
Sustainability 2015, 7, 3129-3145; doi:10.3390/su7033129 

 

sustainability 
ISSN 2071-1050 

www.mdpi.com/journal/sustainability 

Article 

Multi-Temporal Patterns of Urban Heat Island as Response to 
Economic Growth Management 

Anibal Gusso 1,2,*, Cristina Cafruni 3, Fabiane Bordin 2,4, Mauricio Roberto Veronez 2,5,  

Leticia Lenz 2,† and Sabrina Crija 2,† 

1 Environmental Engineering, Universidade do Vale do Rio dos Sinos (UNISINOS),  

São Leopoldo-RS CP275, Brazil 
2 Advanced Visualization Laboratory, Universidade do Vale do Rio dos Sinos (UNISINOS),  

São Leopoldo-RS CP275, Brazil; E-Mails: fabianebor@unisinos.br (F.B.);  

veronez@unisinos.br (M.R.V.); leticialenz95@hotmail.com (L.L.);  

sabrina.crija@hotmail.com (S.C.) 
3 Graduate Program in Collective Health, Universidade do Vale do Rio dos Sinos (UNISINOS),  

São Leopoldo-RS CP275, Brazil; E-Mail: ccafruni@hotmail.com 
4 Civil, Cartographic and Surveying Engineering, Universidade do Vale do Rio dos Sinos 

(UNISINOS), São Leopoldo-RS CP275, Brazil 
5 Graduate Program in Geology, Universidade do Vale do Rio dos Sinos (UNISINOS),  

São Leopoldo-RS CP275, Brazil 

† These authors contributed equally to this work. 

* Author to whom correspondence should be addressed; E-Mail: anibalg@unisinos.br;  

Tel.: +55-51-3591-1122 (ext. 1619); Fax: +55-51-3590-8162. 

Academic Editor: Marc A. Rosen 

Received: 16 January 2015 / Accepted: 26 February 2015 / Published: 16 March 2015 

 

Abstract: For a reliable assessment of sustainability in big cities, it is imperative to 

evaluate urban ecosystem conditions and the environment of the cities undergoing 

economic growth. Urban green spaces are valuable sources of evapotranspiration, which is 

generated by trees and vegetation; these spaces mitigate urban heat islands in cities. Land 

surface temperature (LST) is closely related to the distribution of land-use and land-cover 

characteristics and can be used as an indicator of urban environment conditions and 

development. This study evaluates the patterns of LST distribution through time by 

employing the thermal spatial distribution signature procedure using thermal infrared data 

obtained from Landsat-5 Thematic Mapper. A set of 18 images, between 1985 and 2010, 
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was used to study the urban environment during summer in 47 neighborhoods of Porto 

Alegre, Brazil. On a neighborhood scale, results show a non-linear inverse correlation  

(R² = 0.55) between vegetation index and LST. The overall average of the LST is 300.23 K 

(27.8 C) with a standard deviation of 1.25 K and the maximum average difference of 

2.83 K between neighborhoods. Results show that the Thermal Spatial Distribution 

Signature (TSDS) analysis can help multi-temporal studies for the evaluation of UHI 

through time. 

Keywords: thermal remote sensing; urban environment; economic growth; UHI 

 

1. Introduction 

Owing to civilization in the 19th century, land use cover was strongly transformed without 

precedent, which is strongly related to the high acceleration of industrialization. In recent decades, 

excessive local demands on environmental systems have become global in scope [1]. Since then, soil 

occupation processes have been frequently demonstrated to be in disagreement with sustainable 

development concepts. Although there are a number of diverse definitions of urban sustainability, the 

core value of urban sustainability always lies in the balance of environmental, economic and social 

development [2,3]. However, the monitoring of local environmental problems and planning has been 

increasingly perceived as an institutional and governmental tool for introducing principles of 

sustainable development as well as for serving as urban sustainability indicators [2]. Herein, 

environmental problems refer to any human-induced damage to the physical environment resulting 

from land use and land cover (LULC), estate pressure, inadequate waste management and unintended 

side effects caused by human activity in the urban environment. 

Surface and atmospheric modifications caused by urbanization generally lead to a modified thermal 

climate, which is warmer than the surrounding non-urbanized areas [4]. Cities use construction materials, 

such as concrete and asphalt, which do not allow water to penetrate into the soil. In addition, a high 

proportion of the incident shortwave radiation is absorbed and transformed into sensible heat [5]. This 

phenomenon, which modulates the air temperature of the lowest layers in the urban atmosphere, is called 

urban heat island (UHI); it is central to the surface energy balance, it helps to determine the internal 

climate of buildings and it affects the energy exchanges that affect the comfort of city dwellers [4]. 

It is essential to have knowledge about UHI in earth sciences for urban climatology, global 

environmental change and management practices in the urban environment because Land Surface 

Temperature (LST) is closely related to the distribution of LULC characteristics [6,7], and the physical 

conditions and properties of the vegetation types and surrounding urban environment are key factors 

that determine LST distribution [8]. 

It is well known that shade trees and even small plants for land cover, such as shrubs and grass, help 

cool the urban environment [9]. Green space or vegetation areas are, in an absolute sense, an 

indispensable component of urban sustainability [2]. Several benefits can be ascribed to green spaces 

in the urban environment caused by their capacity of cooling the air [10] and reducing the available 

surfaces for successively radiating energy reflectance. Furthermore, urban green spaces are always 
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beneficial, not only for mitigating UHI, but also for evapotranspiration, which is generated by trees 

and vegetation in cities, and for cooling the air by using the surrounding urban environment heat from 

the air to evaporate water [11]. 

A literature review has indicated that thermal satellites with adequate temporal and spatial 

resolution data can accurately estimate surface physical properties and other related variables [12–17]. 

Study from [18] has demonstrated that urban areas could be studied and identified by means analyses 

of thermal remote sensing data. 

Most of the research has focused on the classification accuracy of features and mapping. However, 

there has been significantly less interest in the development of methods that concentrate on the 

understanding of statistical implications on the classification of the temporal resolution of features and 

LULC through time. 

The Landsat data series satellites have collected several years of data in the thermal spectral band 

and have been used in several studies on UHI [19]. For the reliable assessment of sustainability in big 

cities, it is imperative to evaluate urban ecosystem conditions and the environment for cities 

undergoing economic growth. Thus, the launch of the Landsat Data Continuity Mission (LDCM) on  

11 February 2013, which carried the thermal infrared sensor (TIRS), will extend the Landsat data 

archive from the earlier missions, thereby allowing long-term studies [20]. 

In this study, we discuss the development of a quantitative methodology for the evaluation of the 

general physical conditions of the urban environment based on the vegetated land cover characteristics 

by monitoring of the LST distribution in the urban environment. Multi-temporal imagery analysis is 

essential to UHI studies [21]. We also evaluate a specific approach for the identification of  

multi-temporal patterns of LST distribution in the urban environment. 

The concept for the assessment of urban LST distribution is referred to as thermal spatial 

distribution signature (TSDS) from the study of [18]. This paper takes their method a step further and 

combines the applicability of medium spatial resolution satellite imagery and provides an objective 

methodology for decision makers and planners. In this paper, we do not evaluate the absolute 

temperature fluctuations in different periods. Instead, we evaluate the increase of separability between 

temperatures of neighborhoods after several years of urban environment development. The objective is 

to develop an LST-based procedure using medium-resolution sensor images, which can aid in the 

understanding of urban environment development and land cover change assessment. 

2. Materials and Methods 

2.1. Study Area 

The study area is the city of Porto Alegre, located at latitude of 30°01′59′′ South and longitude of 

51º13′48′′ West. The region predominantly experiences a subtropical mid-latitude climate (Cfb) with 

four well-defined seasons [22]. The mean annual temperature is 19.5 C, varying between 12 ºC and 

26 C. The monthly mean precipitation is 114 mm, and the yearly-accumulated average precipitation is 

1373 mm with no dry period. The city is covered by a Landsat scene path 221/row 081. The 

municipality elevation average is 19 m above the sea level, with the total population of the city being 

1,467,816 in 2013 [23]. This study analyzes 47 neighborhoods near downtown, which covers an area 
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of 9077 ha. Neighborhoods are distributed alongside the downtown from west side to east side towards 

rural areas. Figure 1 shows the study area. 

 

Figure 1. Urban area of Porto Alegre in Brazil and the study area with 47 neighborhoods. 

2.2. Satellite Imagery and Data Set 

Our analysis combined Landsat-5 TM images from different periods. A set of 25 images was 

initially used to study vegetation conditions and the development of the urban environment between 

1985 and 2010; however, only 18 images were specially selected because of better atmospheric conditions. 

To evaluate the most precise combination data for multi-temporal analysis, the key question is what 

are the window periods and their extension for performing adequate imagery combination and for 

extracting LULC diagnosis. By using this conceptual question, the TSDS procedure consists of the 

analysis and interpretation of statistical data associated with LULC, which leads to the spatial and 

temporal variations of LST distribution. In this study, the data sources used for TSDS distribution 

analysis included the following information levels: 

i. Monthly rainfall data obtained from the Database for Meteorological Research of the Instituto 

Nacional de Meteorologia [24], which covers the period from October to December. These data 

were used to identify drought periods in the warmest season; 

ii. Climatological normal of accumulated rainfall from October to December; 

iii. Landsat-5 TM images distributed in Brazil by the Instituto Nacional de Pesquisas Espaciais [25]; 

iv. Digital geospatial reference from National Aeronautics and Space Administration-Global Land 

Survey [26].  
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2.3. Imagery Calibration and Data Generation 

2.3.1. Reflectance Data Generation 

Reflectance values were generated by complete calibration and correction of digital numbers (DN) 

according to Landsat Calibration Documents [27]. After conversion to at-satellite radiance, each image 

was converted to at-satellite reflectance (assuming a uniform Lambertian surface under cloudless 

conditions). First, in this study, DN were converted into radiance and next to reflectance, according to 

the calibration parameters of [28] and LST [29] at the same math code. Regarding the calibration of 

reflectance channels, for the accurate transformation of DN into reflectance data, the images were also 

atmospherically corrected according to [30], as variations of atmospheric conditions are spatially and 

temporally significant [27]. Correction includes atmospheric- and sensor-related parameters and then 

the derivation of physical units, such as reflectance [31]. In the strict sense, full image correction 

involves both applications of absolute calibration coefficients for sensors and parameters related to 

atmospheric correction to derive surface reflectance estimates [27]. By this approach, the data 

necessary to perform atmospheric correction in the visible bands 1–5 can be obtained from the image 

itself [32] by restricting the atmospheric influence, as the radiation transfer from the Earth’s surface to 

on-orbit sensors causes a weighted displacement effect, which depends on the wavelength of visible 

bands on a per-pixel-basis demand. Considering the imagery processing protocol established in [17] as 

a quality control for the atmosphere effect, Landsat 5 TM imagery was submitted to a threshold 

criterion to which no image was used when the amount of atmospheric contamination effects exceeded 

60 DN in the blue band. 

TOA reflectance can be obtained by applying the radiance–reflectance conversion equation, 

according to Equation (1). 

ρ ൌ
π L dଶ

ESUN cosθୱ
 (1)

Where,  

Lλ is the spectral radiance at the sensor in each band (W m−2 sr−1μm−1); 

d is the distance between the Earth and the Sun in astronomic units (UA); 

ESUNλ is the average solar atmospheric irradiance (W m−2 μm−1); and 

θs is the solar zenith angle (degrees). 

Reflectance values from bands 3 and 4 were used to generate the enhanced vegetation index  

(EVI-2) data according to Equation (2) from [33]. EVI-2 is a two-band version of EVI that has been 

developed for sensors without a blue band [33]. It retains sensitivity and linearity as EVI for high leaf 

area index (LAI) canopies but does not rely on the usually poor-quality blue band [34]. Once we have 

the corrected TOA reflectance, EVI-2 can be computed without a blue band but remains equivalent to 

EVI. In this way, EVI-2 calculation (Equation (2)) can be used as an acceptable substitute of EVI over 

atmospherically corrected pixels [33]. NIR and Red represent the obtained reflectance in the  

near-infrared and red bands of Landsat-5 TM, respectively. 

EVI2 ൌ 2.5
NIR െ Red

NIR  2.4 Red  1
 (2)
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2.3.2. Thermal Data Generation 

For thermal analysis, from band 6, after converting DN into absolute radiance values, LST is 

computed from at-satellite brightness temperatures (i.e., blackbody temperature) under the assumption 

of unity emissivity and using pre-launch calibration constants [27,35]. Then, LST is corrected to  

non-unity surface emissivity according to the formulation from [29], which does not perform 

corrections to atmospheric effects (absorption and emissions along the path) because of the difficulty 

with estimating water vapor content from thermal detection in the mono-window band 6 [36,37]. 

The conversion of the detected thermal radiation to brightness temperature [27] is given in Equation (3), 

which is a special case of Plank’s radiating law. Numerous factors need to be quantified to assess 

accurate LST retrieval from satellite thermal data, including sensor radiometric calibration [38], 

atmospheric correction [30,39], surface emissivity correction [40] and physically driven conditions of 

land coverage [7]. Next, LST is obtained by correcting the radiating surface temperature to the surface 

emissivity (ε), which is the ratio of the thermal energy radiated by the surface to the thermal energy 

radiated by a blackbody at the same temperature [40]. The accurate retrieval of LST from thermal 

spectral bands also requires an estimate of emissivity from surface coverage [41]. Surface emissivity is 

controlled by factors, such as water content, chemical composition, structure and roughness [42]. 

Emissivity depends on the LAI as given by Equation (4) [40] as follows: 

LST ൌ
K2

ln ቀகొాଵ


 1ቁ
 (3) 

ε ൌ 0.97  0.0033 LAI  (4) 

where, 

LST is the emissivity-corrected surface temperature (K); 

K1 is the calibration constant 1 (607.76 W m−2 sr−1μm−1); 

K2 is the calibration constant 2 (1260.56 W m−2 sr−1μm−1); 

L is the blackbody radiance of the thermal band 6 (W m−2 sr−1μm−1); and 

εNB is the emissivity factor, which depends on the type of surface coverage conditions when LAI < 3.0, 

εNB = 0.98 because the increased water content in vegetation actually increases emissivity capacity. 

The generated image product is composed of cloud-free images and good-quality geo-referencing 

metrics. The latter was used to provide accurate geo-registration on a per-pixel-basis of the selected 

images, as shown in Table 1. 

Table 1. Selected Landsat-5 TM imagery for monitoring the studied area. 

Imagery Land Surface Temperature (LST) Enhanced Vegetation Index (EVI-2) 

 Date Min. Max. Average SD Min. Max. Average SD 

1 05 Jan. 1985 291.3 303.5 298.6 1.22 −0.19 0.51 0.09 0.100 

2 06 Feb. 1985 292.2 304.4 298.7 1.45 −0.27 0.53 0.11 0.113 

3 24 Jan. 1986 298.6 310.8 305.4 1.51 −0.27 0.52 0.11 0.113 

4 20 Feb. 1990 289.4 302.7 297.7 1.77 −0.32 0.54 0.11 0.119 

5 06 Jan. 1991 296.2 319.3 305.1 1.83 −0.28 0.53 0.11 0.117 

6 09 Jan. 1992 293.8 304.0 299.6 1.24 −0.23 0.53 0.10 0.107 
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Table 1. Cont. 

Imagery Land Surface Temperature (LST) Enhanced Vegetation Index (EVI-2) 

 Date Min. Max. Average SD Min Max. Average SD 

7 12 Feb. 1993 292.2 302.7 297.9 1.32 −0.21 0.54 0.11 0.116 

8 30 Jan. 1994 296.0 307.6 302.3 1.42 −0.30 0.52 0.11 0.116 

9 06 Jan. 1997 293.8 305.6 299.7 1.46 −0.16 0.52 0.10 0.110 

10 27 Dec. 1998 292.9 305.6 300.5 1.63 −0.55 0.68 0.09 0.110 

11 02 Feb. 2001 291.5 303.1 297.4 1.28 −0.25 0.52 0.09 0.110 

12 20 Jan. 2002 294.0 304.0 299.6 1.16 −0.24 0.51 0.09 0.105 

13 11 Feb. 2004 289.9 304.4 298.1 1.50 −0.37 0.51 0.09 0.107 

14 12 Jan. 2005 287.5 313.6 305.2 2.02 −0.35 0.49 0.08 0.096 

15 02 Jan. 2007 294.9 307.6 301.7 1.68 −0.32 0.52 0.10 0.113 

16 06 Feb. 2008 290.4 305.2 298.3 1.75 −0.27 0.54 0.10 0.110 

17 07 Jan. 2009 289.4 303.1 296.5 1.76 −0.25 0.51 0.10 0.116 

18 28 Dec. 2010 293.1 309.3 301.7 2.17 −0.39 0.51 0.10 0.113 

Note: SD: Standard Deviation. 

2.4. LST and Biophysical Descriptors 

In the natural environment, dry, bare and low-density soils, for example, have been linked to high 

LST as a result of the relatively low thermal inertia [43]. These thermal properties vary with the type 

of soil and moisture content [43]. On the other hand, in the urban environment, non-evaporative and 

impervious surface areas not only play an important role in UHI formation [14] but also in heat 

generated by anthropogenic sources, such as traffic and industries [44]. This is because the emissivity 

of soils or sparsely vegetated areas is a function of soil moisture conditions and soil  

density [17,41,44,45]. The physical fundamentals for such a relation rely on the fact that for any 

surface material, certain internal properties, such as heat capacity, thermal conductivity and inertia, 

play important roles in governing the temperature of a body at equilibrium with its surroundings [46]. 

Leaves and branches reduce the amount of solar radiation that reaches the area below the canopy of 

a tree or plant reducing the energy to be converted to heat on the surface. In the summer season, 

generally 10%–30% of the Sun’s energy reaches the area below a tree, with most of it being absorbed 

by leaves and used for photosynthesis and some being reflected back into the atmosphere [9]. Even so, 

thermal responses for vegetation can also vary highly as a function of the biophysical properties of the 

vegetation itself as well [6,47]. This concept is based on the assumption that vegetation coverage 

mitigates high LST occurrence values. The relationship between thermal characteristics of surface and 

vegetation indices has been extensively documented in the literature [7,13,48–52]. Many studies have 

observed a negative relationship between LST and vegetation indices. Given this and considering that 

temperature is closely related to physiological activities of vegetation cover, LST can be a useful 

measure of the physiological activity of the top canopy leaves when a leaf cover is sufficiently high 

such that they are not affected by background temperature from soil [50]. 

For UHI studies, the LST and vegetation index relationship has been utilized by several authors [19,53] 

to understand the role of LST in urban development and vegetation coverage dynamic assessment.  

The LST obtained from satellite imagery is, strictly speaking, a measure of the “skin temperature” or 

surface radiometric energy (kinetic) emitted from the land surface and is related to the thermal infrared 
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(TIR) radiation rather than air temperature [36,41], which is more commonly used in physiological 

studies [50]. 

In surface areas characterized by full vegetated or fraction of vegetation cover, thermal properties 

from non-vegetated surface areas can significantly influence the surrounding measurements of LST 

through the thermal processes related to direct sunlight interception. In this way, when studying a 

histogram of LST distribution through time, it is expected that the highly developed and urbanized 

areas or sparsely vegetated areas are unable to cool the surrounding sensible heat by evapotranspiration, 

as it typically does, which leads to a spread of LST range by increasing statistical indicators in terms of 

the variance of distribution towards higher LST values. However, vegetation index measurements are 

subject to seasonal variations, which may influence the results on UHI studies, and thus, such 

measurements may not serve as a good indicator for urban development [44]. 

2.5. TSDS Approach 

The study of LST is closely related to the distribution of LULC characteristics. Typically, simplified 

models that describe LULC can provide a link between LST and physical spatial distribution. 

However, LST is highly variable through time, which does not allow the comparison of absolute 

values in a simplified conceptual approach. In addition, further statistical analysis plays an important 

role in linking LST to the surface characteristics [47]. In doing so, to better understand the physical 

descriptors of heating effects over the urban environment, as a representative of their development 

through time, we only compared the summer season imagery from late December to February, in order 

to detect the most pronounced LST values associated with surface coverage. 

The TSDS procedure using TIR data obtained from Landsat-5 TM was applied to evaluate the 

radiometric pattern of the urban environment and vegetation coverage conditions. TSDS is a criterion 

for multi-temporal imagery combination of data, which is based on the relation between the thermal 

characteristics of surface and coverage and consists of the standard deviation (SD) analysis of LST to 

compare images by means similarity characteristics. This is because during some periods, intensive 

cover change caused by seasonal conditions or even different government policies can cause a rapid 

urban environment change in relatively few years. 

By using the TSDS approach over the urban environment, it is possible to observe variations in the 

LULC area through time, and after that, to stabilize groups of similar imagery data according to their 

spatial distribution conditions. Furthermore, regarding the relation between LST and vegetation index, 

and considering the same study area through time, heterogeneous surface coverage with different types 

of impervious surface coverage presents a range of temperature distribution wider than that where 

homogeneous green areas prevail [44]. 

It is important to note that the studied urban area in the early period (1980s) was under physically 

driven conditions of surface and vegetation coverage different from those in the most recent period. 

The main problem for an individual analysis of the imagery data set is associated with the high 

variability related to urban environment dynamics [35] and seasonality [44]. 

The challenge is to obtain the best combination of images, which are most representative of similar 

development conditions for each neighborhood, not only for the spatial characterization of land use/land 

coverage in the urban environment, but also for time proximity, which characterizes the time window 
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of chronological events of urban environment development. To obtain an accurate combination of 

images, it is important to consider time separability. In doing so, a combination of a group of images 

that represent the same stabilized conditions is required. 

2.6. Grouping Multi-Temporal Imagery 

According to TSDS methodology, after the SD deviation analysis and before any further comparison, 

imagery data must be grouped into a set of images having similar SD values, as shown in Figure 2. 

This is because different SD values imply some development or LULC change, which is different from 

other images with different SD values, even when separated by a few years. We performed the 

following six steps for grouping the selected images according to TSDS analysis: 

i. Individually perform SD analysis of LST distribution for each image available. 

ii. Set groups of images by their temporal proximity. 

iii. Set groups of selected images with similar SD. 

iv. Calculate the average LST for each selected group. Even considering that the average 

calculation will significantly change the LST values, this processing step is important because 

the aim is to preserve the spatial distribution characteristic, not the values. 

v. Calculate the LST average in the entire study area, which are 47 neighborhoods in this case, on 

a pixel basis. This step is important to the evaluation of the LST deviation from the first image. 

It is important to note that, although no conclusion can be observed about the variation of the 

LST values through time, caused by temperature and weather seasonality, the spatial characteristics 

of LST distribution, are preserved. 

vi. Compare the imagery data between neighborhoods. A scatterplot comparing LST with EVI-2 on a 

neighborhood basis can show the LST trend of neighborhoods through time in the multi-temporal 

imagery data. 

The analysis of vegetation coverage conditions using the LST distribution indicated that in the first 

period, a wide range of LST was associated with high fractions of impervious surfaces or degraded 

vegetation conditions. The analysis of EVI-2 distribution indicated that vegetation coverage density 

did not increase in the neighborhoods; however, there has been an overall spread of vegetation 

coverage areas. 

There are several conditions of LULC related to seasonal characteristics and urban environment 

development, which can cause variability of SD. Figure 2 shows bar-chart diagrams for the 18 dates 

monitored between 1985 and 2010. A highly variable trend of LST distribution through time was 

observed, caused by its characteristics of urbanization and development. The general variation of SD 

values was between 1.16 and 2.17. This figure also shows the groups of images selected to perform the 

analysis. For group formation, only 12 images were selected (three for each group). Regarding the 

grouping step of LST, which combines the three available images for each group in a simple average, 

the obtained LST variation for each group was 294.94 to 305.43 K (average = 300.89 K) in the  

first group; 294.89 to 304.20 K (average = 299.93 K) in the second group; 292.66 to 303.12 K 

(average = 298.35 K) in the third group; and 292.01 to 305.32 K (average = 298.84 K) in the  

fourth group. 
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Figure 2. Standard deviation distribution of LST through time in the study area from 1985 

to 2010 and selected groups obtained with TSDS procedure. 

Combining all imagery data, it is possible to identify the major patterns of LST distribution. The 

overall average of the LST, from all 18 images selected, was 300.23 K (27.8 C) with a standard 

deviation of 1.25 K with the maximum average difference of 2.83 K between the neighborhoods. The 

intra-period averages were 1.23, 1.20, 1.18 and 1.58 for the first, second, third and fourth periods, 

respectively. It is also important to note that the intra-period of SD was in agreement with the general 

behavior of the multi-temporal data. This result indicates that the LST distribution adheres to the 

evaluated physical concept of vegetation coverage in the two different studied periods. Figure 3 shows 

the LST averages obtained from all selected images in the study area. 

 

Figure 3. Average of LST between 1985 and 2010 and estimated UHI in Porto Alegre 

municipality with the streets in the neighborhoods highlighted: (A) Floresta and (B) Vila 

João Pessoa. 

3. Results and Discussion 

Validation Comparison for UHI Identification 

After the formation of groups by the TSDS approach, the imagery data between neighborhoods can 

be compared. Figure 4 shows scatterplots of the LST trend of neighborhoods through time in the  

multi-temporal imagery data. 
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The validation step, which compares the obtained results of TSDS estimates with those obtained 

from EVI-2, for the evaluation of vegetation cover, indicated that the two estimates were in good 

agreement. The LST and EVI-2 distributions inside the urban environment, as shown in Figure 4, 

revealed a wider range of LST in the fourth period than in the previous ones. 

The most pronounced variation occurred in the neighborhoods that received the train line in 1985. 

The train line goes from downtown in the west towards the north. LST colors in dark blue and dark red 

represent the highest and lowest temperatures, respectively. Results also show that the SD of LST 

distribution is related to the amount of green vegetated areas and urban environment conditions [17]. 

This is in agreement with the expected inverse mathematical relation based on the physical assumption 

that LST and EVI-2 data, at a given pixel, vary inversely over time. To better understand the LST 

distribution of an urban environment, all data were compared using non-linear regression analysis. We 

expect to find better correlations by using a negative second-order polynomial relation as described by 

the mathematical equation y = −α × x2 + β × x + γ. 

(a) (b) 

(c) (d) 

Figure 4. Scattergram of the estimated LST distribution in the urban area of Porto Alegre 

municipality, considering the 47 neighborhoods within the four groups (a–d), respectively. 

By considering the bioclimatic conditions of vegetation coverage in the urban environment, the 

challenge is to understand what represents vegetation development. Background contamination can 

actually promote imbalance in the relation between bands 3 and 4 (EVI-2 calculation), potentially 

leading to decreases in the resulting EVI-2 values under the influence of wetland areas. Regarding the 

seasonal effects and fluctuation of vegetation cover conditions, it is well known that in drought-free 
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years, well-developed vegetation reflects only a small portion of incident solar radiation in the visible 

band of the spectrum because of chlorophyll absorption properties and other plant pigments that absorb 

sunlight [54]. In the NIR, plants reflect much more because of a scattering effect caused by the internal 

structure and water content of leaves [55]. The performance of the TSDS was validated by LST 

distribution analysis in relation to the vegetation index EVI-2 data. This analysis relates the LST to the 

vegetated land coverage capacity to perform evapotranspiration. 

On the neighborhood scale, results show a non-linear inverse correlation (R² = 0.55) between 

vegetation index and LST. 

An important challenge is to understand how can some increase of standard deviation of LST values 

occur without any change, or a small change, of general conditions in the EVI-2. One explanation is to 

increase the built and impervious areas with the increase of neighborhood development. Hence, it can 

be understood that the temperature of the areas increases while maintaining the same overall 

conditions of the EVI-2. These areas result in spreading a forward variation of LST, resulting in a 

smoothing on the curve as can be seen in Figure 4b–d. 

Although daily weather variations of temperatures can actually mask the range of LST distribution, 

a slight decrease in the EVI-2 values, below 0.1 units, was associated with the neighborhoods in the 

third and fourth groups. A decreasing trend of the total vegetated areas was also observed by analyzing 

the EVI-2 distribution. In this way, it is worthwhile to note that in recent years, as the overall 

vegetation cover conditions remained almost the same, the built and impervious areas were intensified 

because of an increase in the surrounding commercial and economical activities. This increase is 

particularly true towards the northern neighborhoods (Floresta, Navegantes e São Geraldo), which 

have had the train line since 1985. 

To explain the changes in the temperature pattern occurring in the three districts of Porto Alegre, we 

assume an urban metabolism concept. This concept performs an analogy between an organism and a 

city in which there is a stream of inflows and outflows to the urban system, storage of energy, water, 

materials, nutrients and waste [56]. According to [57], the metabolic flux of a city is influenced by 

factors such as land use, spatial configuration, population density, population size, economic status, 

infrastructure and lifestyle of its residents. The analysis of these indicators and their relation to the 

metabolic flux of a city are crucial for understanding urban metabolism, and hence, in the case of our 

study, may help to explain the increase in LST occurring in three northern neighborhoods over  

the 25-year period. 

Conducting a study in the United States, for cities with a population over 100,000 [3], observed that 

urban forests were highly related to income. Considering Porto Alegre, each neighborhood has different 

characteristics caused by the patterns of urban development prevailing over the past decades. In the 

case of Floresta, Navegantes and São Geraldo neighborhoods, two factors stand out. The first one is 

related to the presence of the train line since 1985, and some large avenues, which have access roads 

into and out of the city, and are present in the two districts; the second one concern the existence of 

industrial plants, corporate services and companies located in these regions. 

The two factors may be somewhat inter-related to the increase of pollution, population decline and 

imbalance in land use. As observed by [3], tree presence reflects, to some extent, the market forces 

determined by the welfare of the citizens. In these neighborhoods, results indicate that the most 

pronounced increase of average LST was associated with the installation of surface train facilities in 
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April 1985 and occurred in two periods. In the first period, the higher LST averages immediately 

occurred in the neighborhoods directly associated with the train line. In the second period, an increase 

in the average LST was observed in some adjacent neighborhoods. This spreading area of average LST 

coverage was primarily identified to occur towards the north of the city’s downtown border (west sites) 

in developing new neighborhoods. However, an increase in the average LST was not detected in the 

new vegetated areas of the same neighborhoods. 

A different approach must be considered to the case of Vila João Pessoa, which appears to exhibit 

another particular behavior of urban environment development. Vila João Pessoa is the first suburban 

neighborhood, constructed around 1940, developed with the same sub-standard conditions and without 

adequate planning [58], maintaining the same poor conditions of infrastructure, residential and high 

population density and vegetated areas and low standard trees for years. Most of its population live in a 

society with no fixed job, and survive on the collection of waste (industrial waste, plastic bottles). In 

2010, the average income of residents of Vila João Pessoa was 3.23 salary units, with the average for 

the entire Porto Alegre city being 5.3 salary units. Higher and lower salary units income were observed 

in neighborhoods which are far away from downtown and were not included in the study area, namely 

Pedra Redonda and Serraria, with 18.24 and 5.24 salary units, respectively. 

Although it is possible that reduced public health policies contribute to the precarious situation, 

which leads to the strengthening of low educational status regarding the need for environmental 

preservation [58]. The identification of such patterns may help develop strategies and overcome 

obstacles in the urban environment, promoting sustainability and quality of life [59]. 

4. Conclusions 

Our results show that TSDS analysis can help multi-temporal studies for the evaluation of UHI 

through time. Although the multi-temporal study of UHI is a difficult task, mainly caused by 

temperature and weather seasonality, the TSDS approach can be used for imagery selection and  

pre-processing analysis. 

The TSDS approach preserves the features and spatial distributions of LULC conditions in the 

urban environment for the identification of different levels of development on a neighborhood scale. 

Additionally, the association between the LST and EVI-2 on the neighborhood level demonstrated to 

be straightforward for UHI studies. 

In summary, based on the concept of urban metabolism, some factors, such as land use and spatial 

configuration of urban areas, can be analyzed together over the years for a better understanding of UHI 

at the neighborhood scale. 

For further study, more accurate results for a pixel basis analysis can be obtained by artificial neural 

network training parameters. In this context, the launch of the LDCM on 11 February 2013 and TSDS can 

further assist the management of local and regional urban areas by providing reliable spatial information. 
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