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Abstract: Today, the increased public concern about sustainable development and more stringent
environmental regulations have become important driving forces for value recovery from end-of-life
and end-of use products through reverse logistics. Waste electrical and electronic equipment (WEEE)
contains both valuable components that need to be recycled and hazardous substances that have
to be properly treated or disposed of, so the design of a reverse logistics system for sustainable
treatment of WEEE is of paramount importance. This paper presents a stochastic mixed integer
programming model for designing and planning a generic multi-source, multi-echelon, capacitated,
and sustainable reverse logistics network for WEEE management under uncertainty. The model
takes into account both economic efficiency and environmental impacts in decision-making, and
the environmental impacts are evaluated in terms of carbon emissions. A multi-criteria two-stage
scenario-based solution method is employed and further developed in this study for generating the
optimal solution for the stochastic optimization problem. The proposed model and solution method
are validated through a numerical experiment and sensitivity analyses presented later in this paper,
and an analysis of the results is also given to provide a deep managerial insight into the application
of the proposed stochastic optimization model.

Keywords: WEEE; reverse logistics; stochastic optimization; mixed integer programming;
scenario-based solution; sustainable development; carbon emissions

1. Introduction

Today, with rapid technological advancement and economic development, the manufacturing
of electrical and electronic products has become one of the most rapidly developing and growing
industries [1–3]. This growth has significantly altered the lifestyle and consumption pattern of human
beings [2,4]. On the one hand, more and more innovative, well-designed, and multi-functional electrical
and electronic products are introduced, usually at an attractive price, to make our lives better and more
convenient. On the other hand, customers’ pursuit of a better lifestyle also leads to an increasingly
shortened product life cycle, particularly for electrical and electronic products, which results in rapidly
increased generation of Waste Electrical and Electronic Equipment (WEEE) all over the globe. The
annual increase of WEEE generation has reached approximately 5% since 2005 [5], which is almost
three times higher than the increase of other waste [6]. In 2012, the WEEE generation in the world is
approximately 49 million metric tons [7], and the three largest markets for electrical and electronic
products (the United States, China, and the European Union) together contribute 54.1% of the total
amount of WEEE generation [7]. The rapid growth of WEEE generation has become a significant
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challenge due to the lack of formal recycling and recovery channels [8], and an earlier study has
revealed that only 1.5 million metric tons of WEEE in Europe were recycled through formal take-back
schemes [4]. A recent report released by the Countering WEEE Illegal Trade (CWIT) project [9] reveals
that the total amount of WEEE generated in Europe was 9.45 million tons in 2012, of which only 35%
was recycled and treated through the formal recycling system; the other 65% was exported (15.8%),
recycled through non-compliant conditions in Europe (33.4%), scavenged for valuable parts (7.9%), or
sent to landfill (7.9%). According to the report [9], due to the mismanagement of discarded electronics
in Europe, there is still a large amount of WEEE sent to and recycled in developing countries, e.g.,
China, Vietnam, etc., where, unlike in developed countries, most of the WEEE are reused and recycled
under lower standards through low-tech companies or disposed of in landfills [10]. From a global
perspective, this will reduce the economic sustainability (waste of recyclable and valuable resources [9]),
environmental sustainability (environmental pollution [9]), as well as social sustainability (risk to
workers’ health [9,11]) of modern society. Therefore, more effort should be directed to providing
guidelines and support systems for decision-makers in order to enhance formal recycling systems for
sustainable management of WEEE, so more WEEE can be recycled and treated in an economically
efficient, environmentally sound, and socially responsible manner.

Reverse logistics is considered as one of the most effective solutions for value recovery from
end-of-life and end-of-use products [12]. Reverse logistics is defined as the process starting from
the customer towards the raw material supplier, and it aims at—through planning, operating, and
managing efficient material flow, information flow, and cash flow—recovering the remaining value
from end-of-life and end-of-use products and disposing of waste in a proper way [13]. Due to public
concern about sustainable development, reverse logistics activities have been extensively focused in
the past two decades [14–17]. Compared with other used products, the reverse logistics design for
WEEE management is more complicated, because WEEE contains not only renewable materials and
components, e.g., glass, plastics, and precious metals [8], which need to be reused and recycled, but
also hazardous substances, e.g., nickel, lead, and mercury [18,19], which have to be properly treated
or disposed of in order to minimize the risk to people’s health and the environment. Therefore, the
development of advanced tools for complex decision-making problems related to the design and
planning of a sustainable reverse logistics system for WEEE is of paramount importance.

In order to have an overview of the theoretical development and practical implementation,
this paper reviews some of previous studies regarding the reverse logistics of WEEE, and an
extensive literature review of the decision models of WEEE management is provided by Xavier and
Adenso-Diaz [20]. Walther and Spengler [21] formulate a linear programming for allocating WEEE to
different facilities in an optimal fashion, and the model is used to estimate the influence of EU WEEE
Directive on reverse logistics in Germany. Dat et al. [22] introduce a mixed integer programming
for minimizing the total costs of reverse logistics of WEEE, considering the costs of collection,
transportation, treatment, and income from the sale of recycled products. Gomes et al. [23] develop a
generic mixed integer program for multi-product reverse logistics network design of WEEE; the model
determines the best locations of collection and sorting centers and the material flows in each route.

Kilic et al. [24] propose a mixed integer programming for designing the optimal reverse logistics
network structure of WEEE. The model is solved with CPLEX and 10 scenarios with different
collection requirements are tested and discussed in this paper. Quariguasi Frota Neto et al. [25]
develop a mathematical model for eco-efficient lot size problem with remanufacturing options, and the
sustainable issue is formulated by Cumulative Energy Demand (CED). Alumur et al. [26] formulate a
multi-commodity and multi-period mixed integer programming for reverse logistics network design of
WEEE. The model maximizes the profit generated from the reverse logistics activities and is validated
through real-world case studies of tumble dryers and washing machines in Germany. Furthermore,
the multi-period formulation provides scope for future improvement of the configuration of reverse
logistics systems.
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Grunow and Gobbi [27] develop a decision support model for assigning different municipalities
to different waste management schemes in an efficient and fair manner. Achillas et al. [4] formulate a
location–allocation model for regulators and policy-makers for the optimal design of reverse logistics
network of WEEE. Capraz et al. [28] propose a mixed integer linear programming for decision-making
of recycling companies of WEEE, and the model simultaneously determines the maximal bid price
offered by the company and the optimal operational plan of the plant. Liu et al. [29] propose a
quality-based price competition model for assessing the performance of both formal and informal
recycling channels of WEEE. The study reveals that the quality is the most important influencing
factor for WEEE recycling, and high-quality WEEE are preferred by both formal and informal markets.
Furthermore, the informal recycling market is of great advantage when the quality of WEEE is high
and the formal recycling channel is not heavily subsidized by the government.

Manzini and Bortolini [30] introduce a two-stage decision-aided system for both strategic and
operational decision-making of reverse logistics of WEEE. The optimal location–allocation plan is
first determined by a mixed integer programming, and a heuristic algorithm is then applied to solve
the vehicle routing problem. Yao et al. [31] develop a quadratic optimization model to determine the
minimum number of transit sites for reverse logistics of WEEE, and a modified ant colony algorithm
is then applied for routing the collection vehicles. Tsai and Hung [32] propose a two-stage decision
framework for planning a treatment and recycling system for WEEE. The waste treatment companies
are first selected at the treatment stage, and a linear programming is formulated in recycling stage
for maximizing the profit generated from WEEE recycling. Mar-Ortiz et al. [33] formulate an integer
programming model for the vehicle routing problem of WEEE, and two computational algorithms, a
GRASP-based algorithm and a saving-based algorithm, are employed and compared in resolving the
complex optimization problem.

Shokohyar and Mansour [34] develop a simulation- and optimization-based framework for
sustainable planning of the reverse logistics network of WEEE. Different network configurations are
first tested in the simulation stage through the professional simulation software Arena, and then, in the
optimization stage, a multi-objective model is formulated to determine the value of three objective
functions: profit, environmental influence, and social sustainability. Yu and Solvang [2] formulate a
bi-objective mixed integer programming for sustainable reverse logistics design of WEEE. The model
simultaneously balances the overall system costs and carbon emissions, and the two objective functions
are combined with the weighted sum method.

The literature review shows that most previous decision models for reverse logistics system
design of WEEE management are deterministic models without consideration of the uncertainties of
input parameters. To our knowledge, the only exemption is provided by Ayvaz et al. [35]. In this study,
a two-stage stochastic programming model is formulated for maximizing the profit of the reverse
logistics system for WEEE management under uncertainty, and the sample average approximation
method is employed to resolve the stochastic optimization problem. Reverse logistics is characterized
by a high level of uncertainty [36], so it is important to consider the uncertain issues in reverse
logistics system design of WEEE management. Due to the lack of uncertainty in previous models,
this paper aims at filling the literature gap by providing a new stochastic programming model for
reverse logistics network design of WEEE management; furthermore, the model not only considers the
economic performance but also accounts for the environmental sustainability of the reverse logistics
system for WEEE. In this study, the environmental sustainability is evaluated by carbon footprint,
and a multi-criteria scenario-based solution method developed by Soleimani et al. [37] is employed to
resolve the stochastic optimization problem. The original solution method is only capable to resolve
the min-max and max-min stochastic optimization problems; furthermore, the managerial meaning of
the solution method is unclear. The multi-criteria scenario-based solution method is further improved
and developed in this paper so that all types of stochastic optimization problems (min-max, max-min,
min-min, and max-max) can be solved and a clear managerial meaning can also be interpreted from
the result.
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The remainder of the paper is organized as follows. Section 2 provides the problem statement and
formulates the stochastic mixed integer programming for the design of a sustainable reverse logistics
system for WEEE management under uncertainty. Section 3 introduces the two-stage multi-criteria
scenario-based solution method for stochastic optimization problem, and the difference between the
improved solution method and the original solution method is presented in this section. Section 4
presents a numerical experiment in order to illustrate the application of the proposed model in the
decision-making of reverse logistics system design of WEEE. Section 5 provides sensitivity analyses in
order to validate the model with changing parameters. Section 6 concludes the paper and provides
suggestions for future research.

2. Problem Statement and Modeling

Figure 1 illustrates the reverse logistics system for WEEE management. The end-of-use and
end-of-life electrical and electronic products are first collected at a local WEEE collection center
(e.g., retailers of electronic products, supermarkets, public facilities for WEEE collection, etc.), and then
will be transported to a regional collection center for preprocessing. At the regional collection center,
WEEE are inspected and sorted for further treatment including reuse, recycling, and disposal. It is
noteworthy that some electrical and electronic products contain hazardous materials that have to be
separated out at this step and sent to specialized hazardous waste treatment plants. The recyclable
parts and components from WEEE are sent for reuse and recycling, and the non-recyclable fraction is
sent to an incineration plant or a landfill for proper disposal. The recycled products from WEEE will
be sold at primary or secondary markets, and the recycled components will be sold to manufacturers
of electrical and electronic products for material recovery.
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Figure 1. Reverse logistics system for WEEE management.

The proposed mathematical model aims at determining the optimal configuration of the reverse
logistics system for WEEE, which includes the locations of regional collection centers and recycling
plants, and the material flows between different facilities. Due to the uncertainty, the generation of
WEEE, price of recycled products, and price of recycled materials are considered to be stochastic
parameters, and the different sources of WEEE and the environmental influence are also taken into
account in this model. Therefore, the proposed model is a multi-source, multi-echelon, and capacitated
stochastic network optimization problem. In this paper, we use the word “product” to differentiate the
sources of WEEE.

The assumptions of the model are given as follows:

• The number and locations of local collection centers, product markets, material markets, and
disposal facilities are known.

• The potential locations of regional collection centers and recycling plants are known.
• The fixed costs, unit transportation costs, and unit processing costs are known.
• The capacities of new facilities are predetermined.
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• The WEEE can be converted at a fixed rate to new products, recycled parts, disposal fractions,
and hazardous materials.

• The carbon emissions rate is mainly determined by the size of facility and technology adopted in
the treatment and transportation of WEEE.

The sets, parameters, and decision variables are given as follows:

Sets:
C Set of local collection sites of WEEE, indexed by c
R Set of potential locations of regional collection centers of WEEE, indexed by r
P Set of potential locations of recycling plants of WEEE, indexed by p
H Set of hazardous waste management systems, indexed by h
F Set of product market, indexed by f
M Set of material market, indexed by m
D Set of disposal sites, indexed by d
L Set of products, indexed by l
S Set of scenarios, indexed by s
Parameters:
Fxr Fixed cost of opening regional collection center at potential location r ∈ R
Fxp Fixed cost of opening recycling plant at potential location p ∈ P
Cprl Unit cost at regional collection center r ∈ R for processing product l ∈ L
Cppl Unit cost at recycling plant p ∈ P for processing product l ∈ L
Cpd Unit cost at disposal site d ∈ D
Cph Unit cost at hazardous waste management system h ∈ H
PCps

f l Unit price of recycled product l ∈ L at product market f ∈ F in scenario s ∈ S
PCms

ml Unit price of recycled product l ∈ L at material market m ∈M in scenario s ∈ S

Ctrlcr
Transportation cost per unit product l ∈ L from local collection site c ∈ C to
regional collection center r ∈ R

Ctrlrp
Transportation cost per unit recyclable fraction of product l ∈ L from regional
collection site r ∈ R to recycling plant p ∈ P

Ctrlrd
Transportation cost per unit disposed fraction of product l ∈ L from regional
collection center r ∈ R to disposal site d ∈ D

Ctrlrh
Transportation cost per unit hazardous fraction of product l ∈ L from regional
collection center r ∈ R to hazardous waste management system h ∈ H

Ctrlp f
Transportation cost per unit recycled fraction of product l ∈ L from recycling
plant p ∈ P to product market f ∈ F

Ctrlpm
Transportation cost per unit recycled fraction of product l ∈ L from recycling
plant p ∈ P to material market m ∈M

Ctrlpd
Transportation cost per unit disposed fraction of product l ∈ L from recycling
plant p ∈ P to disposal site d ∈ D

θ Unit cost of carbon credit
COcap

2 Carbon emissions cap for reverse logistics system for WEEE
Cols

lc Amount of product l ∈ L collected at local collection site c ∈ C in scenario s ∈ S
Capacityrl Capacity of regional collection center r ∈ R for product l ∈ L
Capacitypl Capacity of recycling products center p ∈ P for product l ∈ L
ϕlp Recycling fraction of product l ∈ L
ϕld Disposed fraction of product l ∈ L
ϕlh Hazardous fraction of product l ∈ L
Lm′ An infinitely large positive number
ϑl f Conversion rate of production l ∈ L to product market f ∈ F
ϑlm Conversion rate of production l ∈ L to material market m ∈M
ϑld Conversion rate of production l ∈ L to disposal site d ∈ D
Emsr Carbon emissions per unit capacity for opening a regional collection site r ∈ R
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Emsp Carbon emissions per unit capacity for opening a recycling plant p ∈ P

Emslcr
Carbon emissions for transporting one unit product l ∈ L from local collection site c ∈ C to
regional collection center r ∈ R

Emslrp
Transportation cost one unit recyclable fraction of product l ∈ L from regional collection site
r ∈ R to recycling plant p ∈ P

Emslrd
Transportation cost one unit disposed fraction of product l ∈ L from regional collection center
r ∈ R to disposal site d ∈ D

Emslrh
Transportation cost one unit hazardous fraction of product l ∈ L from regional collection center
r ∈ R to hazardous waste management system h ∈ H

Emslp f
Transportation cost one unit recycled fraction of product l ∈ L from recycling plant p ∈ P to
product market f ∈ F

Emslpm
Transportation cost one unit recycled fraction of product l ∈ L from recycling plant p ∈ P to
material market m ∈M

Emslpd
Transportation cost one unit disposed fraction of product l ∈ L from recycling plant p ∈ P to
disposal site d ∈ D

Decision variables (First-level):

Ys
r =

{
1
0

Potential location of regional collection center r ∈ R is selected in scenario s ∈ S
Otherwise

Ys
p =

{
1
0

Potential location of recycling plant p ∈ P is selected in scenario s ∈ S
Otherwise

Decision variables (Second-level):
Qgs

rl Amount of product l ∈ L processed at regional collection center r ∈ R in scenario s ∈ S
Qgs

pl Amount of recycled fraction of product l ∈ L processed at recycling plant p ∈ P in scenario s ∈ S
Qgs

d Amount of disposed fraction of product l ∈ L processed at disposal site d ∈ D in scenario s ∈ S

Qgs
h

Amount of hazardous fraction of product l ∈ L processed at hazardous waste management
system h ∈ H in scenario s ∈ S

Qgs
f l Amount of recycled fraction of product l ∈ L sold at product market f ∈ F in scenario s ∈ S

Qgs
ml Amount of recycled fraction of product l ∈ L sold at material market m ∈M in scenario s ∈ S

Qtrs
lcr

Amount of product l ∈ L transported from local collection site c ∈ C to regional collection
center r ∈ R in scenario s ∈ S

Qtrs
lrp

Amount recycled fraction of product l ∈ L transported from regional collection site r ∈ R to
recycling plant p ∈ P in scenario s ∈ S

Qtrs
lrd

Amount of disposed fraction of product l ∈ L transported from regional collection center r ∈ R
to disposal site d ∈ D in scenario s ∈ S

Qtrs
lrh

Amount of hazardous fraction of product l ∈ L transported from regional collection center
r ∈ R to hazardous waste management system h ∈ H in scenario s ∈ S

Qtrs
lp f

Amount of recycled fraction of product l ∈ L transported from recycling plant p ∈ P to product
market f ∈ F in scenario s ∈ S

Qtrs
lpm

Amount of recycled fraction of product l ∈ L transported from recycling plant p ∈ P to material
market m ∈M in scenario s ∈ S

Qtrs
lpd

Amount of disposed fraction product l ∈ L transported from recycling plant p ∈ P to disposal
site d ∈ D in scenario s ∈ S

COS
2 Total amount of carbon emissions from the reverse logistics system for WEEE

The objective function of the mathematical model is given in Equation (1). The first two parts of
the equation calculate the facility costs for opening regional collection centers and recycling plants.
The third part calculates the processing costs of waste disposal and hazardous waste management.
The fourth part determines the profits from selling the recycled products and materials. The fifth, sixth,
and seventh parts are the transportation costs of first-level, second-level, and third-level transportation
in the reverse logistics system, respectively. The last part calculates the carbon trading costs. Carbon
emission is considered as the most important cause of global warming and climate change, so it
has been introduced and formulated as the environmental indicator for sustainable supply chain
design in many previous studies (e.g., Yu and Solvang [12], Govindan et al. [38], Diabat et al. [39],
Kannan et al. [40], Fahimnia et al. [41], and Yu et al. [42]). In this paper, both the economic and
environmental sustainability of the reverse logistics of WEEE are taken into account, so the carbon
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emissions of the reverse logistics activities for WEEE management are quantified by a well-established
method: carbon trading [39,40] and combined with the cost objective. Furthermore, it is noteworthy
that the model aims at determining the optimal and most reliable and robust solution through all
possible scenarios in the reverse logistics design of WEEE.

Min cost =
{

∑
r∈R

FxrYs
r + ∑

l∈L
∑

r∈R
CprlQps

rl

}
+

{
∑

p∈P
FxpYp

r + ∑
l∈L

∑
p∈P

CpplQgs
pl

}

+

{
∑

d∈D
CpdQgs

d + ∑
h∈H

CphQgs
h

}
−
{

∑
f∈F

PCps
f lQgs

f l + ∑
m∈M

PCms
mlQgs

ml

}
+

{
∑

l∈L
∑

c∈C
∑

r∈R
CtrlcrQtrs

lcr

}
+

{
∑

l∈L
∑

r∈R
∑

p∈P
CtrlrpQtrs

lrp + ∑
l∈L

∑
r∈R

∑
d∈D

CtrlrdQtrs
lrd + ∑

l∈L
∑

r∈R
∑

h∈H
CtrlrhQtrs

lrh

}

+

{
∑

l∈L
∑

p∈P
∑

f∈F
Ctrlp f Qtrs

lp f + ∑
l∈L

∑
p∈P

∑
m∈M

CtrlpmQtrs
lpm + ∑

l∈L
∑

p∈P
∑

d∈D
CtrlpdQtrs

lpd

}
+ θ
(

COS
2 − COcap

2

)
, ∀s ∈ S

(1)

Subject to:
Cols

lc = ∑
p∈P

Qtrs
lcp, ∀s ∈ S, l ∈ L, c ∈ C (2)

Qgs
rl = ∑

c∈C
Qtrs

lcr, ∀s ∈ S, l ∈ L, r ∈ R (3)

Qgs
rl ≤ Capacityrl , ∀s ∈ S, l ∈ L, r ∈ R (4)

ϕlpQgs
rl = ∑

p∈P
Qtrs

lrp, ∀s ∈ S, l ∈ L, r ∈ R (5)

ϕldQgs
rl = ∑

d∈D
Qtrs

lrd, ∀s ∈ S, l ∈ L, r ∈ R (6)

ϕlhQgs
rl = ∑

h∈H
Qtrs

lrh, ∀s ∈ S, l ∈ L, r ∈ R (7)

ϕlp + ϕld + ϕlh = 1 (8)

Qgs
h = ∑

l∈L
∑
r∈R

Qtrs
lrh, ∀s ∈ S, h ∈ H (9)

Qgs
pl = ∑

r∈R
Qtrs

lrp, ∀s ∈ S, l ∈ L, p ∈ P (10)

Qgs
pl ≤ Capacitypl , ∀s ∈ S, l ∈ L, p ∈ P (11)

ϑl f Qgs
pl = ∑

f∈F
Qtrs

lp f , ∀s ∈ S, l ∈ L, p ∈ P (12)

ϑlmQgs
pl = ∑

m∈M
Qtrs

lpm, ∀s ∈ S, l ∈ L, p ∈ P (13)

ϑldQgs
pl = ∑

d∈D
Qtrs

lpd, ∀s ∈ S, l ∈ L, p ∈ P (14)

ϑl f + ϑlm + ϑld = 1 (15)

Qgs
f l = ∑

p∈P
Qtrs

lp f , ∀s ∈ S, l ∈ L, f ∈ F (16)

Qgs
ml = ∑

p∈P
Qtrs

lpm, ∀s ∈ S, l ∈ L, m ∈ M (17)

Qgs
d = ∑

l∈L
∑
r∈R

Qtrs
lrd + ∑

l∈L
∑
p∈P

Qtrs
lpd, ∀s ∈ S, d ∈ D (18)
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Qtrs
lcr ≤ Ys

r Lm′, ∀s ∈ S, l ∈ L, c ∈ C, r ∈ R (19)

Qtrs
lrp ≤ Ys

r Ys
pLm′, ∀s ∈ S, l ∈ L, r ∈ R, p ∈ P (20)

Qtrs
lrd ≤ Ys

r Lm′, ∀s ∈ S, l ∈ L, r ∈ R, d ∈ D (21)

Qtrs
lrh ≤ Ys

r Lm′, ∀s ∈ S, l ∈ L, r ∈ R, h ∈ H (22)

Qtrs
lp f ≤ Ys

pLm′, ∀s ∈ S, l ∈ L, p ∈ P, f ∈ F (23)

Qtrs
lpm ≤ Ys

pLm′, ∀s ∈ S, l ∈ L, p ∈ P, m ∈ M (24)

Qtrs
lpd ≤ Ys

pLm′, ∀s ∈ S, l ∈ L, p ∈ P, d ∈ D (25)

COS
2 =

{
∑

l∈L
∑

r∈R
EmsrCapacityrlYs

r + ∑
l∈L

∑
p∈P

EmspCapacityplYs
p

}
+

{
∑

l∈L
∑

c∈C
∑

r∈R
EmslcrQtrs

lcr

}
+

{
∑

l∈L
∑

r∈R
∑

p∈P
EmslrpQtrs

lrp + ∑
l∈L

∑
r∈R

∑
d∈D

EmslrdQtrs
lrd

+ ∑
l∈L

∑
r∈R

∑
h∈H

EmslrhQtrs
lrh

}
+

{
∑

l∈L
∑

p∈P
∑

f∈F
Emslp f Qtrs

lp f + ∑
l∈L

∑
p∈P

∑
m∈M

EmslpmQtrs
lpm

+ ∑
l∈L

∑
p∈P

∑
d∈D

EmslpdQtrs
lpd

}
(26)

(
COS

2 − COcap
2

)
=

{
0, COS

2 < COcap
2

COS
2 − COcap

2 , COS
2 ≥ COcap

2
(27)

Ys
r , Ys

p ∈ {0, 1} (28)

Qgs
rl , Qgs

pl , Qtrs
lcr, Qtrs

lrp, Qtrs
lrd, Qtrs

lrh, Qtrs
lp f , Qtrs

lpm, Qtrs
lpd ≥ 0. (29)

The constraints of the model are given in Equations (2)–(29). Equation (2) guarantees all the
WEEE collected at the local collection sites is sent for treatment in each scenario. Equation (3) is the
flow balance constraint of the first-level transportation. Equation (4) ensures the capacity requirement
of regional collection center is fulfilled in each scenario. Equations (5)–(10) are the flow balance
constraints of the second-level transportation. Equation (11) guarantees the capacity of recycling plant
is not exceeded in each scenario. Equations (12)–(18) are the flow balance constraints of the third-level
transportation. Equations (19)–(25) ensure the transportation between two connecting locations cannot
happen if the potential locations are not selected for opening the respective facilities. Equation (26)
calculates the total amount of carbon emissions of the reverse logistics system for WEEE. Equation (27)
regulates when the total carbon emissions of the reverse logistics system for WEEE exceed the carbon
emissions cap; an additional cost will be paid for buying the credits of excessive carbon emissions.
Herein, it is noteworthy that the model is formulated from the system design perspective but not from
a single company perspective, so the profits gained from the selling of the remaining carbon emissions
credits to other companies is not taken into consideration in this model. Equations (28) and (29) are the
binary constraint and non-negative constraint for the decision variables.

3. Multi-Criteria Scenario-Based Solution Method

Focusing on the uncertainty issues, a great number of stochastic optimization models are applied
in formulating and resolving complex decision-making problems in management science, and the
basic idea to resolve a stochastic optimization problem is to convert the original problem into several
deterministic optimization problems [43]. Scenario-based solution method is an effective and efficient
approach to resolve stochastic optimization problem due to its simplicity and applicability [44,45].
We employs the multi-criteria scenario-based solution method proposed by Soleimani et al. [37],
and the employed method is further developed in order to have a better adaptation for stochastic
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optimization problem and a clearer managerial meaning. Figure 2 presents the solutions procedures of
the method, the difference between the improved solution method, and the original solution method
is also presented in the figure.
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As shown in the figure, the test scenarios with respect to uncertain parameters are first generated
logically and randomly, and the introduction of the scenario generation for stochastic programming
is provided by Kaut and Wallace [44] and Birge and Louveaux [46]. The candidate solutions
are determined based upon the calculation of the optimal solutions of each individual scenario.
The objective of a stochastic optimization problem is not to find the optimal solution to a single
individual scenario but to determine the solution with the optimal overall performance and reliability
through all the possible scenarios. Therefore, each candidate solution is tested with all scenarios, and
the performance is evaluated through three criteria: mean value, standard deviation, and coefficient
of variation.
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Mean value is a very important criterion to evaluate the performance of a series of data (in this
case, the optimal costs of reverse logistics network of WEEE with respect to the test scenarios);
however, more comprehensive evaluation criteria are needed for reliable and robust decision-making
in an uncertain environment. In the multi-criteria scenario-based method, it is important to consider
how closely the data approach the mean value, and this requires knowledge about the dispersion
of data evaluated by standard deviation. Standard deviation is a well-developed and extensively
applied tool used for data analysis in many fields—for example, in the manufacturing industry, the
quality of a batch of products can be evaluated by standard deviation; a smaller standard deviation
shows a better distribution of the product samples around the required quality level. In the solution
method developed by Soleimani et al. [37], the reciprocal of coefficient of variation is applied to
connect the mean value and the standard deviation and to determine the optimal solution of the
stochastic programming. The basic idea for this solution method is to simultaneously maximize the
profit of the supply chain (mean value) and the reliability and robustness of data dispersion or the
risk (standard deviation); however, this method has two drawbacks from both mathematical and
managerial perspectives.

(1) From a mathematical perspective, Soleimani et al.’s method is only capable of solving the
max-min and min-max problems [37]. For example, it is able to resolve the problem considering
the maximum profit and the minimum risk or maximum reliability of the supply chain. However,
for the problem formulated in this paper, which is a min-min problem aiming at determining the
minimum costs and minimum data dispersion, this solution method is ineffective.

(2) From a managerial perspective, the managerial meaning of coefficient of variation and its
reciprocal are associated with the relative data dispersion compared with the absolute data
dispersion determined by standard deviation, but it is not a dedicated tool for determining the
optimal solution of a stochastic optimization problem. The theoretical justification of Soleimani
et al.’s method [37] is not strong enough to enable comprehensive managerial interpretation.
Furthermore, the data dispersion evaluated by standard deviation is significantly affected by the
mean value, and this may lead to misinterpretation of the real shape of data dispersion.

In order to solve the aforementioned problems, we improve the multi-criteria scenario-based
solution method. First, in our method, coefficient of variation is used to evaluate the reliability and
robustness of data dispersion instead of standard deviation, and the managerial meaning of coefficient
of variation is introduced. After that, a normalized weighted sum method is applied to aggregate the
mean value and coefficient of variation, and the performance of the candidate solutions is evaluated
by both expected objective value (mean value) and reliability (coefficient of variation) in order to find
the most economic efficient, reliable, and robust solution to the stochastic optimization problem.

Standard deviation is an absolute measurement of data dispersion and is heavily affected by
the mean value; if the mean value is different, comparison of standard deviation may not be an
appropriate way of evaluating the data dispersion, so another indicator, coefficient of variation, is used
to evaluate the reliability of the results. Coefficient of variation, alternatively known as coefficient of
dispersion, incorporates both the standard deviation and the mean, and is a unitless indicator applied
for measuring the relative dispersion of a series of data [47]:

Coe f f icient o f variation =
Standard deviation

Mean
. (30)

Equation (30) illustrates the calculation of coefficient of variation; compared with standard
deviation, coefficient of variation can better present the relative data dispersion with respect to
different mean values. For example, two types of components (A and B) are inspected through quality
control; the mean value of the weight of components A and B are 10 kg and 2 kg, and the standard
deviation of the test samples of components A and B are 0.5 kg and 0.3 kg, respectively. Even though
the standard deviation of component A is larger than that of component B, the coefficient of variation of
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component B (0.15) is three times that of component A (0.05), which means the quality of test samples
of component A is much better due to the more centered data distribution relative to its mean value.

The optimal solution of the stochastic optimization problem is the one with the lowest expected
objective costs (mean value) and the most reliable performance (coefficient of variation), but the best
performance of those two objectives is usually not obtained in the same candidate solution. It is
important to incorporate both criteria in the design of a reverse logistics system for WEEE. In this
paper, we use the weighted sum method to combine the two criteria for selecting the optimal solution
of the stochastic optimization problem, and this enables interactions between the subjective input
from decision-makers (weight of each criterion) and the objective values of system performance.
Furthermore, it is noted that, because of the different measures of units, the two evaluation criteria,
mean value and coefficient of variation, are first normalized, as shown in Equation (31):

min Overall Per f omancecand. = WM
Meancand.
Meanmin

+ WC
Coe f f icient o f variationcand.
Coe f f icient o f variationmin

. (31)

In Equation (31), Meanmin and Coe f f icient o f variationmin are minimum achievable values of the
mean and coefficient of variation, and Meancand. and Coe f f icient o f variationcand. are the mean and
coefficient of variation of each candidate solution. Through the improvement of the multi-criteria
scenario-based solution method, the two drawbacks of the original method can be properly resolved.
First, the evaluation of data dispersion by coefficient of variation is a better indicator for the reliability
and robustness of reverse logistics system design of WEEE compared with standard deviation. Second,
from a mathematical perspective, the introduction of normalized weighted sum method enables
the multi-criteria scenario-based solution method to resolve not only max-min and min-max but also
min-min and max-max stochastic optimization problems. Third, the improved solution method provides
a more reasonable aggregation of the expected optimal value and the reliability, which enables better
interpretation of the result.

4. Numerical Experiment

In order to illustrate the applicability of the proposed stochastic optimization programming and
the improved solution method in the design and planning of a reverse logistics system for WEEE,
a numerical experiment is performed in this section. The numerical experiment includes 10 local
collection sites, 5 potential locations for regional collection centers, 5 potential locations for recycling
plants, 1 hazardous waste management system, 2 disposal sites, 3 product markets, and 3 material
markets. The relevant parameters used in the numerical experiment are randomly generated in a
uniformly distributed interval, as shown in Table 1.

In the numerical experiment, the collected WEEE is categorized into three types: Type-A, Type-B,
and Type-C. Table 2 illustrates the unit pre-processing costs, unit recycling costs, conversion rate, and
capacity at the respective facilities of each type of WEEE. In addition, the unit cost for buying the
carbon credits of excessive carbon emissions is 0.000025 USD/g, and the carbon emissions cap for the
reverse logistics system for WEEE is 5,000,000 g. It is noteworthy that the units used in the numerical
experiment aim mainly at giving readers a better understanding of the applicability of the model, and
different measures of units may be applied in the design and planning of the reverse logistics system
for WEEE with specific requirements.
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Table 1. Parameter generation in the numerical experiment.

Parameters Interval

Fxr Unif. (4, 5); million USD
Fxp Unif. (5, 6); million USD

Emsr Unif. (200, 300); g/ton-capacity
Emsp Unif. (200, 300); g/ton-capacity
Cpd Unif. (100, 150); USD
Cph Unif. (500, 600); USD
dscr Unif. (20, 30); km
dsrp Unif. (20, 50); km
dsrd Unif. (20, 50); km
dsrh Unif. (20, 50); km
dsp f Unif. (30, 60); km
dspm Unif. (30, 60); km
dspd Unif. (20, 50); km
Cprl Unif. (100, 200); USD
Cppl Unif. (100, 200); USD

Ctrlcr/dscr Unif. (1, 2); USD/ton/km
Ctrlrp/dsrp Unif. (1, 2); USD/ton/km
Ctrlrd/dsrd Unif. (4, 5); USD/ton/km
Ctrlrh/dsrh Unif. (2, 3); USD/ton/km
Ctrlp f /dsp f Unif. (1, 2); USD/ton/km
Ctrlpm/dspm Unif. (1, 2); USD/ton/km
Ctrlpd/dspd Unif. (2, 3); USD/ton/km
Emslcr/dscr Unif. (100, 200); g/ton/km
Emslrp/dsrp Unif. (100, 200); g/ton/km
Emslrd/dsrd Unif. (100, 200); g/ton/km
Emslrh/dsrh Unif. (100, 200); g/ton/km
Emslp f /dsp f Unif. (100, 200); g/ton/km
Emslpm/dspm Unif. (100, 200); g/ton/km
Emslpd/dspd Unif. (100, 200); g/ton/km

Table 2. Parameter generation with respect to different types of WEEE.

Parameters
Interval

Type A Type B Type C

Cols
lc Unif. (500, 600); ton Unif. (1000, 2000); ton Unif. (1000, 2000); ton

PCps
f l Unif. (200, 300); USD/ton Unif. (150, 250); USD/ton Unif. (150, 250); USD/ton

PCms
ml Unif. (100, 150); USD/ton Unif. (100, 200); USD/ton Unif. (100, 200); USD/ton

Capacityrl 4000; ton 8000; ton 10,000; ton
Capacitypl 3000; ton 5000; ton 8000; ton

ϕlp 50% 60% 60%
ϕld 20% 20% 30%
ϕlh 30% 20% 10%
ϑl f 30% 30% 40%
ϑlm 30% 40% 50%
ϑld 40% 30% 10%

In the stochastic optimization model for the design of reverse logistics system for WEEE, the
amount of WEEE collected at local collection sites, the price of recycled products, and the price of
recycled materials are considered to be uncertain parameters, so several scenarios are generated
logically with respect to those uncertain parameters. The basic scenario s0 is the deterministic one with
the mean values of the uncertain parameters (Cols0

ac = 550 tons, Cols0
bc = 1500 tons, Cols0

cc = 1500 tons,
PCps0

f a = 250 USD/ton, PCps0
f b = 200 USD/ton, PCps0

f c = 200 USD/ton, PCms0
ma = 125 USD/ton,

PCms0
mb = 150 USD/ton, and PCms0

mc = 150 USD/ton). For creating the test scenarios, we randomly
generated two scenarios for the amount of WEEE collected at local collection sites, two scenarios
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for the price of recycled products, and two scenarios for the price of recycled materials based upon
the uniformly distributed intervals. In total, eight test scenarios (s1, s2, s3, s4, s5, s6, s7, and s8) are
generated through the combination of the possibilities of different uncertain parameters.

In addition to the basic and test scenarios, we also generated two benchmarking scenarios:
the best-case scenario and the worst-case scenario. In the best-case scenario, the amount of WEEE
collected at local collection sites reaches its lower limit while the prices for both recycled products
and materials achieve their upper limits (Cols9

ac = 500 tons, Cols9
bc = 1000 tons, Cols9

cc = 1000 tons,
PCps9

f a = 300 USD/ton, PCps9
f b = 250 USD/ton, PCps9

f c = 250 USD/ton, PCms9
ma = 150 USD/ton,

PCms9
mb = 200 USD/ton and PCms9

mc = 200 USD/ton); this means the reverse logistics system
deals with the minimum amount of WEEE with the highest selling price from the recycled
products and materials. In the worst-case scenario, the setting of uncertain parameters is an
opposite manner (Cols10

ac = 600 tons, Cols10
bc = 2000 tons, Cols10

cc = 2000 tons, PCps10
f a = 200 USD/ton,

PCps10
f b = 150 USD/ton, PCps10

f c = 150 USD/ton, PCms10
ma = 100 USD/ton, PCms10

mb = 100 USD/ton and

PCms10
mc = 100 USD/ton).
The stochastic programming model is coded in Lingo 11.0 optimization package and the

computation of all scenarios is performed on a personal laptop with Intel Core2 duo 2.52 GHz CPU
and 4 GB RAM with Windows 7 operating system. At first, the optimal solutions of each individual
scenario are calculated as the candidate solutions of the stochastic optimization problem. The problem
of each scenario includes 632 decision variables, of which 10 are integers, and all the scenarios can be
resolved within 30 s.

Figure 3 shows the optimal solutions of each individual scenario. As illustrated in the figure, the
range of the solution area is 21,411,780 USD (71%), defined by the best-case scenario s9 and the worst
case scenario s10. However, when the extreme conditions s9 and s10 are not taken into account, the
range of the optimal solutions of the test scenarios (s0–s8) is significantly reduced to 1,429,750 USD
(4%). In this case, the mean value is 35,996,637 USD, which leads to a relatively fair distribution of the
optimal solutions: s1, s2, s3, and s4 have better performance, while s0, s5, s6, s7, and s8 are slightly
below the mean value.
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As many have argued (e.g., [48,49]), with the increase of the number of scenarios generated in
a stochastic optimization problem, the improvement in the benefits and robustness of the optimal
result is relatively limited, but the computational time needed will be drastically increased. Based
upon the aforementioned discussion, even though the number of test scenarios generated in the
numerical experiment is not very large, they can still represent the solution interval in an effective and
efficient manner. In addition, it is observed that, with respect to the test parameters, the facility costs
take the most significant share in the overall system costs, and the transportation costs and profits
obtained from selling the recycled products and materials are the second and third largest contributor,
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respectively. However, the contribution of carbon costs is relatively insignificant compared with other
types of costs in this example.

The candidate solutions represent the best performance that can be achieved in each individual
scenario, but our objective is to find the optimal and most reliable and robust solution through all the
possible scenarios. Therefore, the performance of each candidate solution is tested through all the test
scenarios; in this example, each candidate solution is calculated 11 times for scenarios s0–s10, so in
total 121 calculations are performed in this step. The result is presented in Appendix A (Table A1), and
Figure 4 illustrates the comparison of the performance of each candidate solution through four criteria:
optimal costs, mean costs, standard deviation, and coefficient of variation. Based on the computational
results of the example, some managerial implications are discussed as follows.

(1) As shown in Figure 4a, the best solution of individual optimal costs is achieved in scenario s5
with the lowest system costs of 35,306,520 USD. The optimal cost of the deterministic scenario s0
is the median of the problem, and the optimal costs of scenarios s1, s2, s3, s4, and s10 are higher
than the median value, while scenarios s5, s6, s7, s8, and s9 have a better performance in their
individual optimal costs.

(2) As shown in Figure 4b, when the candidate solutions are evaluated through all the test scenarios,
the best solution of the mean costs is 36,997,582 USD, achieved in scenario s4, and the worst
solution is found for scenario s1, with 37,107,575 USD. It is noteworthy that, in terms of the
mean costs, the performance of scenarios s2, s3, s4, s6, s8, and s9 is close to the best performance.
Furthermore, it is also observed that the change of mean costs is not correlated to the change
of optimal individual costs, which means the better optimal individual costs may not lead to a
better overall economic performance in most cases.

(3) As shown in Figure 4c, when the candidate solutions are evaluated by standard deviation, the best
solution is obtained via scenario s1, with the lowest standard deviation at 4,837,063.5 USD, which
is far better than the other candidate solutions. This illustrates that the result of candidate solution
s1 tested with all possible scenarios has a more centered distribution around the mean value.

(4) As shown in Figure 4d, in terms of the performance of the coefficient of variation, the best solution
is obtained in scenario s2, with the lowest value of coefficient of variation at 0.1303524, which is
far better than the other candidate solutions. The second best solution in terms of the coefficient
of variation is achieved in scenario s7.

(5) Comparing Figure 4c with Figure 4d, it is observed that the change of the performance of
candidate solutions with respect to standard deviation and coefficient of variation is quite similar,
and the influence of the mean costs seems insignificant in this example. This result can be
explained by the significant difference in the ranges of mean values and standard deviation. The
range of the mean value is only 0.3%, which means the difference between the best and the worst
solution is not significant. However, the range between the best solution and the worst solution
in standard deviation is 7.2%, which is 24 times higher than that of the mean value, so standard
deviation has a much more significant influence on coefficient of variation in this example.

(6) In this example, Meanmin is 36,997,582 USD, obtained from candidate solution s4, and
Coe f f icient o f variationmin is 0.1303524, obtained from candidate solution s1. WM and WC denote
the weight of the mean and coefficient of variation in the evaluation of the overall performance
of the reverse logistics system for WEEE, which reflects the relative importance of the expected
objective value and reliability in decision-making. In this example, we test the same weights of
the mean (0.5) and coefficient of variation (0.5), and the optimal result is 1.001486, achieved at
candidate solution s1; the second and third best solutions equal 1.032073 and 1.035218, obtained
through candidate solutions s7, s0 and s10 (s0 and s10 have the same value), respectively. When
the optimal overall performance is obtained at candidate solution s1, potential locations r1 and r5
are selected for opening WEEE regional collection centers and potential locations p4 and p5 are
selected for opening WEEE recycling plants.
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We are also interested in the reliability of different cost components, and Figure 5 shows a
comparison of the performance of facility costs, transportation costs, profits obtained from selling
the recycled products and materials, and carbon costs in the candidate solutions tested through all
possible scenarios. As presented in the figure, we cannot observe a great change in the coefficient of
variation in different cost components through most of the candidate solutions. Candidate solution s7
outperforms itself compared with other candidate solutions in the facility costs, which account for the
largest share in the overall system costs. Candidate solution s1 has the least reliable performance in the
profits gained from the selling of recycled products and materials. With respect to the environmental
impacts, candidate solutions s0, s9, and s10 show a more reliable performance than the other candidate
solutions. The results reveal that the change in the reliability of individual cost components may not
be consistent with that of the overall cost reliability.
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In this section, sensitivity analysis with respect to the change of combination of weights is
performed, and the result is shown in Table 3. The weight of expected objective value WM increases
from 0 to 1 by steps of 0.1, and the weight of reliability WC decreases in the opposite way. As illustrated
in the table, candidate solution s1 has the optimal overall performance through most scenarios with
different combinations of weights (expect the last one) due to its high reliability (lowest coefficient of
variation). It is noteworthy that the optimal solution of this example is similar to the calculation with
our solution method and Soleimani et al.’s solution method [37]. However, with the increase in the
weight of the mean value, the second and third best solutions may change significantly. For example,
when WM equals 0.9 and WC equals 0.1, the second best solution is 1.007059, obtained in candidate
solution s4, and the third best solution is 1.007070, obtained at candidate solution s2. This illustrates
that the subjective weight combination determined by the decision-makers may significantly affect the
optimal result of the stochastic optimization problem.
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Table 3. Sensitivity analysis of the result with respect to the change of weight combination.

Weight Combination
Sol. s0 Sol. s1 Sol. s2 Sol. s3 Sol. s4 Sol. s5 Sol. s6 Sol. s7 Sol. s8 Sol. s9 Sol. s10

WM WC

0 1 1.070012 1.000000 1.070582 1.070705 1.070592 1.071525 1.071393 1.062836 1.071373 1.074669 1.070012
0.1 0.9 1.063053 1.000297 1.063526 1.063635 1.063532 1.064374 1.064256 1.056683 1.064238 1.067206 1.063053
0.2 0.8 1.056094 1.000595 1.056469 1.056565 1.056473 1.057223 1.057119 1.050531 1.057103 1.059743 1.056094
0.3 0.7 1.049136 1.000892 1.049412 1.049495 1.049414 1.050072 1.049982 1.044378 1.049968 1.052281 1.049136
0.4 0.6 1.042177 1.001189 1.042355 1.042426 1.042355 1.042921 1.042845 1.038225 1.042833 1.044818 1.042177
0.5 0.5 1.035218 1.001486 1.035298 1.035356 1.035296 1.035770 1.035708 1.032073 1.035699 1.037355 1.035218
0.6 0.4 1.028259 1.001784 1.028241 1.028286 1.028237 1.028619 1.028571 1.025920 1.028564 1.029892 1.028259
0.7 0.3 1.021300 1.002081 1.021184 1.021216 1.021177 1.021468 1.021434 1.019768 1.021429 1.022429 1.021300
0.8 0.2 1.014341 1.002378 1.014127 1.014146 1.014118 1.014317 1.014297 1.013615 1.014294 1.014966 1.014341
0.9 0.1 1.007382 1.002676 1.007070 1.007076 1.007059 1.007166 1.007159 1.007462 1.007159 1.007503 1.007382
1 0 1.000423 1.002973 1.000013 1.000007 1.000000 1.000015 1.000022 1.001310 1.000024 1.000040 1.000423
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5. Sensitivity Analysis

We are interested in the influence of the change of some key parameters in the design of reverse
logistics system for WEEE, and two sensitivity analyses (SA and S-B) are performed in this section.
The facility capacity limitation is the bottleneck of the reverse logistics system for WEEE in the previous
section. The literature has shown that facility expansion at the same location is much more efficient
in dealing with increased customer demand than opening new facilities [50]. Therefore, in the first
sensitivity analysis S-A, we increase the facility capacity of different types of WEEE by 100% at regional
collection centers and recycling plants, and the fixed facility costs are increased by 40% due to the
increase in the resources invested in facility expansion, i.e., equipment, personnel, etc.

The result of sensitivity analysis S-A is illustrated in Appendix B (Table B1), Figures 6 and 7, and
Table 4. As illustrated in the figures and tables, the overall system costs are reduced by approximately
15% compared with the result of the previous numerical experiment, the optimal mean value is
achieved at candidate solution s0, and the optimal coefficient of variation is obtained at candidate
solution s9. When the weights of expected objective value and reliability are identical, the optimal
solution is 1.002680, obtained at candidate solution s9, potential location r1 is selected to open the
regional collection center, and potential location p5 is selected for the new recycling plant. It is
noteworthy that, with the increase in facility capacity, only two new facilities are opened in sensitivity
analysis S-A for the treatment of WEEE, and the overall facility costs are significantly reduced due to
the decreased number of facilities opened, even though the fixed operating costs of each individual
facility increase by 40%. This result has revealed the effectiveness of capacity expansion at existing
facilities. Compared with opening new facilities, the possible capacity expansion may drastically
reduce the overall system costs due to the cost savings from construction, aggregation of transportation,
and economy of scale. This result is valuable for decision-making about reverse logistics system design
and planning for treating the increased amount of WEEE, particularly from a long-term perspective.

Compared with other types of costs, the carbon emissions costs are relatively insignificant in
the overall system costs of the reverse logistics system for WEEE. We are interested in finding out
whether a more stringent environmental policy can play an important role in the design of a reverse
logistics system for WEEE. In the second sensitivity analysis S-B, two changes are made to minimize
the environmental impacts of the reverse logistics system for WEEE. First, the carbon cap is reduced to
0, which means all the carbon emissions from the reverse logistics system will be charged. In addition,
the unit cost for buying carbon credits is increased 10 times, which means much more will be paid
for the carbon emissions. Sensitivity analysis S-B is conducted to test the result of the problem in an
extreme condition in which environmental sustainability is made one of the first priorities, and it can
be used for policy-making and a reconfiguration of the reverse logistics system in the coming years.
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Figure 7. Comparison of the evaluation criteria in candidate solutions of sensitivity analysis S-A: (a)
Optimal costs; (b) mean costs; (c) standard deviation; (d) coefficient of variation.

The result of the sensitivity analysis S-B is illustrated in Appendix B (Table B2), Figures 8 and 9,
and Table 5. As shown in the figures and tables, the stringent environmental requirements lead to
much higher overall costs for the reverse logistics system for WEEE due to the great increase in carbon
emissions costs. The optimal mean value and coefficient of variation are obtained at candidate solutions
s0 and s9, respectively. When WM equals 0.5 and WC equals 0.5, the optimal solution is 1.004995,
achieved at candidate solution s9, and potential locations r1 and p5 are selected for new facilities. The
facility selection is the same as that in sensitivity analysis S-A, which shows the consistency between
economic efficiency and environmental impact. In other words, an optimal and reliable configuration
of a reverse logistics system for WEEE through location optimization and transportation aggregation
may bring both economic and environmental benefits.
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The results of the illustrative example and sensitivity analyses clearly show the difference
in the computation of the optimal solution of the stochastic optimization problem between the
improved multi-criteria scenario-based solution method and the original solution method developed
by Soleimani et al. [37]. In some cases, similar results may be obtained with both methods, but different
results are achieved in most cases. This reveals that the multi-criteria scenario-based solution method
developed in this paper has a better applicability for stochastic optimization problems, especially
for min-min or max-max problems. Furthermore, our solution method provides more comprehensive
managerial interpretation for the evaluation of the reliability and robustness of data dispersion.
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Table 4. Sensitivity analysis of the results with respect to the change of weight combination (S-A).

Weight Combination
Sol. s0 Sol. s1 Sol. s2 Sol. s3 Sol. s4 Sol. s5 Sol. s6 Sol. s7 Sol. s8 Sol. s9 Sol. s10

WM WC

0 1 1.000000 1.012538 1.001633 1.015303 1.002341 1.015362 1.002212 1.015867 1.002596 1.005359 1.103707
0.1 0.9 1.002578 1.013821 1.003791 1.016100 1.004321 1.016259 1.004313 1.016609 1.004564 1.004823 1.099090
0.2 0.8 1.005155 1.015104 1.005949 1.016897 1.006301 1.017156 1.006415 1.017351 1.006532 1.004287 1.094472
0.3 0.7 1.007733 1.016387 1.008107 1.017694 1.008281 1.018054 1.008516 1.018092 1.008500 1.003752 1.089854
0.4 0.6 1.010310 1.017670 1.010266 1.018491 1.010262 1.018951 1.010617 1.018834 1.010468 1.003216 1.085237
0.5 0.5 1.012888 1.018952 1.012424 1.019288 1.012242 1.019849 1.012718 1.019576 1.012435 1.002680 1.080619
0.6 0.4 1.015465 1.020235 1.014582 1.020085 1.014222 1.020746 1.014819 1.020317 1.014403 1.002144 1.076002
0.7 0.3 1.018043 1.021518 1.016740 1.020882 1.016202 1.021644 1.016921 1.021059 1.016371 1.001608 1.071384
0.8 0.2 1.020620 1.022801 1.018898 1.021679 1.018183 1.022541 1.019022 1.021800 1.018339 1.001072 1.066766
0.9 0.1 1.023198 1.024084 1.021057 1.022476 1.020163 1.023438 1.021123 1.022542 1.020307 1.000536 1.062149
1 0 1.025775 1.025367 1.023215 1.023273 1.022143 1.024336 1.023224 1.023284 1.022275 1.000000 1.057531

Table 5. Sensitivity analysis of the result with respect to the change of weight combination (S-B).

Weight Combination
Sol. s0 Sol. s1 Sol. s2 Sol. s3 Sol. s4 Sol. s5 Sol. s6 Sol. s7 Sol. s8 Sol. s9 Sol. s10

WM WC

0 1 1.000000 1.009343 1.000922 1.011803 1.001424 1.011489 1.000968 1.176535 1.001207 1.006396 1.082024
0.1 0.9 1.002574 1.010998 1.003224 1.013023 1.003584 1.012831 1.003266 1.158882 1.003399 1.006116 1.079201
0.2 0.8 1.005148 1.012652 1.005527 1.014243 1.005744 1.014173 1.005564 1.141228 1.005590 1.005836 1.076378
0.3 0.7 1.007722 1.014307 1.007829 1.015464 1.007903 1.015515 1.007861 1.123575 1.007782 1.005555 1.073555
0.4 0.6 1.010296 1.015961 1.010132 1.016684 1.010063 1.016857 1.010159 1.105921 1.009973 1.005275 1.070732
0.5 0.5 1.012870 1.017616 1.012434 1.017904 1.012223 1.018199 1.012457 1.088268 1.012164 1.004995 1.067908
0.6 0.4 1.015445 1.019270 1.014736 1.019125 1.014383 1.019542 1.014755 1.070614 1.014356 1.004715 1.065085
0.7 0.3 1.018019 1.020925 1.017039 1.020345 1.016543 1.020884 1.017052 1.052961 1.016547 1.004435 1.062262
0.8 0.2 1.020593 1.022579 1.019341 1.021565 1.018703 1.022226 1.019350 1.035307 1.018739 1.004154 1.059439
0.9 0.1 1.023167 1.024234 1.021643 1.022785 1.020863 1.023568 1.021648 1.017654 1.020930 1.003874 1.056616
1 0 1.025741 1.025888 1.023946 1.024006 1.023023 1.024910 1.023945 1.000000 1.023121 1.003594 1.053793
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6. Conclusions

Today, the increased public concern about sustainable development and more stringent
environmental regulations have become important driving forces for value recovery from end-of-life
and end-of use products through reverse logistics. This paper presents a novel stochastic mixed
integer programming model for the design of a generic multi-source, multi-echelon, and capacitated
reverse logistics system for WEEE in an economic efficient and environmental friendly manner. The
model aims at minimizing the overall costs of the reverse logistics system for WEEE through location
optimization and transportation planning, and the amount of WEEE generated at local collection
sites, price of recycled products, and recycled materials are considered as uncertain parameters.
Furthermore, the model takes into account the environmental impacts of reverse logistics; in this
paper, the environmental impacts are evaluated in terms of carbon emissions costs. The proposed
stochastic optimization model is resolved with an improved multi-criteria scenario-based solution
method and coded in Lingo 11.0 optimization solver, and a numerical example and sensitivity analyses
are conducted in order to illustrate the application of the model and provide managerial insights for
decision-making. The main contributions of the paper are summarized as follows:

(1) The paper provides a novel stochastic optimization model for the design of a generic reverse
logistics system for WEEE. Reverse logistics is characterized as having a high level of uncertainty,
so the modelling and formulation of some uncertain parameters are of significant importance.

(2) Compared with previous mathematical models, the model proposed in this paper considers the
environmental impacts of the reverse logistics system for WEEE, and the minimization of carbon
emissions is also a very important consideration of the model.

(3) The model is resolved with the multi-criteria scenario-based solution method in order to find
the most economically efficient and reliable solution to the stochastic optimization problem.
The expected objective value and reliability are evaluated by the mean and coefficient of variation,
and normalized weighted sum formulation is applied to combine the two evaluation criteria.
The solution method enables interactions between the subjective evaluation from the decision
makers and the objective system values, so the result achieved is more reliable and robust.
In addition, our improved solution method also resolves the deficiencies of the original solution
method, and is capable of solving min-min and max-max optimization problems. In addition, the
managerial meaning of the solution method is explicitly explained in this paper.

(4) The numerical experiment and sensitivity analyses provide valuable managerial insights into
the design of a reverse logistics system for WEEE. For example, capacity expansion at existing
facilities may be a more economically efficient way for dealing with an increased amount of WEEE,
and both economic and environmental performance may be improved simultaneously with
location optimization and transportation aggregation. In addition, the managerial insight from
the system design and planning of a reverse logistics network of WEEE may also provide valuable
information for the government in determining a subsidy scheme for companies performing
WEEE treatment.

For further development of this research, four suggestions are proposed. First, for large sized
stochastic mixed integer programming, some advanced solution methods, i.e., meta-heuristic [51,52],
should be developed and applied to the design of a reverse logistics system for WEEE in order
to improve the computational efficiency and effectiveness. Second, the model may be further
developed into a multi-objective programming model in order to take into account more comprehensive
considerations in the design of the reverse logistics system for WEEE, i.e., risk [53–57], saving of
resources [42], etc. Third, the model is developed primarily for addressing the general characteristics of
the reverse logistics system for WEEE from a strategic perspective; however, some specific technologies
are used in the sorting and recycling processes of WEEE, so future research may focus on the economic
efficiency and environmental impacts of those specific technologies for the processing and treatment
of WEEE. Fourth, the application and validation of the proposed stochastic optimization model with
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a real-world case study of the design and planning of the reverse logistics system for WEEE will be
expected in the future.
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Appendix A. Computational Results of Numerical Example

Table A1. Scenario-based overall system costs of the reverse logistics system for WEEE.

Sol. s0 Sol. s1 Sol. s2 Sol. s3 Sol. s4 Sol. s5 Sol. s6 Sol. s7 Sol. s8 Sol. s9 Sol. s10

s0 35,801,630 35,952,130 35,801,630 35,801,630 35,801,630 35,801,630 35,801,630 35,875,160 35,801,630 35,801,630 35,801,630
s1 36,718,370 36,548,660 36,718,370 36,718,370 36,718,370 36,718,370 36,718,370 36,746,110 36,718,370 36,718,370 36,718,370
s2 36,893,640 37,110,980 36,726,620 36,893,640 36,893,640 36,893,640 36,893,640 36,921,500 36,893,640 36,893,640 36,893,640
s3 36,727,900 36,783,460 36,727,900 36,558,310 36,727,900 36,727,900 36,727,900 36,755,780 36,727,900 36,727,900 36,727,900
s4 36,908,510 37,181,410 36,908,510 36,908,510 36,736,270 36,908,510 36,908,510 36,936,390 36,908,510 36,908,510 36,908,510
s5 35,472,470 35,472,470 35,472,470 35,472,470 35,472,470 35,306,520 35,472,470 35,472,470 35,472,470 35,472,470 35,472,470
s6 35,633,550 35,825,670 35,633,550 35,633,550 35,633,550 35,633,550 35,470,410 35,633,550 35,633,550 35,633,550 35,633,550
s7 35,494,550 35,519,400 35,494,550 35,494,550 35,494,550 35,494,550 35,494,550 35,328,710 35,494,550 35,494,550 35,494,550
s8 35,655,000 35,871,970 35,655,000 35,655,000 35,655,000 35,655,000 35,655,000 35,655,640 35,492,600 35,655,000 35,655,000
s9 30,292,120 31,104,970 30,292,120 30,292,120 30,292,120 30,292,120 30,292,120 30,607,740 30,292,120 30,136,120 30,292,120

s10 51,547,900 50,812,200 51,547,900 51,547,900 51,547,900 51,547,900 51,547,900 51,573,440 51,547,900 51,547,900 51,547,900
MV 1 37,013,240 37,107,575 36,998,056 36,997,823 36,997,582 36,998,154 36,998,409 37,046,045 36,998,476 36,999,058 37,013,240
SD 2 5,162,559.3 4,837,063.5 5,163,191.8 5,163,749.7 5,163,169.9 5,167,752 5,167,151.5 5,132,479.4 5,167,062.2 5,183,042.5 5,162,559.3
CV 3 0.1394787 0.1303524 0.139553 0.139569 0.1395542 0.1396759 0.1396587 0.1385432 0.139656 0.1400858 0.1394787

1 MV: Mean value. 2 SD: Standard deviation. 3 CV: Coefficient of variance (CV = SD/MV).
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Appendix B. Computational Result of Sensitivity Analysis

Table B1. Scenario-based overall system costs of the reverse logistics system for WEEE in sensitivity analysis (A).

Sol. s0 Sol. s1 Sol. s2 Sol. s3 Sol. s4 Sol. s5 Sol. s6 Sol. s7 Sol. s8 Sol. s9 Sol. s10

s0 30,433,820 30,710,800 30,451,520 30,593,350 30,334,070 30,710,800 30,451,520 30,593,350 30,334,070 29,651,950 31,215,700
s1 31,251,300 30,937,490 31,134,170 30,789,760 31,176,440 30,747,490 31,134,170 30,789,760 31,176,440 30,416,190 32,086,410
s2 31,408,420 31,530,740 31,091,320 31,573,010 31,294,760 31,530,740 31,252,500 31,573,010 31,294,760 30,573,310 32,243,530
s3 31,586,510 31,183,690 31,570,370 30,959,830 31,511,650 31,183,690 31,570,370 31,124,970 31,511,650 30,751,400 32,421,620
s4 31,394,940 31,618,250 31,340,010 31,559,530 31,113,650 31,618,250 31,340,010 31,559,530 31,281,290 30,559,830 32,230,050
s5 30,670,490 30,210,790 30,537,930 30,247,360 30,574,500 30,049,090 30,537,930 30,247,360 30,574,500 29,898,040 31,442,940
s6 30,478,020 30,585,080 30,329,100 30,621,640 30,365,660 30,585,080 30,171,130 30,621,640 30,365,660 29,705,560 31,250,470
s7 30,649,910 30,293,480 30,620,610 30,226,780 30,553,910 30,293,480 30,620,610 30,065,270 30,553,910 29,877,450 31,422,360
s8 30,416,720 30,644,330 30,376,820 30,577,630 30,310,120 30,644,330 30,376,820 30,577,630 30,187,320 29,626,270 31,207,180
s9 25,749,000 25,939,050 25,768,800 25,849,950 25,679,700 25,939,050 25,768,800 25,849,950 25,679,700 25,212,750 26,285,250

s10 45,929,180 46,175,180 45,874,080 46,115,780 45,814,680 46,175,180 45,874,080 46,115,780 45,814,680 44,901,680 48,997,110
MV 1 31,815,301 31,802,625 31,735,885 31,737,693 31,702,649 31,770,653 31,736,176 31,738,023 31,706,725 31,015,857 32,800,238
SD 2 4,950,109.6 5,010,178.7 4,945,815.7 5,013,603.6 4,944,127.9 5,019,098.1 4,948,722.4 5,016,440 4,946,024 4,851,587.7 5,632,609.1
CV 3 0.155589 0.1575398 0.155843 0.15797 0.1559531 0.1579791 0.1559332 0.1580577 0.1559928 0.1564228 0.1717246

1 MV: Mean value. 2 SD: Standard deviation. 3 CV: Coefficient of variance (CV = SD/MV).

Table B2. Scenario-based overall system costs of the reverse logistics system for WEEE in sensitivity analysis (B).

Sol. s0 Sol. s1 Sol. s2 Sol. s3 Sol. s4 Sol. s5 Sol. s6 Sol. s7 Sol. s8 Sol. s9 Sol. s10

s0 35,217,930 35,511,820 35,252,540 35,394,370 35,135,090 35,511,820 35,252,540 35,394,370 35,135,090 34,452,970 36,016,720
s1 36,188,520 36,055,660 36,071,390 35,726,980 36,113,660 35,684,710 36,071,390 35,726,980 36,113,660 35,353,410 37,023,630
s2 36,284,990 36,407,310 36,111,890 36,449,570 36,171,330 36,407,310 36,129,070 36,449,570 36,171,330 35,449,880 37,387,200
s3 36,552,090 36,149,270 36,535,950 36,073,380 36,477,230 36,149,270 36,535,950 36,090,550 36,477,230 35,716,980 37,387,200
s4 36,267,670 36,490,970 36,212,730 36,432,250 36,129,610 36,490,970 36,212,730 36,432,250 36,154,010 35,432,560 37,102,780
s5 35,558,890 35,099,190 35,426,330 35,135,750 35,462,890 35,081,860 35,426,330 35,135,750 35,462,890 34,786,430 36,331,340
s6 35,282,160 35,389,220 35,133,240 35,425,790 35,169,800 35,389,220 35,115,900 35,425,790 35,169,800 34,509,710 36,054,620
s7 35,533,790 35,177,360 35,504,490 35,110,650 35,437,790 35,177,360 35,504,490 35,093,320 35,437,790 34,761,330 36,306,240
s8 35,219,260 35,446,870 35,179,360 35,380,170 35,112,660 35,446,870 35,179,360 30,325,590 35,127,370 34,428,810 36,009,720
s9 30,224,640 30,414,690 30,244,440 30,325,590 30,155,340 30,414,690 30,244,440 25,849,950 30,155,340 29,673,020 30,760,890

s10 54,892,650 55,138,650 54,837,550 55,079,250 54,778,150 55,138,650 54,837,550 55,079,250 54,778,150 53,865,150 57,978,850
MV 1 37,020,235 37,025,546 36,955,446 36,957,614 36,922,141 36,990,248 36,955,432 36,091,215 36,925,696 36,220,932 38,032,654
SD 2 6,176,398.2 6,235,000.1 6,171,274.3 6,238,725 6,168,802.5 6,242,297.6 6,171,556.3 7,084,390.6 6,168,063 6,081,694.7 6,865,778.5
CV 3 0.1668384 0.1683972 0.1669923 0.1688076 0.167076 0.1687552 0.1669999 0.1962913 0.1670399 0.1679055 0.1805232

1 MV: Mean value. 2 SD: Standard deviation. 3 CV: Coefficient of variance (CV = SD/MV).
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