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Abstract:

 This paper investigates various supply chain disruptions in terms of scenario planning, including node disruption and chain disruption; namely, disruptions in distribution centers and disruptions between manufacturing centers and distribution centers. Meanwhile, it also focuses on the simultaneous disruption on one node or a number of nodes, simultaneous disruption in one chain or a number of chains and the corresponding mathematical models and exemplification in relation to numerous manufacturing centers and diverse products. Robustness of the design of the supply chain network is examined by weighing efficiency against robustness during supply chain disruptions. Efficiency is represented by operating cost; robustness is indicated by the expected disruption cost and the weighing issue is calculated by the multi-objective firefly algorithm for consistency in the results. It has been shown that the total cost achieved by the optimal target function is lower than that at the most effective time of supply chains. In other words, the decrease of expected disruption cost by improving robustness in supply chains is greater than the increase of operating cost by reducing efficiency, thus leading to cost advantage. Consequently, by approximating the Pareto Front Chart of weighing between efficiency and robustness, enterprises can choose appropriate efficiency and robustness for their longer-term development.
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1. Introduction


2014 witnessed the epidemic Ebola, affecting Cote d’Ivoire, the main supplier of cocoa to the Nestle Corporation. A crisis of raw materials occurred in supply chains, leading to a huge loss for the Nestle Corporation. The National Seismic Center in Chile announced that an earthquake of 8.2 on the Richter scale took place in the northern Chile and the price of bronze increased dramatically, which brought substantial pressure related to the cost of materials to producers of sanitary appliances and metals. On 27 January 2015, heavy snowfall struck Huoshan County in China and trees fell down on the high-voltage power lines, resulting in blackout in 45 base stations and in the majority of places in the county.



Extant literature has described huge damages caused by supply chain disruptions. For instance, Li and Liu (2014) [1] proposes an analytic algorithm to calculate the purchasing time and inventory based on the sensitivity model, which does not consider the uncertainty of demand and supply among supply chain members. Mizgier et al. (2015) [2] investigate whether or not capital charge could be combined with process improvement, an approach predominantly employed for managing high-frequency, low-impact operational disruptions. They note that process improvement can be a first line of defense to manage certain types of operational risk events, but their study is not without limitations. Their categorization of event types is not developed in the literature but through regulation, and it is actively followed in practice. In addition, the event types are broad and can be made granular. Constrained by the order quantity, Gorji et al. (2014) [3] discuss the optimal inventory decision-making related to two-echelon supply chains, assuming that clients would wait for new purchase in shortage, but they do not note that suppliers have limited transportation facilities. Mizgier et al. (2015) [4] propose a model for the calculation of the loss distribution from disruptions in a SCN. This gives supply chain risk managers an efficient tool for the quantification of supply chain risks intrinsically embedded in the existing network design, but they concentrate only on the downstream risk arising from supplier disruptions. Wang et al. (2013) [5] present a systematic cost model to facilitate manufacturers to evaluate and increase the minimal distribution cost of the supplier quality, whereas they do not take the interaction between suppliers into account. When demand is disrupted, Cao, et al. (2013) [6] develop a coordinated mechanism for a one manufacturer and n Gounod competitive retailers supply chain; in reality, however, there are multiple manufacturers simultaneously. Hishamuddin et al. (2014) [7] consider a recovery mechanism for disruptions in two-echelon supply chains, which only involves two-echelon supply chain model with one manufacturer and one retailer. Shu et al. (2014) [8] investigate risk control of production disruption in supply chains on the basis of Generic Bill of Materials (GBOM), and study the strategies related to the overall optimal profits achieved by enterprises when production is uncertain. They make a hypothesis regarding corporate efficiency and the disruptions of market demand, and it is difficult to obtain the real and accurate disruption probability as a result of the uncertainty of supply chain disruptions. The studies mentioned above do not consider the robustness of supply chains; however, efficiency can be increased in addressing supply chain disruption if robustness is introduced in the design of supply chain network. Here, the robustness of supply chains refers to the robust supply chain. The more robust the supply chain is, the less likely the supply chain tends to be disrupted. As such, robustness of supply chains is added as a key consideration here. The introduction of robustness of supply chains involves weighing efficiency and robustness of enterprises, to optimize multiple objectives. Rosenberg (1967) [9] applies a genetic algorithm to address the problem of multiple objectives and since then swarm intelligence algorithm has been widely used to tackle multi-objective problems. Mizgier et al. (2015) [10] formulate a multi-objective optimization model for the capital allocation problem and apply it to a real-world case of two financial conglomerates. They extend the optimum capital allocation problem to a multi-objective optimization problem by incorporating the cost of capital. Nevertheless, their choice of parameters has only partially been validated with real data. Yang (2013) [11] proposes the firefly algorithm and since then a number of scholars have improved it and applied it in all fields. The firefly algorithm mimics some characteristics of tropic firefly swarms and their flashing behavior. Sayadi et al. (2010) [12] adopt the firefly algorithm to study the minimal completion time for the scheduling problem in assembly lines, but the setup of parameters is not discussed sufficiently. Yang (2008) [13] extends the firefly algorithm to address multi-objective problems and tests the validity of the algorithm by functions and applies it for designing benchmark optimization. In addition, they apply the firefly algorithm to discreet optimization of manufacturing units (Sayadi et al., 2013; Sayadi et al., 2010) [12,14], involving optimization with a single objective. Chandrasekaran et al. (2013) [15] solve the problem of unit commitment by means of the firefly algorithm with a real-number encoding binary system, without considering the optimization of multiple conflicting objectives. Talatahari et al. (2014) [16] optimize a tower structure with the firefly algorithm, whereas they fail to conceive of the case of discreteness. Marichelvam et al. (2014) [17] address the scheduling problem of multi-objective mixed assembly lines by the discreet firefly algorithm; however, they do not consider that machines may be irrelevant or different in each stage.



The majority of studies on supply chains have considered only one product and one manufacturing center, which is ideal. In reality, most enterprises involve more than one product and have a number of manufacturing centers in different regions. Our study, therefore, suits the supply chain with multiple products and manufacturing centers. The probability of supply chain disruption is difficult to quantify and most studies consider strategies for addressing the aftermath of the disruption, which is a passive approach. This paper considers the robustness of supply chains at the supply chain design stage itself; at the same time, node disruption and link disruption of supply chains are also taken into account. In addition, efficiency and robustness of supply chains are weighed, providing evidence for enterprises to choose the appropriate efficiency and robustness of supply chains. The multi-objective firefly algorithm involves maximal efficiency and robustness of supply chains simultaneously, which is different from the discreet points from single-objective algorithms. The multi-objective firefly algorithm produces the weighing line graph for approximating the Pareto Front, whose validity has been proved and applied in each field.



This paper, for the first time, introduces the issue of weighing efficiency and robustness of supply chains disrupted by the multi-objective firefly algorithm, which is deployed to solve the weighting problem. The result is the continuous Pareto curve instead of a number of independent points, and the robustness and cost of supply chains corresponding to their efficiency can be derived. The results show that the total cost with the optimal target function is lower than that with the most effective supply chain. In other words, the reduction of anticipated disruption cost caused by the increase of supply chain robustness is greater than the rise of operation cost caused by the drop of the efficiency of supply chains, thus creating the cost advantage. This has both theoretical and practical significance in this competitive age. Therefore, enterprises can choose appropriate efficiency and robustness to promote their long-term development based on the approximate Pareto front figure of weighing efficiency and robustness.



The organization of this paper is as follows: the supply chain model is first constructed; the firefly algorithm and the multi-objective firefly algorithm are explicated in detail; the validity of the multi-objective firefly algorithm is tested; the multi-objective firefly algorithm is exemplified and simulated; node disruption and link disruption are considered at the same time; and the simulated results are finally analyzed.




2. Building Models


The previous research on supply chains has mostly considered only one product and one manufacturing center, as Shukla et al. (2011) [18] do. This design does not fit the reality, and thus this paper considers supply chains with multiple products and manufacturing centers. The majority of enterprises have manufacturing centers for their products, delivering goods to their distribution centers and client regions where goods are in demand, and the three-echelon model has been adopted by many researchers (Shukla et al., 2011; Meepetchdee and Shah, 2007; Peng et al., 2011) [18,19,20]. As a result, this paper designs the three-echelon model with multiple products and manufacturing centers. The supply chain comprises the fixed manufacturing centers a with multiple products, the potential distribution centers b and fixed client zones c, as shown in Figure 1. In this supply chain, the varieties and quantities of products in multiple manufacturing centers rest on the model; the numbers, locations, varieties and quantities of delivered goods depend on the model; and the construction of the distribution center leads to the corresponding cost of the infrastructure. The client zone represents the demand for one or multiple products. The operational cost includes infrastructure cost, manufacturing cost and material carrying cost in distribution centers and transport cost. The scenario planning is adopted to calculate and analyze the anticipated disruption cost in different cases of supply chain disruption. The scenarios can be the node disruption in the manufacturing center or distribution center, or the link disruption from manufacturing center to the distribution center or from distribution center to the client zone. To ensure stable operations in the overall supply chain system, once the distribution center is constructed, it must serve some client zones. Each distribution center and each client zone can be supplied by only one manufacturing center and one distribution center. There is no inventory accumulation or loss. The demand of each client zone can be satisfied. The data given consist of the demand of client zones, cost, manufacturing center and the distance between distribution centers and client zones, the probability of disruption in each scenario and the quantity of disrupted products. The aim is to maximize the two conflicting targets of efficiency and robustness of supply chains, and weigh and analyze efficiency and robustness and compare the total cost at the same time.


Figure 1. Three-echelon supply chain for multiple products in multiple manufacturing centers.
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Tsiakis et al. (2001) [21], Meepetchdee and Shah (2007) [19], Shukla et al. (2011) [18], Peng et al. (2011) [20] and Kalaitzidou et al. (2014) [22] present mathematical models of robustness of supply chains in their designs. Mixed integer linear planning is most common in the design of supply chains, for addressing node and link disruptions of supply chains. Parameter setting contains index, decision-making variables, demand parameters, efficiency parameters, cost parameters, distance parameters, probability parameters and disrupted product quantity parameters. In addition, the decision-making variables can be divided into two categories. In the first category, binary system variables define whether the manufacturing center, the distribution center and client zones are connected. In the second category, the integer variable defines the product quantity.



2.1. Parameters Setting


	
Index






[image: there is no content]: manufacturing centers; [image: there is no content]: distribution centers; [image: there is no content]: client zones; [image: there is no content]: product types; [image: there is no content]: scenario collections.



	
Decision-making variable






Define whether manufacturing centers supply distribution centers as the binary system variables.




[image: there is no content]









Define whether distribution centers supply client zones as the binary system variables.




[image: there is no content]









Define the description of multi-echelon supply chains as integer variables.



[image: there is no content]: quantity of product [image: there is no content] by the manufacturing center [image: there is no content]; [image: there is no content]: quantity of product [image: there is no content] from the manufacturing center [image: there is no content] to the distribution cente [image: there is no content]; [image: there is no content]: quantity of product from the distribution center [image: there is no content] to the client zone [image: there is no content].



	
Demand parameter






[image: there is no content]: annual demand of the product [image: there is no content] in client zone [image: there is no content].



	
Efficiency parameter






[image: there is no content]: efficiency of supply chains; [image: there is no content]: robustness of supply chains



	
Cost parameter






[image: there is no content]: the fixed cost amortized annually when distribution center [image: there is no content] is constructed; [image: there is no content]: the unit changeable cost of product [image: there is no content] amortized annually when the distribution center [image: there is no content] is constructed; [image: there is no content]: the production cost of the unit product [image: there is no content] in the manufacturing center [image: there is no content]; [image: there is no content]: unit carrying cost of the product [image: there is no content] in the distribution center [image: there is no content]; [image: there is no content]: unit shipment cost of the unit product [image: there is no content] from the manufacturing center [image: there is no content] to the distribution center [image: there is no content]; [image: there is no content]: the unit shipment cost of the unit product [image: there is no content] from the distribution center [image: there is no content] to the client zone [image: there is no content]; [image: there is no content]: opportunity cost, i.e., unit marginal profit of Product [image: there is no content].



	
Distance parameter






[image: there is no content]: the distance from the manufacturing center [image: there is no content] to the distribution center [image: there is no content]; [image: there is no content]: the distance from the distribution center [image: there is no content] to the client zone [image: there is no content].



	
Probability parameter






[image: there is no content]: probability of scenario [image: there is no content]



	
Disrupted product quantity parameter






[image: there is no content]: quantity of disrupted product [image: there is no content] in scenario [image: there is no content]




2.2. Constraints


	
Network structure constraint






All the relevant network structure constraints in the manufacturing center, the distribution center and the client zone can be summarized as follows.




[image: there is no content]



(1)






[image: there is no content]



(2)






[image: there is no content]



(3)






[image: there is no content]



(4)






[image: there is no content]



(5)






[image: there is no content]



(6)





Formula (1) shows that if the manufacturing center [image: there is no content] serves distribution center [image: there is no content], then the distribution center [image: there is no content] supplies at least some client zone. Formula (2) shows that if the distribution center [image: there is no content] is built, then the client zone [image: there is no content] may or may not be supplied by distribution center [image: there is no content]. As long as manufacturing center [image: there is no content] supplies distribution center [image: there is no content], manufacturing center [image: there is no content] can provide distribution center [image: there is no content] with product [image: there is no content]. Thus, constraint (3) is formed, and [image: there is no content] is the appropriate large number, with k = 1,000,000,000. The same constraint can be applied to distribution center [image: there is no content] and the client zone [image: there is no content], as shown in Formula (4). Formulas (5) and (6) are constraints with a single source to ensure that each distribution center and each client zone can be supplied by one manufacturing center and one distribution center.



	
Material balance constraint






If there is no inventory accumulation and loss, the material balance constraint can be summarized as follows.




[image: there is no content]



(7)






[image: there is no content]



(8)






[image: there is no content]



(9)





Formula (7) shows that the quantity of product [image: there is no content] from manufacturing center [image: there is no content] to the distribution center [image: there is no content] amounts to the quantity of product [image: there is no content] in manufacturing center [image: there is no content]. Likewise, the quantity of product [image: there is no content] from manufacturing center [image: there is no content] to distribution center [image: there is no content] amounts to the quantity of product [image: there is no content] from distribution center [image: there is no content] to client zone [image: there is no content], as shown in Formula (8). Formula (9) ensures that the demand of each client zone can be satisfied.



	
Non-negativity constraints






All the consecutive variables must be non-negativity.




[image: there is no content]



(10)






[image: there is no content]



(11)






[image: there is no content]



(12)





To reduce the search space efficiently, efficiency and robustness of supply chains must be non-negative.
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(13)
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(14)






2.3. Objective Functions


The construction of supply chain considers efficiency and robustness, and thus the objective targets are defined as the two conflicting targets of the maximal efficiency and robustness. The efficiency of supply chains is expounded in terms of operational cost, whereas robustness of supply chains is explicated in terms of the anticipated disruption cost.




[image: there is no content]



(15)






[image: there is no content]



(16)





[image: there is no content]: the operations cost in most robust supply chains; [image: there is no content]: the operations cost in the most effective supply chains; [image: there is no content]: the anticipated disruption cost in the most robust supply chains; [image: there is no content]: the anticipated disruption cost in the most effective supply chains.



The operations cost of the objective functions include the infrastructure cost, production cost, the material carrying cost and shipment cost in the distribution center.




[image: there is no content]



(17)
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(18)






[image: there is no content]



(19)






[image: there is no content]



(20)






[image: there is no content]



(21)





Formula (17) is the infrastructure cost incurred for the construction of the distribution center, which is a fixed cost. However, the changeable cost is the annual amortization, related to the unit changeable cost of product [image: there is no content] in the distribution center, multiplied by the quantity. If the production cost in the manufacturing center is in proportion to the quantity of products, the total production cost in the manufacturing center is as shown in Formula (18). Formula (19) shows that the material carrying cost in the distribution center is in proportion to the total handling capacity of the distribution center. Formulas (20) and (21) show the shipment cost from the manufacturing center to the distribution center, and from the distribution center to the client zone, respectively. The shipment cost is the function of product quantity, distance and unit shipment cost. Generally, trucks tend to carry the full cargo and therefore the economy of scale effects on the shipment cost are neglected here.



As discussed above, the operation cost can be expressed as follows.




[image: there is no content]



(22)





The anticipated disruption cost of objective functions can be defined by the scenario methods, which is an ancient concept. In the earliest records, people were already interested in the future and considered scenario methods as the indirect approach to explore the future society and the system (Bradfielda et al., 2005) [23]. Greiner et al. (2014) [24] investigate the support of industrial strategic decisions by means of scenario planning, but they do not subdivide the market. Kang et al. (2014) [25] consider the infrastructure of water supply by scenario planning; however, they do not consider the environmental and social impacts. Therefore, these factors should be included in the setup of the control variables. Menezes et al. (2014) [26] design the production plans for petroleum refining by scenario planning, whereas they do not note that the government may delay the investment. Tsiakis et al. (2001) [27] examine the supply chain network in uncertain circumstances for minimizing the infrastructure and operation cost by scenario planning, while they only investigate the case of demand disruption.



This paper calculates and analyzes the anticipated disruption cost in different disruption scenarios of supply chains, and the scenarios are concerned with node disruption in the manufacturing center and the distribution center or the link disruption from the manufacturing center to the distribution center or from the distribution center to the client zone. The anticipated disruption cost can be expressed by multiplication of the probability in the scenario [image: there is no content], the disrupted quantity of the product [image: there is no content], and the unit marginal profit of the product [image: there is no content].




[image: there is no content]



(23)





Here, [image: there is no content] indicates the probability of scenario [image: there is no content]; [image: there is no content] indicates the opportunity cost, that is, the unit marginal profit of product [image: there is no content]; [image: there is no content] shows the quantity of product [image: there is no content] disrupted in scenario [image: there is no content].




[image: there is no content]



(24)





Therefore, substituting Formula (24) into Formula (23), the expression of the anticipated disruption cost is as follows.




[image: there is no content]



(25)







3. Multi-objective Firefly Algorithm


The heuristic algorithm is quite powerful in solving optimization problems, which has been well researched in numerous papers and monographs (Coello, 1999; Deb, 1999; Geem, 2009; Talbi, 2009) [28,29,30,31,32]. Most heuristic algorithms are based on the so-called swarm intelligence. A typical example is Particle Swarm Optimization (PSO), which imitates some features of swarms of birds and fish. In contrast, the firefly algorithm is different from PSO and can have two advantages: local attractions and automatic regrouping. This latter advantage makes it particularly suitable for multimodal global optimization problems (Yang, 2009; 2010) [33,34]. In our study, the multi-objective firefly algorithm considers the two conflicting targets of the maximal efficiency and robustness of supply chains, which is different from the discreet points achieved by the single-objective algorithm which avoids local optimization.



3.1. Firefly Algorithm


Yang (2008–2014) [11,13,17,33,34,35,36,37,38] proposed the firefly algorithm which was later improved, on the basis of the behavioral features of ideal glittering fireflies. Firstly, fireflies can attract other fireflies, male or female. Secondly, the degrees of attraction are in proportion to the brightness which declines as the distance increases. As a result, between two glittering fireflies, the less bright firefly moves to the brighter one. Any given firefly, without a brighter one, moves randomly. Finally, the degrees of brightness depend on the value of the objective functions (Marichelvam et al., 2014; Yang, 2008, 2009, 2010, 2012, 2013; Yang and Deb, 2010; Yang et al., 2012) [11,13,17,33,34,35,36,37,38].



In terms of maximization, the brightness of fireflies can be simply defined as proportionate with the value of objective functions. In the firefly algorithm, the relative brightness and attraction of fireflies affect their movements, and thus it is necessary to make a definition. For simplicity, if the attraction of fireflies rests on their brightness, the objective functions determine their brightness.



Conversely, the attraction of fireflies is connected with the distance between fireflies. As the distance varies, the attraction of fireflies can be defined as follows.




[image: there is no content]



(26)





Here, [image: there is no content] shows the attraction at [image: there is no content], that is, the maximal attraction at the light source; [image: there is no content] shows the absorption coefficient of light intensity, simulating the feature of light damping in the air, which can be constant; [image: there is no content] shows the Descartes distance between any two fireflies [image: there is no content] and [image: there is no content] at [image: there is no content] and [image: there is no content]; [image: there is no content]. It is important to note that [image: there is no content] defined above does not confine to Euclidean distance; any measurement solving optimization effectively can be viewed as [image: there is no content].



The location where firefly [image: there is no content] is attracted by the brighter firefly [image: there is no content] and moves to [image: there is no content] can be re-defined as follows.




[image: there is no content]



(27)





In the Formula, [image: there is no content] is the step-length factor, which is constant; [image: there is no content] is the random factor equally distributed at [0,1]. The second part of the Formula is produced by attraction, and the third part is the random disturbance term to avoid plunging into the local optimization in advance.



The process of optimizing algorithm is as follows. The firefly groups are randomly distributed in the search space. With different locations, each firefly emits different lights. Comparing the values of the objective functions, the less bright fireflies are attracted by and moves towards the brighter ones. The distance depends on the degree of attraction shown in Formula (26). Then, the location is adjusted according to Formula (27). After many moves, all the fireflies tend to gather in the brightest location and thus achieve optimization.




3.2. Multi-Objective Optimization


In terms of optimization in the management science and engineering, the targets of optimization are more than one object, and hence the multi-objective functions are not uncommon. In the multi-objective optimization process, each sub-objective tends to be in conflict. If the performance of one sub-objective increases, another sub-objective’s performance might decrease. Consequently, it is impossible for all the sub-objectives to achieve optimization. There is compromise and coordination among these sub-objectives. Different from the optimization in the single-objective algorithm, the results might be a collection of compromised solutions, which are called Pareto optimized solutions (Coello, 1999) [28,29]. The multi-objective optimization can be described in terms of the following definitions (Pareto, 1897) [39].



Definition 1, Pareto dominance: if the conditions [image: there is no content], [image: there is no content], and [image: there is no content], [image: there is no content], are satisfied, then the vector quantity [image: there is no content] Pareto dominates another vector [image: there is no content], marked as


[image: there is no content]



(28)







Definition 2, Pareto optimized solution: if and only if the conditions [image: there is no content], [image: there is no content]; here, [image: there is no content]; and [image: there is no content] are satisfied, then [image: there is no content] is the Pareto optimized solution on [image: there is no content].



Definition 3, collection of Pareto optimized solutions: in terms of the given multi-objective optimization, the collection of Pareto optimized solutions can be defined as


[image: there is no content]



(29)







Here, the collection of the optimal solutions in the objective space is called the Pareto Front. It is important that the controllable symbol [image: there is no content] above can be changed into [image: there is no content] in terms of minimization.



To achieve a better Pareto Front, various solutions with effective strategies are proposed (Burachik et al., 2014; Campigotto et al., 2014; Chen and Zou, 2014; Khorram et al., 2014) [40,41,42,43].




3.3. Multi-objective Firefly Algorithm


One way of multi-objective optimization is to group all objectives into one single objective and thus the single-objective algorithm is not greatly modified. For instance, Apostolopoulos and Vlachos (2011) [44] investigate multi-objective optimization by the firefly algorithm in this way. Another method is to produce Pareto Front by extending the firefly algorithm; by expanding the firefly algorithm, Yang (2013) [11] proposes the multi-objective algorithm.



The process of optimization of the multi-objective algorithm is as follows. Firstly, the objective functions are defined. Secondly, the firefly groups are initialized and fireflies are distributed equally in the search space, which can be achieved by sampling. The tolerable errors and maximal iteration are defined, and then the brightness of fireflies can be evaluated and each firefly can be compared by the value of objective functions. If firefly [image: there is no content] dominates firefly [image: there is no content], firefly [image: there is no content] moves to firefly [image: there is no content], according to Formula (27). After moving, if [image: there is no content] cannot satisfy the constraint, a new firefly is produced. If one firefly is not dominated by any firefly, then the firefly is placed in the Pareto Front and a random vector is generated (the sum is one), and thus the optimal collective solution [image: there is no content] is achieved. Subsequently, the non-dominant solution collection is transmitted to the next iteration. After multiple iterations, the maximal iteration is achieved, and [image: there is no content] non-dominating solutions collections of the approximate Pareto can be generally obtained, and thus optimization is achieved.



For more effective random movement, the current optimized solution [image: there is no content] can be achieved by weighted sum of the minimal objective functions. Here,


[image: there is no content]



(30)







Here, [image: there is no content], [image: there is no content] are random figures equally distributed from [0,1]. To ensure [image: there is no content], [image: there is no content] figures equally distributed are generated and re-operated by zooming. In each iteration, [image: there is no content] should be chosen randomly, and hence the non-dominant solution can be sampled from the diversity of the Pareto optimized fronts.



From the perspective of the Pareto Front, if one firefly is not dominated by other fireflies, then the firefly is re-located as


[image: there is no content]



(31)







In the Formula, [image: there is no content] is the current optimized solution in terms of one group of a given random weight.



As discussed above, the procedure of the multi-objective firefly algorithm in weighing efficiency and robustness in disrupted supply chains is as follows.



Step 1: The objective functions are defined and the firefly groups [image: there is no content] are initialized.



Step 2: Comparing [image: there is no content] and [image: there is no content][image: there is no content], if [image: there is no content] dominates [image: there is no content], firefly [image: there is no content] moves to firefly [image: there is no content] according to Formula (27). If [image: there is no content] or both are equal, there is no non-dominant solutions and thus the random weight [image: there is no content] is produced. The optimized solution [image: there is no content] is found in all fireflies. [image: there is no content] is minimized in Formula (30), and the firefly moves randomly according to Formula (31).



Step 3: The Pareto Front is updated by non-dominant solutions and the number of optimized solutions is recorded. All the non-dominant solutions are transmitted to the next iteration and the brightness and locations of fireflies are updated.



Step 4: Step 2 is repeated till the maximal iteration is achieved, and then all the Pareto optimized solutions are obtained. The current optimized Pareto Front approximated has been found.





4. Performance Test of Multi-objective Firefly Algorithm


In order to test the validity of the multi-objective algorithm, MATLAB was used in a PC with Intel(R) Core(TM) i3-2310M, 2.1GHz, with a memory of 4G. The test functions in Table 1 are considered.



Table 1. 5 testing functions.



	
Problems

	
Dimensions

	
Range

	
Objective functions






	
Zhang et al. (2004) [45]

	
1

	
[−5,7]

	
[image: there is no content], [image: there is no content]




	
E. Wang (2004) [46]

	
2

	
[−5,10]

	
[image: there is no content]




	
[image: there is no content]




	
FON (Deb et al., 2000) [47]

	
3

	
[−4,4]

	
[image: there is no content]




	
[image: there is no content]




	
KUR (Deb et al., 2000) [47]

	
3

	
[−5,5]
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ZDT3 (Deb et al., 2000) [47]

	
30

	
[0,1]

	
[image: there is no content]




	
[image: there is no content]




	
[image: there is no content]










The parameters of the multi-objective firefly algorithm are defined as follows: the number of fireflies is [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], and the number of iterations is 200. The results of test functions are shown in Figure 2, Figure 4, Figure 6, Figure 8 and Figure 10, and the true value of the test functions is shown in Figure 3, Figure 5, Figure 9 and Figure 11.


Figure 2. Test Function 1: 200 iterations of 500 fireflies.
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Figure 4. Test Function 2: 200 iterations of 500 fireflies.
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Figure 6. FON Function: 200 iterations of 500 fireflies.
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Figure 8. KUR Function: 200 iterations of 500 fireflies.
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Figure 10. ZDT3 Function: 200 iterations of 500 fireflies.
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Figure 3. True value of Test Function 1 (Zhang et al, 2004) [45].
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Figure 5. True value of Test Function 2 (E. Wang,2004) [46].
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Figure 9. True value of KUR Function (Deb et al., 2000) [47].
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Figure 11. True value of ZDT3 Function (Deb et al., 2000) [47].
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From Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, Figure 10 and Figure 11, the horizontal axis is [image: there is no content], and the vertical axis is [image: there is no content]. The simulated results show that all the selected test functions are calculated by the multi-objective firefly algorithm. After the iteration, the Pareto Front is reached, satisfying the evaluation standards of the optimized solutions. Each test function achieves optimization by the multi-objective firefly algorithm.


Figure 7. True value of FON Function (Deb et al., 2000) [47].
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5. Exemplifications


To illustrate the applicability of the multi-objective firefly algorithm to the three-echelon supply chain with multiple products and manufacturing centers in the mixed integer and linear planning model, a computer manufacturing company in China is examined. The company deals in a number of products with many manufacturing centers and distribution centers, which suits the three-echelon supply chain model with multiple products and manufacturing centers. As a result, the example can test the applicability of the multi-objective firefly algorithm. Two manufacturing centers of the company are located in two developed cities: Beijing and Shanghai. The company chooses 7 potential distribution centers in the most convenient and advanced provinces and the municipal cities in East China, South China, Central China, North China, Northwest, Southwest and Northeast China, namely, Beijing, Liaoning, Shanghai, Hubei, Guangdong, Sichuan and Shaanxi. There are 33 client zones in total, including 33 provincial regions like Hong Kong and Macau.



5.1. Elaboration


Two manufacturing centers can satisfy all requirements and produce two types of computers. One is the functional product: ordinary computers with marginal profit of 200 RMB. The other is an innovative product: a new-style computer with marginal profit of 1300 RMB. Fisher (1997) [48] separates products into two types in terms of the demand model, namely, the functional product and the innovative product. The demand for the functional product can be anticipated, with long product lifecycles but low marginal contribution, whereas the demand for the innovative product cannot be predicted, with short product lifecycles but high marginal contribution. For instance, salt, tissue and toothbrushes are examples of functional products. The launch of new cars and fashionable bags are instances of innovative products. The distribution centers can be located in 7 potential centers and the optimized distribution center relies on the model. The distances between the manufacturing center, the distribution center and the client zone can be recommended by means of the Baidu map. The focus of this study is node and link disruptions of supply chains and therefore demand in the client zone is definite and proportional to the population in the client zone. The population in the provincial regions is drawn from “China Statistics Yearbook in 2013” (China Statistic Yearbook, 2013; 2014) [49].




5.2. Demand in Client Area


The annual demand for the two products in 33 client zones is shown in Table 2. The annual demand for ordinary computers is 135,562, whereas the annual demand for the new-style computers is 13,558.


Table 2. Functional products in client area and demand for innovative products.


	Client Area
	Provincial Administrative Region
	Demand for Ordinary Computers [image: there is no content] (Sets)
	Demand for New Computers [image: there is no content] (Sets)





	1
	Beijing (BJ)
	2069
	207



	2
	Tianjin (TJ)
	1413
	141



	3
	Hebei (HEB)
	7288
	729



	4
	Shanxi (SAX)
	3611
	361



	5
	Neimenggu (NMG)
	2490
	249



	6
	Liaoning (LN)
	4389
	439



	7
	Jiling (JL)
	2750
	275



	8
	Heilongjiang (HLJ)
	3834
	383



	9
	Shanghai (SH)
	2380
	238



	10
	Jiangsu (JS)
	7920
	792



	11
	Zhejiang(ZJ)
	5477
	548



	12
	Anhui(AH)
	5988
	599



	13
	Fujian (FJ)
	3748
	375



	14
	Jiangxi (JX)
	4504
	450



	15
	Shandong (SD)
	9685
	969



	16
	Henan (HEN)
	9406
	941



	17
	Hubei (HUB)
	5779
	578



	18
	Hunan (HUN)
	6639
	664



	19
	Guangdong (GD)
	10,594
	1059



	20
	Guangxi (GX)
	4682
	468



	21
	Hainan (HAN)
	887
	89



	22
	Chongqing (CQ)
	2945
	295



	23
	Sichuan (SC)
	8076
	808



	24
	Guizhou (GZ)
	3484
	348



	25
	Yunnan (YN)
	4659
	466



	26
	Tibet (TB)
	308
	31



	27
	Shaanxi (SHX)
	3753
	375



	28
	Gansu (GS)
	2578
	258



	29
	Qinghai (QH)
	573
	57



	30
	Ningxia (NX)
	647
	65



	31
	Xinjiang (XJ)
	2233
	223



	32
	Hongkong (HK)
	716
	72



	33
	Macao (MAC)
	57
	6










5.3. Distance among Manufacturing Center, Distribution Center and Client Areas


The distances between the manufacturing center, the distribution center and the client zone are calculated by the Baidu maps. The distance [image: there is no content] from the manufacturing center [image: there is no content] to the distribution center [image: there is no content] is shown in Table 3 and the distance [image: there is no content] from the distribution center [image: there is no content] to the client zone [image: there is no content] is shown in Table 4.



Table 3. Distance between manufacturing center and distribution center (kilometers).
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BJ

	
LN

	
SH

	
HUB

	
GD

	
SC

	
SHX
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BJ

	
0

	
695

	
1261

	
1160

	
2117

	
1800

	
1088




	
SH

	
1257

	
1728

	
0

	
837

	
1475

	
1962

	
1375










Table 4. Distance between distribution center and client areas (kilometers).
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BJ

	
LN

	
SH

	
HUB

	
GD

	
SC

	
SHX
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BJ

	
0

	
695

	
1257

	
1162

	
2114

	
1809

	
1103




	
TJ

	
137

	
669

	
1086

	
1141

	
2094

	
1823

	
1145




	
HEB

	
315

	
1016

	
1138

	
969

	
1922

	
1501

	
794




	
SAX

	
521

	
1210

	
1356

	
949

	
1866

	
1317

	
610




	
NMG

	
485

	
1180

	
1730

	
1384

	
2301

	
1687

	
977




	
LN

	
695

	
0

	
1728

	
1819

	
2771

	
2473

	
1767




	
JL

	
1011

	
333

	
2034

	
2132

	
3085

	
2787

	
2080




	
HLJ

	
1251

	
573

	
2274

	
2372

	
3325

	
3027

	
2320




	
SH

	
1261

	
1720

	
0

	
843

	
1465

	
1965

	
1380




	
JS

	
1051

	
1526

	
303

	
539

	
1359

	
1662

	
1077




	
ZJ

	
1320

	
1785

	
178

	
721

	
1276

	
1856

	
1318




	
AH

	
1059

	
1622

	
465

	
390

	
1214

	
1513

	
928




	
FJ

	
1937

	
2402

	
773

	
910

	
935

	
2045

	
1656




	
JX

	
1431

	
2039

	
729

	
358

	
787

	
1493

	
1104




	
SD

	
446

	
1009

	
859

	
849

	
1817

	
1603

	
897




	
HEN

	
713

	
1369

	
943

	
516

	
1453

	
1193

	
485




	
HUB

	
1160

	
1816

	
837

	
0

	
981

	
1144

	
745




	
HUN

	
1487

	
2136

	
1086

	
354

	
651

	
1211

	
1007




	
GD

	
2117

	
2790

	
1475

	
984

	
0

	
1729

	
1636




	
GX

	
2340

	
2995

	
1902

	
1207

	
560

	
1215

	
1628




	
HAN

	
2759

	
3354

	
2043

	
1626

	
592

	
1700

	
2248




	
CQ

	
1764

	
2497

	
1685

	
871

	
1424

	
318

	
685




	
SC

	
1800

	
2530

	
1962

	
1146

	
1727

	
0

	
712




	
GZ

	
2148

	
2803

	
1843

	
1149

	
1096

	
663

	
1068




	
YN

	
2662

	
3315

	
2355

	
1661

	
1350

	
899

	
1569




	
TB

	
3636

	
4323

	
4196

	
3578

	
3606

	
2095

	
2833




	
SHX

	
1088

	
1821

	
1375

	
746

	
1636

	
712

	
0




	
GS

	
1485

	
2174

	
2010

	
1392

	
2282

	
857

	
646




	
QH

	
1686

	
2375

	
2247

	
1629

	
2519

	
1072

	
883




	
NX

	
1174

	
1843

	
1950

	
1461

	
2350

	
1429

	
736




	
XJ

	
3161

	
3850

	
3899

	
3270

	
4160

	
2792

	
2534




	
HK

	
2204

	
2936

	
1526

	
1110

	
180

	
1894

	
1799




	
MAC

	
2272

	
2916

	
1614

	
1139

	
139

	
1861

	
1792











5.4. Probability of Supply Chain Disruptions


Supply chain disruption may be caused by natural or human factors. Although it is difficult to quantify the probability of natural disasters, data recorded in history can help predict the probability. Li et al. (2013) [50] predict the probability of occurrence of natural disasters in the future on the basis of the data in the history. Here, it is assumed that most supply chain disruptions are caused by natural disasters in China while political situation is stable. The relative probability of occurrence of natural disasters at provincial level is calculated based on the loss caused by natural disasters in different regions in “Statistic Yearbook in China in 2013” (China Statistic Yearbook, 2013; 2014) [49]. The probability of disruption of the manufacturing center and the potential disruption is shown in Table 5.


Table 5. Disruption probability of manufacturing center and distribution center.


	Provincial Administrative Regions
	BJ
	LN
	SH
	HUB
	GD
	SC
	SHX





	Disruption probability
	0.041
	0.049
	0.001
	0.031
	0.018
	0.096
	0.021










5.5. Relevant Costs


It is assumed that the cost of building each distribution center is 100,000,000 RMB. The lifespan of a distribution center is assumed to be 20 years and thus the fixed cost to be amortized is 500,000 RMB each year. When the distribution center is built, amortization cost assigned to the normal computers and new-type computers is 200 RMB and 800 RMB respectively. The production cost for each normal computer and new-type computer is 2500 RMB and 6000 RMB, respectively. The unit carrying cost for the normal computer and the new-type computer is 50 RBM and 100 RMB, respectively, in each distribution center. The unit transportation cost of each normal computer and new-type computer from the manufacturing center to the distribution center and also from the distribution center to the client zone is 40 RMB. The multi-objective firefly algorithm is adopted in the programming and operation of the corresponding exemplification in Matlab R2014b.





6. Results and Discussions


The supply chain disruption might involve node disruption, i.e., disruption at the distribution center, or disruption in the link between the manufacturing center and the distribution center. In what follows, these two circumstances are considered.



6.1. Disruption of Distribution Center


As the distance between distribution centers is large, it is assumed that the disruption in each distribution center is separate, and disruptions can occur simultaneously in many distribution centers. Each distribution center can have only one of the two possible statuses: normal or disrupted. Assume the distribution center will lose all its capacity in disruption. The probability of the disruption occurrence depends on the provincial administrative regions (Table 5). A disruption may occur in the distribution center, or in many centers simultaneously. Here, three simultaneous disruptions are considered, because the probability of disruption occurrence is small in four or more than four distribution centers. The model involves 1586 constraints, 739 variables and [image: there is no content] scenarios.



Before the model is operated, it is necessary to calculate the upper and lower boundary of [image: there is no content] and [image: there is no content]. [image: there is no content] is achieved by minimizing [image: there is no content], and [image: there is no content] is maximal at this point. [image: there is no content] is directly achieved by minimizing [image: there is no content], and the inventory selected is the most robust here. [image: there is no content] is maximal through the inventory selected. In the disrupted distribution center, the boundary value between [image: there is no content] and [image: there is no content] is shown in Table 6.


Table 6. Boundary value of [image: there is no content] and [image: there is no content] in disruption of distribution center.


	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]





	7,383,873,820
	10,410,177
	218,552
	15,235,138,900









The multi-objective firefly algorithm is simulated by 200 iterations and the most effective and robust supply chain networks with disrupted distribution center are shown in Figure 12 and Figure 13.


Figure 12. The most effective supply chain network in the distribution center disrupted.
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Figure 13. The most robust supply chain network in the distribution center disrupted.
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The total cost in the most efficient and the most robust supply chains and the minimal total cost with the optimal objective functions are shown in Table 7. However, it can be seen from Table 7 that the total cost with the optimal objective function is lower than that in the most efficient supply chains because the operations cost increases with the optimal objective functions, while the reduction of the anticipated disruption cost is more than the increase in operations cost. In the increasingly competitive markets nowadays, the cost reduction may bring competitive edge to enterprises. When the optimal total cost is minimal with the objective function, the supply chain network can be as shown in Figure 14. Comparing Figure 12 and Figure 14, a portion of products is transmitted from the Beijing distribution center to Hubei distribution center. Hubei distribution center delivers the goods due to the fact that the disruption probability of Hubei distribution center is lower than that of the Beijing distribution center.


Figure 14. Supply chain network on optimal objective function in the distribution center disrupted.
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Table 7. Comparing each cost in the disrupted distribution center.


	Exemplification
	Total Cost in the Most Efficient Supply Chains (RMB)
	Total Cost in the Most Robust Supply Chains (RMB)
	Total Cost of the Optimal Objective Functions (RMB)





	Disrupted distribution center
	7,394,283,997
	15,235,357,452
	7,386,193,817









The multi-objective firefly algorithm is used and after 200 iterations, the approximate Pareto front is achieved (Figure 15), with horizontal axis as efficiency of supply chain and vertical axis as robustness of the supply chain. From Figure 15, it can be seen that when nodes or links are disrupted, the robustness decreases as the efficiency of the supply chain increases. It is a trading-off process. Meanwhile, Table 7 shows that the best solution makes the target function reach maximum. By multiple-objective algorithm, the Paredo front achieved is continuous, and thus efficiency and robustness can be derived at any point. Enterprises can choose the appropriate efficiency and robustness of supply chain in terms of specific features of their respective businesses and the prevailing status. For instance, businesses frequently affected by natural disasters may increase robustness of supply chain whereas businesses which are not sensitive to natural disasters can attach greater importance to efficiency.


Figure 15. Pareto front of multiple target in weighing efficiency and robustness in the distribution center disrupted.
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6.2. Linkage Disruption between Manufacturing Center and Distribution Center


The link involves the two nodes and thus it is assumed that the probability of link disruption is the mean of the probability of disruption in all the linking nodes, and the probability of disruption in the link between the manufacturing center and the distribution center is shown in Table 8. A disruption may occur between the manufacturing center and the distribution center, or many simultaneous disruptions may occur, because the probability of disruptions is small in three or more than three links. To avoid complexity, at the most two simultaneous disruptions are considered. The model involves 1586 constraints, 739 variables and [image: there is no content] scenarios.


Table 8. Link disruption probability between manufacturing center and distribution center.


	Link Disruption Probability
	BJ
	LN
	SH
	HUB
	GD
	SC
	SHX





	Beijing
	0.041
	0.045
	0.021
	0.036
	0.0295
	0.0685
	0.031



	Shanghai
	0.021
	0.025
	0.001
	0.016
	0.0095
	0.0485
	0.011









Before the operation of the model, the upper and lower boundary of [image: there is no content] and [image: there is no content] must be calculated. [image: there is no content] can be achieved by minimizing [image: there is no content] directly and [image: there is no content] is maximal at this point. [image: there is no content] can be achieved by minimizing [image: there is no content] directly and [image: there is no content] is maximal now. In the case of disruption in the link between the manufacturing center and the distribution center, boundary values of [image: there is no content] and [image: there is no content] are shown in Table 9.


Table 9. Boundary values of [image: there is no content] and [image: there is no content] in Link disruption between manufacturing center and distribution center.


	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]





	7,383,873,820
	15,091,028
	1,147,609
	1,523,5138,900









The multi-objective firefly algorithm is simulated and after 200 iterations, the most effective supply chain network with disruption at the link between the manufacturing center and the distribution center and the supply chain network with the minimal optimized total cost by the objective functions are shown in Figure 16 and Figure 17. Comparing Figure 16 and Figure 17, a portion of products is transmitted from Beijing distribution center to Shanghai and Shaanxi distribution centers. Shanghai and Shaanxi distribution centers deliver the goods, due to the fact that the disruption probability of Shanghai and Shaanxi distribution centers is lower than that in the Beijing distribution center.


Figure 16. The most effective supply chain network in linkages disrupted between manufacturing center and distribution center.
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Figure 17. Supply chain network on the optimal objective functions in manufacturing and distribution centers disrupted.
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The multi-objective firefly algorithm is used and after 200 iterations, the approximate Pareto front is achieved (Figure 18), with horizontal axis as efficiency and vertical axis as robustness of supply chain. From Figure 15 and Figure 18, it can be seen that when nodes or links are disrupted, the robustness decreases as efficiency increases. Based on Figure 18, enterprises can weigh efficiency and robustness of supply chain and determine the appropriate efficiency and robustness in terms of the nature of their industry and their own circumstances. For instance, those likely to be affected by natural disasters would increase their robustness to some extent; those insensitive to the natural disasters would attach great importance to efficiency.


Figure 18. Pareto front of multiple target in weighing efficiency and robustness in linkages disrupted.
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7. Conclusions


The design of supply chain is extremely demanding, due to the internal complexity and uncertainty of external factors. In the past, the complexity centered on each component of the supply chain, whereas the attention has recently been shifted to the design, performance and analysis of the overall supply chain. This paper proposes a mathematical model of mixed integer linear planning with an aim to address the complexity of the above issue. Robustness is considered in the design of supply chains with multiple products and manufacturing centers, including node and link disruptions. The mathematical model of mixed integer linear planning concerns optimization of multiple objectives, focusing on weighing efficiency and robustness of supply chain. Efficiency and robustness can be in conflict and contradiction and optimization of one objective is at the cost of the other and hence it is difficult to achieve optimization. It is insufficient to solve the problem by the traditional mathematical means. For instance, it is required that each objective function and constraint should be differentiable with low efficiency and sophisticated calculation. This paper, for the first time, introduces the multi-objective firefly algorithm based on Pareto optimization to address the problem of supply chain disruption. The simulation is used to test its validity. The Pareto lines are provided to weigh efficiency and robustness in disrupted supply chains and partial optimization can also be avoided, which may extend the research and application of the firefly algorithm deployed to solve the weighing problem. The result is the continuous Pareto curve instead of a number of independent points, and the robustness and cost of supply chains corresponding to their efficiency can be derived.



From the exemplification of the mixed integer linear planning of the three-echelon supply chain with multiple products and manufacturing centers, it can be seen that the robustness of supply chain reduces as efficiency increases with node disruption or link disruption, whereas enterprises expect to increase their efficiency and also improve their robustness. These are inversely proportionate and therefore it is important to weigh efficiency and robustness in disrupted supply chains to achieve the optimal objective functions. The simulation shows that the total cost with the optimal objective functions is lower than that with the most efficient supply chain. In other words, the reduction of anticipated disruption cost caused by the increased robustness is more than the increase of the operations cost caused by decreasing efficiency of supply chains. As a result, the Pareto front approximated, when the objective function is optimal, provides the evidence for enterprises to opt for appropriate efficiency and robustness of supply chains. Overall, this approach provides a tool for quantifying the decision of planning supply chains. In addition, it increases robustness of supply chains, and reduces the total cost of supply chains.



The three-echelon supply chain model involves multiple products and manufacturing centers, and other supply chain models are analyzed on this basis. To avoid complexity, the mathematical model of mixed integer linear planning is adopted, and the non-linear mathematical model can also be considered in the future. In the model, it is assumed that once the distribution center is built, it has to serve the client zone. Each distribution center and client zone can only be supplied by one manufacturing center and distribution center, respectively. There is no inventory accumulation and loss, and the demand of each client zone can be satisfied. In the future studies, these assumptions can be relaxed.
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