. J. Hydrometeorol. 2015, 16, 1387–1396. [Google Scholar] [CrossRef]
- Chen, Y.C.; Wu, C.F.; Lin, S.H. Mechanisms of forest restoration in landslide treatment areas. Sustainability 2014, 6, 6766–6780. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Wang, D.; Huang, Y.; Wang, Z.; Zhang, L.; Guo, Q.; Chen, W.; Chen, W.; Sang, M. Landslide Susceptibility Mapping Based on Selected Optimal Combination of Landslide Predisposing Factors in a Large Catchment. Sustainability 2015, 7, 16653-16669. https://doi.org/10.3390/su71215839
Wang Q, Wang D, Huang Y, Wang Z, Zhang L, Guo Q, Chen W, Chen W, Sang M. Landslide Susceptibility Mapping Based on Selected Optimal Combination of Landslide Predisposing Factors in a Large Catchment. Sustainability. 2015; 7(12):16653-16669. https://doi.org/10.3390/su71215839
Chicago/Turabian StyleWang, Qianqian, Dongchuan Wang, Yong Huang, Zhiheng Wang, Lihui Zhang, Qiaozhen Guo, Wei Chen, Wengang Chen, and Mengqin Sang. 2015. "Landslide Susceptibility Mapping Based on Selected Optimal Combination of Landslide Predisposing Factors in a Large Catchment" Sustainability 7, no. 12: 16653-16669. https://doi.org/10.3390/su71215839
APA StyleWang, Q., Wang, D., Huang, Y., Wang, Z., Zhang, L., Guo, Q., Chen, W., Chen, W., & Sang, M. (2015). Landslide Susceptibility Mapping Based on Selected Optimal Combination of Landslide Predisposing Factors in a Large Catchment. Sustainability, 7(12), 16653-16669. https://doi.org/10.3390/su71215839