Emergy Evaluation of Different Straw Reuse Technologies in Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Procedure for Emergy Evaluation
2.2. Emergy Indicators
Indics | Formula | Implications | References |
---|---|---|---|
EYR (Emergy yield ration) | (N + R + F)/F | Economic efficiency of straw reuse systems | [22] |
ELR (Environmental load ratio) | (F + N)/R | Environmental loading exerted by the straw reuse systems | [23] |
ESI (Emergy sustainable index) | EYR/ELR | Sustainability of the straw reuse systems | [24] |
2.3. Data Sources
Case No. | Basic information | References | |||||
---|---|---|---|---|---|---|---|
Tank type | Tank volume | Treatment capacity | Biogas yield | Heating | Straw type | ||
1 | USR | 400 m3 | 320 tons/year | 110,000 m3/year | biogas & coal | corn straw | [24] |
2 | USR | 720 m3 | 500 tons/year | 110,000 m3/year | Biogas | corn straw | [25] |
3 | CSTR | 1000 m3 | 548 tons/year | 270,000 m3/year | Coal | corn straw | [26] |
4 | VPF | 500 m3 | 460 tons/year | 182,500 m3/year | Biogas | corn straw | [27] |
5 | CSTR | 10 × 50 m3 | 480 tons/year | 128,000 m3/year | - | corn straw | [28] |
Case No. | Basic information | References | ||||
---|---|---|---|---|---|---|
Turboset | Boiler | Time | Generate electricity | Straw type | ||
1 | 1 × 25 MW | 130 tons/h | 6000 h | 150,000,000 KWH | corn straw | [29] |
2 | 1 × 30 MW | 130 tons/h | 7000 h | 4,183,000,000 KWH | corn straw | [30] |
3 | 1 × 1500 KW | 10 tons/h | 5000 h | 7,500,000 KWH | corn straw | [31] |
4 | 1 × 30 M | 130 tons/h | 7000 h | 210,000,000 KWH | corn straw | [32] |
5 | 1 × 25 M | 2 × 75 tons/h | 6000 h | 150,000,000 KWH | corn straw | [33] |
Case No. | Basic information | References | |||
---|---|---|---|---|---|
Production | Form | Electricity consumption | Straw type | ||
1 | 10,000 tons/year | briquetting | 60–80 kWh/tons | corn straw | [19] |
2 | 5000 tons/year | pellet | 93 kWh/tons | corn straw | [34] |
3 | 5000 tons/year | briquetting | 86 kWh/tons | corn straw | [34] |
4 | 20,000 tons/year | briquetting | 60–80 kWh/tons | corn straw | [35] |
5 | 81,600 tons/year | briquetting | 60–80 kWh/tons | corn straw | [36] |
Case No. | Basic information | References | |||
---|---|---|---|---|---|
Straw gasification furnace | Treatment capacity | Straw gas yield | Straw type | ||
1 | vertical destructive distillation gasifier | 183 tons/year | 365,000 m3/year | corn straw | [37] |
2 | JRQ wet biomass fixed bed gasifier | 150 tons/year | 300,000 m3/year | corn straw | [38] |
3 | JQ wet straw gasifier | 280 tons/year | 400,000 m3/year | corn straw | [39] |
4 | dry distillation-Pyrolysis gasifier | 100 tons/year | 210,000 m3/year | corn straw | [39] |
5 | fuidized-bed gasifier | 91 tons/year | 365,000 m3/year | corn straw | [40] |
Case No. | basic informations | References | ||||
---|---|---|---|---|---|---|
Straw input tons/year | Ethonal yield tons/year | Concentration g/L | Pretreatment method | Straw type | ||
1 | 300,000 | 50,000 | 22.0 | concentrated sulfuric acid | corn straw | [41] |
2 | 200,000 | 30,000 | 20.0 | concentrated sulfuric acid | corn straw | [42] |
3 | 2,700 | 300 | 24.8 | steam-explosion | corn straw | [43] |
4 | 365,000 | 50,000 | 24.8 | dilute sulfuric acid | corn straw | [41] |
5 | 3,000 | 300 | 23.0 | dilute alkali acid | corn straw | [44] |
2.4. Emergy Flow Diagrams
3. Emergy Evaluation of the Straw-Reuse Technologies
3.1. Cases of Straw-Biogas Production
No. | Item | Solar emergy (sej/year) | ||||
---|---|---|---|---|---|---|
Case No. 1 | Case No. 2 | Case No. 3 | Case No. 4 | Case No. 5 | ||
1 | Straw | 1.27 × 1017 | 1.86 × 1017 | 1.92 × 1017 | 1.12 × 1017 | 2.47 × 1016 |
2 | Water | 1.50 × 1014 | 2.61 × 1015 | 7.67 × 1013 | 5.25 × 1014 | - |
3 | Biogas(heated) | 2.05 × 1017 | - | - | 5.46 × 1012 | - |
Total natural ecosystem renewable resources (R) | 3.32 × 1017 | 1.89 × 1017 | 1.92 × 1017 | 1.13 × 1017 | 2.47 × 1016 | |
4 | Investment | - | 1.49 × 1017 | 2.46 × 1017 | 1.19 × 1017 | 4.59 × 1014 |
5 | Building & equipment | 3.01 × 1016 | - | - | - | 1.53 × 1015 |
6 | Steel plate | 2.45 × 1015 | - | - | - | - |
7 | Pretreatment agent | - | 5.93 × 1012 | - | - | - |
8 | Nutrient | 4.58 × 1013 | 5.39 × 1017 | - | - | - |
9 | Composite microbial agents | - | - | - | - | 3.25 × 1015 |
10 | Urea | - | - | - | - | 1.66 × 1015 |
11 | Electricity | 1.72 × 1016 | 9.19 × 1015 | 1.26 × 1016 | 1.14 × 1016 | 6.76 × 1013 |
12 | Human labor | 6.99 × 1015 | 2.29 × 1016 | - | 2.87 × 1017 | - |
13 | Coal | 1.93 × 1016 | 2.54 × 1017 | 1.18 × 1016 | 1.93 × 1016 | 3.57 × 1015 |
14 | Maintenance cost | 2.99 × 1015 | 7.97 × 1015 | 7.21 × 1015 | 2.39 × 1016 | 5.02 × 1014 |
15 | Desulfurizer | - | 3.08 × 1015 | - | - | - |
16 | Government grants | - | - | - | - | 7.97 × 1014 |
17 | Straw crushing fuel | - | - | - | - | 7.15 × 1014 |
Total social economic system purchased inputs (F) | 7.90 × 1016 | 7.31 × 1017 | 2.78 × 1017 | 4.41 × 1017 | 8.91 × 1015 | |
18 | Biogas | 6.92 × 1017 | 2.11 × 1019 | 1.28 × 1018 | 7.16 × 1017 | 7.04 × 1013 |
19 | Fertilizer | 1.04 × 1016 | 6.25 × 1017 | 3.63 × 1016 | 2.75 × 1014 | - |
Total system yield (Y) | 7.02 × 1017 | 2.17 × 1019 | 1.32 × 1018 | 7.16 × 1017 | 7.04 × 1013 |
3.2. Cases of Straw-Based Power Generation
No. | Item | Solar emergy (sej/year) | ||||
---|---|---|---|---|---|---|
Case No. 1 | Case No. 2 | Case No. 3 | Case No. 4 | Case No. 5 | ||
1 | Straw | 4.02 × 1019 | 4.86 × 1019 | 3.00 × 1016 | 5.51 × 1017 | 5.02 × 1019 |
2 | Cooling water | 6.35 × 1018 | 1.03 × 1020 | 1.51 × 1018 | 5.24 × 1019 | 5.91 × 1014 |
3 | Air | 3.54 × 1019 | 2.96 × 1019 | 1.06 × 1016 | 2.38 × 1019 | 4.03 × 1014 |
4 | Electricity | 4.01 × 1019 | 4.46 × 1018 | 6.73 × 1017 | 2.10 × 1019 | 1.44 × 1016 |
Total natural ecosystem renewable resources (R) | 1.21 × 1020 | 1.86 × 1020 | 2.22 × 1018 | 9.77 × 1019 | 5.02 × 1019 | |
5 | Depreciation on fixed-asset | 5.14 × 1020 | 8.97 × 1020 | 1.49 × 1018 | 6.78 × 1019 | 4.33 × 1020 |
6 | Labor & welfare | - | 4.10 × 1019 | 1.25 × 1018 | 5.26 × 1018 | 5.19 × 1018 |
7 | Electricity price subsidies | 1.71 × 1019 | 6.80 × 1018 | - | - | - |
8 | Investment, operation & maintenance | 6.50 × 1019 | 4.16 × 1019 | 1.73 × 1018 | 6.94 × 1019 | 1.04 × 1017 |
9 | Energy | - | - | 2.60 × 1018 | - | 2.25 × 1018 |
10 | Limestone | 6.64 × 1017 | 3.20 × 1018 | 2.28 × 1017 | 3.20 × 1018 | 6.64 × 1017 |
Total social economic system purchased inputs (F) | 5.96 × 1020 | 9.86 × 1020 | 7.06 × 1018 | 1.42 × 1020 | 4.4 × 1020 | |
11 | Electricity | 1.29 × 1020 | 3.58 × 1019 | 6.54 × 1018 | 1.56 × 1020 | 1.30 × 1017 |
12 | GHG emission reduction | 8.68 × 1018 | 2.91 × 1019 | - | 7.61 × 1019 | - |
Total system yield (Y) | 1.38 × 1020 | 6.48 × 1019 | 6.54 × 1018 | 2.31 × 1020 | 1.3 × 1017 |
3.3. Cases of Straw-Briquetting
No. | Item | Solar emergy (sej/year) | ||||
---|---|---|---|---|---|---|
Case No. 1 | Case No. 2 | Case No. 3 | Case No. 4 | Case No. 5 | ||
1 | Straw | 7.92 × 1018 | 4.40 × 1017 | 5.28 × 1017 | 1.38 × 1019 | 6.07 × 1018 |
Total natural ecosystem renewable resources (R) | 7.92 × 1018 | 4.40 × 1017 | 5.28 × 1017 | 1.38 × 1019 | 6.07 × 1018 | |
2 | Investment | 1.98 × 1017 | 1.17 × 1017 | 1.06 × 1017 | 3.82 × 1017 | 2.05 × 1017 |
3 | Electricity | 9.00 × 1017 | 3.34 × 1017 | 3.10 × 1017 | 3.80 × 1018 | 9.00 × 1017 |
4 | Labor | 3.32 × 1017 | 1.41 × 1016 | 1.79 × 1016 | 5.93 × 1017 | 3.36 × 1017 |
5 | Mold | 1.73 × 1016 | 9.16 × 1015 | 8.69 × 1015 | 2.50 × 1016 | 1.67 × 1016 |
6 | Lubricant oil | 9.64 × 1015 | 4.98 × 1013 | 4.65 × 1013 | 2.02 × 1016 | 1.00 × 1016 |
Total social economic system purchased inputs (F) | 1.46 × 1018 | 1.41 × 1017 | 1.32 × 1017 | 4.82 × 1018 | 1.47 × 1018 | |
7 | Straw briquette | 1.08 × 1016 | 5.87 × 1015 | 5.97 × 1015 | 2.64 × 1017 | 1.06 × 1016 |
Total system yield (Y) | 1.08 × 1016 | 5.87 × 1015 | 5.97 × 1015 | 2.64 × 1017 | 1.06 × 1016 |
3.4. Cases of Straw-Ethanol Production
No. | Item | Solar emergy (sej/year) | ||||
---|---|---|---|---|---|---|
Case No. 1 | Case No. 2 | Case No. 3 | Case No. 4 | Case No. 5 | ||
1 | Straw | 2.46 × 1022 | 9.26 × 1021 | 7.25 × 1018 | 1.31 × 1021 | 7.25 × 1018 |
2 | Water | 7.00 × 1019 | 2.79 × 1019 | 2.27 × 1018 | 5.82 × 1017 | 2.54 × 1015 |
Total natural ecosystem renewable resources (R) | 2.46 × 1022 | 9.29 × 1021 | 9.52 × 1018 | 1.31 × 1021 | 7.25 × 1018 | |
3 | Investment | 1.17 × 1017 | 1.42 × 1017 | 6.02 × 1017 | 3.16 × 1020 | 6.47 × 1017 |
4 | Energy | 7.00 × 1020 | 6.54 × 1020 | 3.16 × 1017 | 2.88 × 1016 | 4.84 × 1017 |
5 | Labor & maintenance | 3.81 × 1019 | 1.70 × 1019 | 7.13 × 1017 | 6.19 × 1019 | 7.13 × 1017 |
6 | Cellulase | 6.16 × 1022 | 3.27 × 1021 | 2.16 × 1018 | 1.73 × 1020 | 2.21 × 1018 |
7 | Chemical reagents | 2.00 × 1020 | 8.93 × 1020 | 3.25 × 1017 | 1.49 × 1020 | 6.75 × 1017 |
8 | Sulfuric acid | 5.67 × 1020 | 6.45 × 1019 | 0.00 × 100 | 5.30 × 1019 | 4.18 × 1017 |
Total social economic system purchased inputs (F) | 2.14 × 1022 | 4.83 × 1021 | 4.11 × 1018 | 7.00 × 1020 | 4.73 × 1018 | |
9 | Ethanol | 1.40 × 1022 | 7.77 × 1021 | 4.07 × 1018 | 6.76 × 1020 | 7.59 × 1017 |
Total system yield (Y) | 1.40 × 1022 | 7.77 × 1021 | 4.07 × 1018 | 6.76 × 1020 | 7.59 × 1017 |
3.5. Cases of Straw-Gasification
No. | Item | Solar emergy (sej/year) | ||||
---|---|---|---|---|---|---|
Case No. 1 | Case No. 2 | Case No. 3 | Case No. 4 | Case No. 5 | ||
1 | Straw | 1.81 × 1017 | 1.49 × 1017 | 1.99 × 1017 | 1.20 × 1017 | 1.29 × 1017 |
2 | Straw gas | - | - | - | 3.61 × 1016 | - |
3 | Straw carbon | - | - | - | 5.62 × 1017 | - |
Total natural ecosystem renewable resources (R) | 1.81 × 1017 | 1.49 × 1017 | 1.99 × 1017 | 7.18 × 1017 | 1.29 × 1017 | |
4 | Depreciation on fixed-asset | 1.12 × 1018 | 5.29 × 1017 | 4.67 × 1017 | 2.03 × 1017 | 1.04 × 1017 |
5 | Electricity | 4.29 × 1015 | 4.41 × 1015 | 1.47 × 1016 | - | 2.15 × 1015 |
6 | Labor | 8.46 × 1016 | 4.84 × 1016 | 1.84 × 1017 | - | 6.23 × 1016 |
7 | Maintenance | 6.92 × 1016 | 4.15 × 1016 | 1.21 × 1016 | - | 1.94 × 1016 |
8 | Subsidies | - | 1.42 × 1017 | - | - | 2.77 × 1017 |
9 | Variable cost | - | - | - | 7.28 × 1017 | - |
Total social economic system purchased inputs (F) | 1.27 × 1018 | 7.66 × 1017 | 6.78 × 1017 | 9.31 × 1017 | 4.64 × 1017 | |
10 | Straw gas | 2.19 × 1017 | 1.81 × 1017 | 3.22 × 1017 | 4.50 × 1017 | 1.93 × 1017 |
11 | Straw carbon | - | - | 2.41 × 1017 | 1.84 × 1017 | - |
12 | Wood tar | - | - | - | 9.01 × 1016 | - |
Total system yield (Y) | 2.19 × 1017 | 1.81 × 1017 | 5.63 × 1017 | 7.24 × 1017 | 1.93 × 1017 |
4. Results and Discussions
4.1. Emergy Analysis of Straw Reuse Systems
Straw reuse technology | Case No. | EYR | ELR | ESI |
---|---|---|---|---|
straw-biogas fermentation | 1 | 5.21 | 0.24 | 21.90 |
2 | 1.26 | 3.87 | 0.33 | |
3 | 1.69 | 1.45 | 1.17 | |
4 | 1.26 | 3.91 | 0.32 | |
5 | 3.77 | 0.36 | 10.00 | |
straw-based power generation | 1 | 2.00 | 1.00 | 2.00 |
2 | 1.10 | 5.30 | 0.22 | |
3 | 1.31 | 3.18 | 0.41 | |
4 | 1.69 | 1.46 | 1.16 | |
5 | 1.11 | 8.77 | 0.13 | |
straw-briquetting | 1 | 6.42 | 0.18 | 34.85 |
2 | 4.12 | 0.32 | 12.86 | |
3 | 5.00 | 0.25 | 20.00 | |
4 | 3.86 | 0.35 | 11.06 | |
5 | 5.13 | 0.24 | 21.18 | |
straw-ethanol fermentation | 1 | 2.15 | 1.87 | 1.15 |
2 | 2.92 | 1.52 | 1.92 | |
3 | 3.31 | 1.43 | 2.31 | |
4 | 2.87 | 1.53 | 1.87 | |
5 | 2.53 | 1.65 | 1.53 | |
straw-gasification | 1 | 1.14 | 7.04 | 0.16 |
2 | 1.20 | 5.12 | 0.23 | |
3 | 1.29 | 3.40 | 0.38 | |
4 | 1.99 | 1.01 | 1.96 | |
5 | 1.28 | 3.59 | 0.36 |
4.1.1. Straw-Biogas Production Technology
4.1.2. Straw-Based Power Generation Technology
4.1.3. Straw-Briquetting Technology
4.1.4. Straw-Ethanol Production Technology
4.1.5. Straw-Gasification Technology
4.2. Comparison among Straw Reuse Technologies
4.2.1. Economic Benefits Analysis of Straw-Reuse Technologies
4.2.2. Environmental Benefits Analysis of Straw-Reuse Technologies
4.2.3. Sustainability Potential Analysis of Straw-Reuse Technologies
5. Conclusions
Supplementary Files
Supplementary File 1Author Contributions
Conflicts of Interest
References
- Zhou, Z.R. A theoretical study of the sustainable use of biomass energy by rural households in China. Adv. Mater. Res. 2012, 403–408, 2905–2909. [Google Scholar] [CrossRef]
- Huo, J.; Lu, X.; Wang, X.; Chen, H.; Ye, X.; Gao, S.; Gross, D.S.; Chen, J.; Yang, X. Online single particle analysis of chemical composition and mixing state of crop straw burning particles: From laboratory study to field measurement. Front. Environ. Sci. Eng. 2015. [Google Scholar] [CrossRef]
- Zhang, Y.; Zang, G.Q.; Tang, Z.H.; Chen, X.H.; Yu, Y.S. Burning straw, air pollution, and respiratory infections in China. Am. J. Infect. Control 2014, 42, 815–815. [Google Scholar] [CrossRef] [PubMed]
- Chang, I.S.; Wu, J.; Zhou, C.B.; Shi, M.M.; Yang, Y.X. A time-geographical approach to biogas potential analysis of China. Renew. Sustain. Energe Rev. 2014, 37, 318–333. [Google Scholar] [CrossRef]
- Zhao, H.R.; Guo, S. External Benefit Evaluation of Renewable Energy Power in China for Sustainability. Sustainability 2015, 7, 4783–4805. [Google Scholar] [CrossRef]
- Pan, G.-X.; Lin, Z.-H.; Li, L.-Q.; Zhang, A-F.; Zheng, J.-W.; Zhang, X.-H. Perspective on biomass carbon industrialization of organic waste from agriculture and rural areas in China. J. Agric. Sci. Technol. 2011, 13, 75–82. [Google Scholar]
- Zhang, Z.F.; Zhao, W.; Zhao, W.W. Commercialization development of crop straw gasification technologies in China. Sustainability 2014, 6, 9159–9178. [Google Scholar] [CrossRef]
- Zhu, X.F.; Yuan, X.P. Economic benefit analysis of straw gasification project. J. Rural Energy 2002, 1, 28–29. [Google Scholar]
- Ding, M.; Ji, C.L.; Zou, B.Y.; Wang, C.M.; Zhao, Y.W. Comprehensive Assessment of Biomass Energy Developing Program for Jiangsu Province Based on AHP Method. China Biogas 2011, 29, 36–40. [Google Scholar]
- Dai, J.; Chen, B.; Hayat, T.; Alsaedi, A.; Ahmad, B. Sustainability-based economic and ecological evaluation of a rural biogas-linked agro-ecosystem. Renew. Sustain. Energy Rev. 2015, 41, 347–355. [Google Scholar] [CrossRef]
- He, X.; Zhang, Z.P.; Shi, J.Z.; He, Y.J.; Dai, Z.S.; Shang, Q. Efficiency analysis on model of comprehensive utilization of straw. J. Chin. Agric. Mech. 2014, 35, 180–183. [Google Scholar]
- Jiang, M.M.; Chen, B.; Zhou, J.B.; Tao, F.R.; Li, Z.; Yang, Z.F.; Chen, G.Q. Emergy account for biomass resource exploitation by agriculture in China. Energy Policy 2007, 35, 4704–4719. [Google Scholar] [CrossRef]
- Wu, X.H.; Wu, F.Q.; Tong, X.G.; Jiang, B. Emergy-based sustainability assessment of an integrated production system of cattle, biogas, and greenhouse vegetables: Insight into the comprehensive utilization of wastes on a large-scale farm in northwest China. Ecol. Eng. 2013, 61, 335–344. [Google Scholar] [CrossRef]
- Wei, X.M.; Chen, B.; Qu, Y.H.; Lin, C.; Chen, G.Q. Emergy analysis for “four in one” peach production system in Beijing. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 946–958. [Google Scholar] [CrossRef]
- Chen, G.Q.; Jiang, M.M.; Chen, B.; Yang, Z.F.; Lin, C. Emergy analysis of Chinese agriculture. Agric. Ecosyst. Environ. 2006, 115, 161–173. [Google Scholar] [CrossRef]
- Wang, G.G. Emergy evaluation of agriculture system in oasis-desert region: Tarim river basin case study. J. Food Agric. Environ. 2013, 11, 384–387. [Google Scholar]
- Huacai, L.; Yin, X.; Wu, C. Energy evaluation of straw-based power generation system. Trans. Chin. Soc. Agric. Mach. 2011, 42, 93–98, 123. [Google Scholar]
- Zhong, Z.M.; Weng, B.Q.; Huang, Q.L.; Huang, X.S.; Chen, Z.D. Evaluating the ecosystem sustainability of circular agriculture based on the emergy theory: A case study of the Xingyuan circular agriculture demonstration site in Fuqing City, Fujian. Acta Ecol. Sinica 2012, 32, 5755–5762. [Google Scholar] [CrossRef]
- Zhou, H.C. Typical analysis on the development of recycling agriculture based on emergy calculations. Resour. Environ. Yangtze Basin 2012, 21, 1520–1527. [Google Scholar]
- Wei, L.; Xu, J. Energy and emergy analysis of wood pelletizing. Kezaisheng Nengyuan/Renew. Energy Resour. 2012, 30, 115–119. [Google Scholar]
- Chen, M.Q.; Ma, T. Emergy comparation for bio-hydrogen production systems by different straw pretreatment methods. J. Harbin Univ. Commer. 2010, 26, 167–169. [Google Scholar]
- Zhang, L.X.; Hu, Q.H.; Wang, C.B. Emergy evaluation of environmental sustainability of poultry farming that produces products with organic claims on the outskirts of mega-cities in China. Ecol. Eng. 2013, 54, 128–135. [Google Scholar] [CrossRef]
- Ricardo, E.V.A.; Rabindranarth, R.L.; Mathias, G.; Norma, A.O.G.; Robert, H. Sustainability assessment of the residential land use in seven boroughs of the island of Montreal, Canada. Sustainability 2015, 7, 2454–2472. [Google Scholar]
- Li, G.; Kuang, Y.; Huang, N.; Chang, X. Emergy synthesis and regional sustainability assessment: Case study of pan-pearl river delta in China. Sustainability 2014, 6, 5203–5230. [Google Scholar] [CrossRef]
- Wang, S.S.; Jian, P.L.; Pang, H.X.; Peng, G.F. An epidemiological study on the etiology of primary hepatocellutar carcinoma in Guangzhou, Guangdong province. Chin. J. Epidemiol. 1997, 18, 33–36. [Google Scholar]
- Lin, N.N.; Pang, C.L.; Chen, L.; Dong, R.J. Energy analysis of biogas plants in zibo of Shandong province. Renew. Energy Resour. 2011, 29, 61–68. [Google Scholar]
- Ming, S.J.; Qiu, K.; Wu, J.; Zhao, Y.X. Economic effect analysis of crop straw anaerobic digestion engineering in Xinjin county. China Biogas 2012, 30, 40–43. [Google Scholar]
- Lu, S.; Ni, S.; Xu, M. Practice and exploration of straw biogas project in Yancheng city. J. Agro-Environ. Dev. 2011, 1, 48–51. [Google Scholar]
- Luo, Y.; Ding, L. Sustainability evaluation on CDM project of biomass direct combustion power generation based on emergy theory. Trans. Chin. Soc. Agric. Eng. 2009, 25, 224–227. [Google Scholar]
- Wei, Y.J.; Qin, D.S.; Chang, Y.P. 30 MW biomass straight burning powerrojects and benefit analysis evaluation. Energy Conserv. Technol. 2012, 30, 278–281. [Google Scholar]
- Chen, L.M.; Xu, Z.; Zhang, G.S.; Zhao, B.G.; Zhu, C. A small-scale biomass combustion generation project and its benefits analysis. Water Conserv. Electr. Power Mach. 2006, 12, 1–4. (In Chinese) [Google Scholar]
- Zhang, T.Z.; Li, S.Q. Economic analysis of biomass power generation technology. J. Shenyang Inst. Eng. 2013, 9, 11–13. [Google Scholar]
- Dong, Y.Z.; Li, Q. Technology and benefit analysis of straw power genertation project. J. Energy Environ. 2013, 3, 39–41. [Google Scholar]
- Huo, L.L.; Tian, Y.S.; Meng, H.B.; Zhao, L.X.; Yao, Z.L. Life cycle assessment analysis for densified biofuel. Acta Energ. Sol. Sin. 2011, 32, 1875–1880. [Google Scholar]
- Hu, J.J.; Lei, T.Z.; Wang, Z.W.; Yan, X.Y.; Shi, X.G.; Li, Z.F.; He, X.F.; Zhang, Q.G. Economic, environmental and social assessment of briquette fuel from agricultural residues in China—A study on flat die briquetting using corn stalk. Energy 2014, 64, 557–566. [Google Scholar] [CrossRef]
- Shie, J.L.; Chang, C.Y.; Chen, C.S.; Shaw, D.G.; Chen, Y.H.; Kuan, W.H.; Ma, H.K. Energy life cycle assessment of rice straw bio-energy derived from potential gasification technologies. Bioresour. Technol. 2011, 102, 6735–6741. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.Y.; Qian, K.; Huang, X.C. Benefit analysis and measure suggest of straw gasification project. J. China Resour. Compr. Util. 2011, 29, 31–33. [Google Scholar]
- Hou, L.F. Study on the operation efficiency of straw gascification project. J. Agric. Technol. Equip. 2014, 6, 71–72, 74. [Google Scholar]
- Chen, B.M.; Zhang, Z.F.; Chen, A.N. Case analysis of crop straw gasification use technology and commercialization operation. Trans. Chin. Soc. Agric. Eng. 2005, 21, 124–128. [Google Scholar]
- Yu, Z.S. The development, problems and countermeasures of straw gasification project in Ganyu county. J. Agro-Environ. Dev. 2013, 2, 104–106. [Google Scholar]
- Jiang, Q.; Sun, Y.Q.; Teng, H.; Xiu, Z.L.; Liu, C.Z. Techno-economic analysis of cellulosic ethanol. Chin. J. Process Eng. 2012, 12, 97–104. [Google Scholar]
- Lu, H.; Lin, B.L.; Campbell, D.E.; Sagisaka, M.; Ren, H. Biofuel vs. Biodiversity? Integrated emergy and economic cost-benefit evaluation of rice-ethanol production in Japan. Energy 2012, 46, 442–450. [Google Scholar] [CrossRef]
- Song, A.D.; Ren, T.B.; Xie, H.; Pei, G.Q.; Zhang, B.L. Effect of chemical pretreatment on enzymatic saccharification of maize straw. Chem. Bioeng. 2006, 23, 31–33. [Google Scholar]
- Ren, T.B. The Study on Techno-Engineering and Technical Economic Analysis of Bioethanol Production from Corn Stalks; Henan Agricultural University: Henan, China, 2010. [Google Scholar]
- Ma, F.; Zhang, X.X.; Wang, L. Economic and environmental evaluation of straw transportation radius for straw-energy engineering. J. Harbin Inst. Technol. 2015, 47, 48–53. [Google Scholar]
- Matt, K.; Griffin, W.M.; Matthewsh, S. Impacts of facility size and location decisions on ethanol production cost. Energy Policy 2011, 39, 47–56. [Google Scholar]
- Milne, T.A.; Evans, R.J.; Abatzoglou, N. Biomass Gasifier “Tars”: Their Nature, Formation, and Conversion. Available online: http://www.ps-survival.com/PS/Gasifiers/Biomass_Gasifier_Tars_Their_Nature_Formation_And_Conversion_1998.pdf (accessed on 17 August 2015).
- Cavalett, O.; Queiroz, J.F.; Ortega, E. Emergy assessment of integrated production systems of grains, pig and fish in small farms in the South Brazil. Ecol. Model 2006, 193, 205–224. [Google Scholar] [CrossRef]
- Wang, X.L.; Chen, Y.Q.; Sui, P.; Gao, W.S.; Qin, F.; Wu, X.; Xiong, J. Efficiency and sustainability analysis of biogas and electricity production from a large-scale biogas project in China: An emergy evaluation based on LCA. J. Clean. Prod. 2014, 65, 234–245. [Google Scholar] [CrossRef]
- Liu, B.B.; Wang, F.; Wu, Y.Z.; Fang, K.H.; Bi, J. A comparative analysis of straw utilization for bioethanol and bioelectricity as vehicle power sources in China. Int. J. Green Energy 2012, 9, 731–748. [Google Scholar] [CrossRef]
- Shafie, S.M.; Masjuki, H.H.; Mahlia, T.M.I. Life cycle assessment of rice straw-based power generation in Malaysia. Energy 2014, 70, 401–410. [Google Scholar] [CrossRef]
- Zhang, P.D.; Yang, Y.L.; Tian, Y.S.; Yang, X.T.; Zhang, Y.K.; Zheng, Y.H.; Wang, L.S. Bioenergy industries development in China: Dilemma and solution. Renew. Sustain. Energy Rev. 2009, 13, 2571–2579. [Google Scholar]
- Khoo, H.H. Review of bio-conversion pathways of lignocellulose-to-ethanol: Sustainability assessment based on land foot print projections. Renew. Sustain. Energy Rev. 2015, 46, 100–119. [Google Scholar] [CrossRef]
- Odum, H.T.; Nilsson, P.O. Environmental Accounting: Emergy and Environmental Decision Making; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Elias, M.H.; Muhammad, H.I.; Matthew, L.; Phillip, S.; Grant, M.C.; Jhuma, S. Environmental sustainability analysis of UK whole-wheat bioethanol and CHP Systems. Biomass Bioenergy 2013, 50, 52–64. [Google Scholar]
- Liu, H.T. Comprehensive evaluation of effects of straw-based electricity generation: A Chinese case. Energy Policy 2010, 38, 6153–6160. [Google Scholar] [CrossRef]
- Geekiyanage, D.; Malinga, D.; Amit, K. Techno-economic assessment of triticale straw for power generation. Appl. Energy 2012, 98, 236–245. [Google Scholar]
- Silalertruksa, T.; Gheewala, S.H. A comparative LCA of rice straw utilization for fuels and fertilizer in Thailand. Bioresour. Technol. 2013, 150, 412–419. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Ma, F. Emergy Evaluation of Different Straw Reuse Technologies in Northeast China. Sustainability 2015, 7, 11360-11377. https://doi.org/10.3390/su70911360
Zhang X, Ma F. Emergy Evaluation of Different Straw Reuse Technologies in Northeast China. Sustainability. 2015; 7(9):11360-11377. https://doi.org/10.3390/su70911360
Chicago/Turabian StyleZhang, Xiaoxian, and Fang Ma. 2015. "Emergy Evaluation of Different Straw Reuse Technologies in Northeast China" Sustainability 7, no. 9: 11360-11377. https://doi.org/10.3390/su70911360
APA StyleZhang, X., & Ma, F. (2015). Emergy Evaluation of Different Straw Reuse Technologies in Northeast China. Sustainability, 7(9), 11360-11377. https://doi.org/10.3390/su70911360