Integrated Use of GCM, RS, and GIS for the Assessment of Hillslope and Gully Erosion in the Mushi River Sub-Catchment, Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. RUSLE for Modeling Hillslope Erosion
2.3.1. Rainfall Erosivity (R)
2.3.2. Soil Erodibility Factor (K)
2.3.3. Topographic Factor (LS)
2.3.4. Cover Management Factor (C)
2.3.5. Practice Factor (P)
2.3.6. Calculation of Soil Erosion
2.4. Mapping and Assessment of Gully Erosion
3. Results
3.1. Soil Loss Due to Hillslope Erosion Using RUSLE
3.2. Estimation of Gully Erosion
4. Discussion
4.1. Implementation of the RUSLE Model and Visual Image Interpretation
4.2. Topographic Differentiation of Hillslope and Gully Erosion
4.3. The Relationship between Gully and Hillslope Erosion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Rahman, M.R.; Shi, Z.H.; Cai, C.F. Soil erosion hazard evaluation—An integrated use of remote sensing, GIS and statistical approaches with biophysical parameters towards management strategies. Ecol. Model. 2009, 220, 1724–1734. [Google Scholar] [CrossRef]
- Oldeman, L.R. The global extent of soil degradation. In Soil Resilience and Sustainable Land Use; CAB International: Wallingford, CT, USA, 1994; pp. 99–118. [Google Scholar]
- Lin, C.; Zhou, S.L.; Wu, S.H.; Liao, F.Q. Relationships between intensity gradation and evolution of soil erosion: A case study of Changting in Fujian province, china. Pedosphere 2012, 22, 243–253. [Google Scholar] [CrossRef]
- Kirkby, M. Sustaining the Global Farm. Available online: http://topsoil.nserl.purdue.edu/nserlweb-old/isco99/pdf/ISCOdisc/tableofcontents.htm (accessed on 25 March 2016).
- Liverman, D.; Rockström, J.; Visbek, M.; Leemans, R.; Abrahamse, T.; Becker, B.; D’Sousa, R.; Jones, K.; Mooney, H.; Niang, I. Future earth initial design. Available online: http://www.icsu.org/future-earth/media-centre/relevant_publications/future-earth-initial-design-report (accessed on 25 March 2016).
- Song, Y. Eco-environment protection and construction of green community in northeast china. Sci. Geogr. Sin. 2002, 22, 655–659. (In Chinese) [Google Scholar]
- Liu, B.; Yan, B.; Shen, B.; Wang, Z.; Wei, X. Current status and comprehensive control strategies of soil erosion for cultivated land in the Northeastern black soil area of China. Sci. Soil Water Conserv. 2008, 6, 1–8. (In Chinese) [Google Scholar]
- Zhang, X.; Liang, A.; Shen, Y.; Li, W.; Zhang, X.; Wang, Y.; Xie, Y.; Liu, F.; Yang, X. Erosion characteristics of black soils in northeast china. Sci. Geogr. Sin. 2006, 26, 687–692. (In Chinese) [Google Scholar]
- Zhang, X.; Xu, J.; Lu, X.; Deng, Y.; Gao, D. A study on the Soil Loss Equation in Heilongjiang Province. Bull. Soiland Water Conserv. 1992, 12, 1–10. (In Chinese) [Google Scholar]
- Yan, Y.; Zhang, S.; Li, X.; Yue, S. Temporal and spatial variation of erosion gullies in kebai black soil region of Heilongjiang during the past 50 years. Acta Geogr. Sin. 2005, 60, 1015–1020. (In Chinese) [Google Scholar]
- Wu, Y.; Cheng, H. Monitoring of gully erosion on the loess plateau of china using a global positioning system. Catena 2005, 63, 154–166. (In Chinese) [Google Scholar] [CrossRef]
- Hu, G.; Wu, Y.; Liu, B.; Yu, Z.; You, Z.; Zhang, Y. Short-term gully retreat rates over rolling hill areas in black soil of northeast china. Catena 2007, 71, 321–329. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, W.; Li, Y.; Bu, K.; Yan, Y. Dynamics of hillslope soil erosion in the sanjiang plain in the past 50 years. Resour. Sci. 2008, 30, 843–849. (In Chinese) [Google Scholar]
- Wang, W.; Zhang, S.; Deng, R. Gully status and relationship with landscape pattern in black soil area of northeast china. Trans. Chin. Soc. Agr. Eng. 2011, 27, 192–198. (In Chinese) [Google Scholar]
- Sheng, M.; Fang, H.; Guo, M. Modeling soil erosion and sediment yield using watem/sedem model for the black soil region of northeast china. Resour. Sci. 2015, 37, 815–822. (In Chinese) [Google Scholar]
- Wang, W.; Zhang, S.; Fang, H. Coupling mechanism of slope-gully erosion in typical black soil area of northeast china. J. Nat. Resour. 2012, 27, 2113–2122. (In Chinese) [Google Scholar]
- Zhang, J.X.; Li, W.S.; Zhai, L. Understanding geographical conditions monitoring: A perspective from china. Int. J. Digit Earth 2015, 8, 36–55. [Google Scholar] [CrossRef]
- Osman, K.T. Soil erosion by water. In Soil degradation, conservation and remediation; Springer: Dordrecht, The Netherlands, 2014; pp. 69–101. [Google Scholar]
- Ghadiri, H. Crater formation in soils by raindrop impact. Earth Surf. Process. Landf. 2004, 29, 77–89. [Google Scholar] [CrossRef]
- Luffman, I.E.; Nandi, A.; Spiegel, T. Gully morphology, hillslope erosion, and precipitation characteristics in the Appalachian valley and ridge Province, Southeastern USA. Catena 2015, 133, 221–232. [Google Scholar] [CrossRef]
- Prasannakumar, V.; Shiny, R.; Geetha, N.; Vijith, H. Spatial prediction of soil erosion risk by remote sensing, gis and rusle approach: A case study of siruvani river watershed in Attapady valley, Kerala, India. Environ. Earth Sci. 2011, 64, 965–972. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses—A Guide to Conservation Planning. Available online: http://naldc.nal.usda.gov/download/CAT79706928/PDF (accessed on 25 March 2016).
- Renard, K.G.; Foster, G.; Weesies, G.; McCool, D.; Yoder, D. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (Rusle); United States Department of Agriculture: Washington, DC, USA, 1997; Volume 703.
- Laflen, J.M.; Lane, L.J.; Foster, G.R. Wepp: A new generation of erosion prediction technology. J. Soil Water Conserv. 1991, 46, 34–38. [Google Scholar]
- Morgan, R.P.C.; Quinton, J.N.; Smith, R.E.; Govers, G.; Poesen, J.W.A.; Auerswald, K.; Chisci, G.; Torri, D.; Styczen, M.E. The european soil erosion model (eurosem): A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surf. Proc. Land 1998, 23, 527–544. [Google Scholar] [CrossRef]
- De Jong, S.; Paracchini, M.; Bertolo, F.; Folving, S.; Megier, J.; De Roo, A. Regional assessment of soil erosion using the distributed model semmed and remotely sensed data. Catena 1999, 37, 291–308. [Google Scholar] [CrossRef]
- Li, S.; Lobb, D.A.; Lindstrom, M.J.; Farenhorst, A. Tillage and water erosion on different landscapes in the northern north american great plains evaluated using 137 cs technique and soil erosion models. Catena 2007, 70, 493–505. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Q.; Pei, Y. Preliminary research on the bp networks foreasting model of watershed runoff and sediment yielding. Adv. Water Sci. 2001, 12, 17–22. (In Chinese) [Google Scholar]
- Alexakis, D.D.; Hadjimitsis, D.G.; Agapiou, A. Integrated use of remote sensing, GIS and precipitation data for the assessment of soil erosion rate in the catchment area of “yialias” in Cyprus. Atmos. Res. 2013, 131, 108–124. [Google Scholar] [CrossRef]
- Ozsoy, G.; Aksoy, E. Estimation of soil erosion risk within an important agricultural sub-watershed in Bursa, Turkey, in relation to rapid urbanization. Environ. Monit. Assess. 2015, 187, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Karamesouti, M.; Petropoulos, G.P.; Papanikolaou, I.D.; Kairis, O.; Kosmas, K. Erosion rate predictions from pesera and rusle at a mediterranean site before and after a wildfire: Comparison & implications. Geoderma 2016, 261, 44–58. [Google Scholar]
- Pan, J.H.; Wen, Y. Estimation of soil erosion using rusle in Caijiamiao watershed, China. Nat. Hazards 2014, 71, 2187–2205. [Google Scholar] [CrossRef]
- Kumar, A.; Devi, M.; Deshmukh, B. Integrated remote sensing and geographic information system based rusle modelling for estimation of soil loss in western Himalaya, India. Water Resour. Manag. 2014, 28, 3307–3317. [Google Scholar] [CrossRef]
- Pandey, A.; Mathur, A.; Mishra, S.K.; Mal, B.C. Soil erosion modeling of a Himalayan watershed using RS and GIS. Environ. Earth Sci. 2009, 59, 399–410. [Google Scholar] [CrossRef]
- Biswas, S. Estimation of soil erosion using remote sensing and GIS and prioritization of catchments. Int. J. Emerg. Technol. Adv. Engs. 2012, 2, 124. [Google Scholar]
- Karydas, C.G.; Sekuloska, T.; Sarakiotis, I. Fine scale mapping of agricultural landscape features to be used in environmental risk assessment in an olive cultivation area. IASME Trans. 2005, 4, 582–589. [Google Scholar]
- Wang, W.; Zhang, S.; Li, Y.; Bu, K.; Yan, Y. Application of high-resolution images on soil loss quantitative estimation—A case of quickbird. Syst. Sci. Compr. Stud. Agr. 2008, 24, 441–446. (In Chinese) [Google Scholar]
- Merritt, W.S.; Letcher, R.A.; Jakeman, A.J. A review of erosion and sediment transport models. Environ. Model. Softw. 2003, 18, 761–799. [Google Scholar] [CrossRef]
- Kinnell, P. Event soil loss, runoff and the universal soil loss equation family of models: A review. J. Hydrol. 2010, 385, 384–397. [Google Scholar] [CrossRef]
- Kapalanga, T.S. A review of land degradation assessment methods. Land Restor. Train. Program. Keldnaholt 2008, 112, 17–68. [Google Scholar]
- Karydas, C.G.; Sekuloska, T.; Silleos, G.N. Quantification and site-specification of the support practice factor when mapping soil erosion risk associated with olive plantations in the mediterranean island of crete. Environ. Monit. Assess. 2009, 149, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Poesen, J.; Nachtergaele, J.; Verstraeten, G.; Valentin, C. Gully erosion and environmental change: Importance and research needs. Catena 2003, 50, 91–133. [Google Scholar] [CrossRef]
- Casali, J.; Loizu, J.; Campo, M.A.; De Santisteban, L.M.; Alvarez-Mozos, J. Accuracy of methods for field assessment of rill and ephemeral gully erosion. Catena 2006, 67, 128–138. [Google Scholar] [CrossRef]
- Castillo, C.; Perez, R.; James, M.R.; Quinton, J.N.; Taguas, E.V.; Gomez, J.A. Comparing the accuracy of several field methods for measuring gully erosion. Soil Sci. Soc. Am. J. 2012, 76, 1319–1332. [Google Scholar] [CrossRef] [Green Version]
- Ionita, I. Gully development in the moldavian plateau of Romania. Catena 2006, 68, 133–140. [Google Scholar] [CrossRef]
- Hu, G.; Wu, Y.Q.; Liu, B.Y.; Zhang, Y.G.; You, Z.M.; Yu, Z.T. The characteristics of gully erosion over rolling hilly black soil areas of northeast china. J. Geogr. Sci. 2009, 19, 309–320. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, F.; Wen, L.; Yu, F.; An, J.; Li, G. Methodology of dynamic monitoring gully erosion process using 3d laser scanning technology. Bullet. Soil Water Conserv. 2011, 31, 89–94. (In Chinese) [Google Scholar]
- Xu, G.; Zhou, P. The application of stereoscopic photogrametry on ground in monitoring valley erosion evolution. Mem. NISWC Acad. Sin. 1988, 1, 97–102. (In Chinese) [Google Scholar]
- Vandekerckhove, L.; Poesen, J.; Govers, G. Medium-term gully headcut retreat rates in southeast spain determined from aerial photographs and ground measurements. Catena 2003, 50, 329–352. [Google Scholar] [CrossRef]
- Bouchnak, H.; Felfoul, M.S.; Boussema, M.R.; Snane, M.H. Slope and rainfall effects on the volume of sediment yield by gully erosion in the souar lithologic formation (Tunisia). Catena 2009, 78, 170–177. [Google Scholar] [CrossRef]
- Vrieling, A.; Rodrigues, S.; Bartholomeus, H.; Sterk, G. Automatic identification of erosion gullies with aster imagery in the Brazilian cerrados. Int. J. Rem. Sens. 2007, 28, 2723–2738. [Google Scholar] [CrossRef]
- Vrieling, A.; de Jong, S.M.; Sterk, G.; Rodrigues, S.C. Timing of erosion and satellite data: A multi-resolution approach to soil erosion risk mapping. Int. J. Appl. Earth Observ. Geoinform. 2008, 10, 267–281. [Google Scholar] [CrossRef]
- Shruthi, R.B.V.; Kerle, N.; Jetten, V.; Abdellah, L.; Machmach, I. Quantifying temporal changes in gully erosion areas with object oriented analysis. Catena 2015, 128, 262–277. [Google Scholar] [CrossRef]
- Gomez-Gutierrez, A.; Schnabel, S.; Berenguer-Sempere, F.; Lavado-Contador, F.; Rubio-Delgado, J. Using 3d photo-reconstruction methods to estimate gully headcut erosion. Catena 2014, 120, 91–101. [Google Scholar] [CrossRef]
- Stocker, C.; Eltner, A.; Karrasch, P. Measuring gullies by synergetic application of UAV and close range photogrammetry—A case study from Andalusia, Spain. Catena 2015, 132, 1–11. [Google Scholar] [CrossRef]
- Zhang, S.; Li, F.; Li, T.; Yang, J.; Bu, K.; Chang, L.; Wang, W.; Yan, Y. Remote sensing monitoring of gullies on a regional scale: A case study of kebai region in Heilongjiang Province, China. Chin. Geogr. Sci. 2015, 25, 602–611. [Google Scholar] [CrossRef]
- Li, H.; Zhang, X.; Liu, S.; Yury, K.; Kateryna, I.; Li, X.; Chen, Q. Evolvement of gully erosion in village scale in the typical black soil area. Sci. Soil Water Conserv. 2012, 10, 21–28. (In Chinese) [Google Scholar]
- Ma, Y.; Yan, P.; Wang, G.; Song, Y.; Wang, Y.; Yang, H.; Zhu, M. Preliminary results of gully erosion by remote sensing monitoring in Weiliantan, Gonghe basin, Qinghai Province. Res. Soil Water Conserv. 2009, 16, 1–5. (In Chinese) [Google Scholar]
- Li, Z.; Zhang, Y.; Yao, W.; Zhu, Q. Estimating gully development rates in hilly loess region of western shanxi province based on quickbird images. Trans. Chin. Soc. Agr. Eng. 2012, 28, 141–148. (In Chinese) [Google Scholar]
- Gong, Z.; Lei, W.; Chen, Z.; Gao, Y.; Zeng, S.; Zhang, G.; Xiao, D.; Li, S. Chinese soil taxonomy. Bullet. Chin. Acad. Sci. 2007, 21, 36–38. [Google Scholar]
- Sun, J.-M.; Liu, T. Desertification in the northeastern china. Quaternary Sci. 2001, 21, 72–78. [Google Scholar]
- Wu, Y.; Zheng, Q.; Zhang, Y.; Liu, B.; Cheng, H.; Wang, Y. Development of gullies and sediment production in the black soil region of Northeastern China. Geomorphology 2008, 101, 683–691. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Rainfall energy and its relationship to soil loss. Eos Trans. Am. Geoph. Union 1958, 39, 285–291. [Google Scholar] [CrossRef]
- Foster, G.; McCool, D.; Renard, K.; Moldenhauer, W. Conversion of the universal soil loss equation to si metric units. J. Soil Water Conserv. 1981, 36, 355–359. [Google Scholar]
- Williams, J.; Nearing, M.; Nicks, A.; Skidmore, E.; Valentin, C.; King, K.; Savabi, R. Using soil erosion models for global change studies. J. Soil Water Conserv. 1996, 51, 381–385. [Google Scholar]
- Li, T. A Cause Study and Module Simulation of Gully erosion in Black Soil Region. Ph.D.’s Thesis, Graduate University of Chinese Academy of Sciences (Northeast Institute of Geography and Agroecology), Beijing, China, 2012. [Google Scholar]
- Ranzi, R.; Le, T.H.; Rulli, M.C. A rusle approach to model suspended sediment load in the Lo River (Vietnam): Effects of reservoirs and land use changes. J. Hydrol. 2012, 4223, 17–29. [Google Scholar] [CrossRef]
- Hickey, R. Slope angle and slope length solutions for GIS. Cartography 2000, 29, 1–8. [Google Scholar] [CrossRef]
- Van Remortel, R.D.; Hamilton, M.E.; Hickey, R.J. Estimating the ls factor for rusle through iterative slope length processing of digital elevation data within arclnfo grid. Cartography 2001, 30, 27–35. [Google Scholar] [CrossRef]
- Da Silva, R.M.; Montenegro, S.M.G.L.; Santos, C.A.G. Integration of GIS and remote sensing for estimation of soil loss and prioritization of critical sub-catchments: A case study of tapacurá catchment. Nat. Hazards 2012, 62, 953–970. [Google Scholar] [CrossRef]
- Park, S.; Oh, C.; Jeon, S.; Jung, H.; Choi, C. Soil erosion risk in Korean watersheds, assessed using the revised universal soil loss equation. J. Hydrol. 2011, 399, 263–273. [Google Scholar] [CrossRef]
- Feng, Q.; Zhao, W. The study on cover-management factor in usle and rusle: A review. Acta Ecol. Sin. 2014, 34, 4461–4472. (In Chinese) [Google Scholar] [CrossRef]
- Fu, B.; Zhao, W.; Chen, L.; Zhang, Q.; Lu, Y.; Gulinck, H.; Poesen, J. Assessment of soil erosion at large watershed scale using rusle and GIS: A case study in the loess plateau of china. Land Degrad. Dev. 2005, 16, 73–85. [Google Scholar] [CrossRef]
- Stone, R.P.; Hilborn, D. Universal Soil Loss Equation (USLE). Available online: http://www.omafra.gov.on.ca/english/engineer/facts/12-051.htm (accessed on 29 March 2016).
- Yang, X.; Zhang, X.; Deng, W.; Fang, H. Black soil degradation by rainfall erosion in Jilin, China. Land Degrad. Dev. 2003, 14, 409–420. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Z.; Jian, J.; Jiao, J.; Su, Y. Estimation of sediment delivery ratio in different soil erosion regions in the songhua river basin based on rusle. Resear. Soil Water Conserv. 2013, 20, 50–56. (In Chinese) [Google Scholar]
- Liu, B.; Tao, H.; Song, C.; Guo, B.; Shi, Z.; Zhang, C.; Kong, B.; He, B. Temporal and spatial variations of rainfall erosivity in China during 1960 to 2009. Geogr. Res. 2013, 32, 245–256. (In Chinese) [Google Scholar]
- Schmid, A. Spatial and temporal variability of rainfall erosivity factor for Switzerland. Hydrol. Earth Syst. Sci. Discuss. 2011, 16, 167–177. [Google Scholar]
- Zhang, H.; Wang, Q.; Dai, L.; Shao, G.; Tang, L.; Wang, S.; Gu, H. Quantifying soil erosion with GIS-based rusle under different forest management options in jianchang forest farm. Sci. Chin. 2006, 49, 160–166. [Google Scholar] [CrossRef]
- d’Oleire-Oltmanns, S.; Marzolff, I.; Tiede, D.; Blaschke, T. Detection of gully-affected areas by applying object-based image analysis (obia) in the region of Taroudannt, Morocco. Rem. Sens. Basel 2014, 6, 8287–8309. [Google Scholar] [CrossRef]
- Wang, T.; He, F.H.; Zhang, A.D.; Gu, L.J.; Wen, Y.M.; Jiang, W.G.; Shao, H.B. A quantitative study of gully erosion based on object-oriented analysis techniques: A case study in Beiyanzikou Catchment of Qixia, Shandong, China. Sci. World J. 2014, 2014, 417325. [Google Scholar] [CrossRef] [PubMed]
Land Use/Land Cover Class | C Values | Area (%) |
---|---|---|
Paddy field | 0.18 | 1.09 |
Dry land | 0.26 | 65.08 |
Garden | 0.05 | 0.14 |
Arbor forests | 0.005 | 25.41 |
Shrubbery | 0.07 | 0.76 |
Sparse forest and other woodland | 0.05 | 0.05 |
Mixed forest of arbor and shrubbery | 0.06 | 0.13 |
High coverage grassland | 0.04 | 1.81 |
Artificial grassland | 0.2 | 0.04 |
Housing construction area | 0 | 1.27 |
Road | 0 | 0.60 |
Structures | 0 | 0.40 |
Artificial stacked substance and quarry | 0.01 | 0.12 |
Desert and bare ground | 1 | 0.20 |
Water area | 0 | 2.91 |
Location | Gully Types | Pleiades Images | Ground Photos |
---|---|---|---|
126.157°E 44.356°N | Ephemeral gully | ||
126.136°E 44.212°N | Permanent gully | ||
126.262°E 44.301°N | Permanent gully |
Hillslope Erosion Class | Numeric Range (t·ha–1·a–1) | Area | Soil Loss | ||
---|---|---|---|---|---|
km2 | % | 104 t·a–1 | % | ||
Tiny | <2 | 85.24 | 33.77 | 0.65 | 1.42 |
Slight | 2–25 | 110.34 | 43.71 | 10.75 | 23.56 |
Moderate | 25–50 | 31.35 | 12.42 | 11.09 | 24.32 |
Intense | 50–80 | 14.06 | 5.57 | 8.82 | 19.35 |
Severe | 80–150 | 9.20 | 3.65 | 9.66 | 21.19 |
Violent | >150 | 2.21 | 0.87 | 4.64 | 10.17 |
Numbers of Gully | The Minimum Length (m) | The Maximum Length (m) | The Total Length (km) | The Total Area (hm2) | Gully Intensity (m2/km2) | Gully Density (km/km2) |
---|---|---|---|---|---|---|
1674 | 11.9 | 3087.5 | 271.08 | 140.92 | 5574.96 | 1.07 |
Plots | Vegetation Cover and Preservation Practice | Slope Length(m) | Slope (°) | The Mean Annual Hillslope Erosion (t·ha–1·a–1) | Deviation (%) | |
---|---|---|---|---|---|---|
Observed Data in Experimental Areas | Calculation of Similar Plots in This Study | |||||
1 | Mixed forest of arbor and shrub (P = 1) | 61 | 9.9 | 1.04 | 0.96 | −7.69 |
2 | Soybean and corn (Contour Ridge,P = 0.352) | 234 | 4.4 | 6 | 10.35 | 72.50 |
3 | Soybean, corn, and sorghum (Contour Ridge, P = 0.352) | 201 | 5.2 | 7.96 | 14.11 | 77.26 |
4 | Soybean, corn, and millet (Contour Ridge, P = 0.352) | 68 | 8.4 | 32.58 | 54.99 | 68.78 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Zhang, S.; Yang, J.; Pu, L.; Yang, C.; Yu, L.; Chang, L.; Bu, K. Integrated Use of GCM, RS, and GIS for the Assessment of Hillslope and Gully Erosion in the Mushi River Sub-Catchment, Northeast China. Sustainability 2016, 8, 317. https://doi.org/10.3390/su8040317
Wang R, Zhang S, Yang J, Pu L, Yang C, Yu L, Chang L, Bu K. Integrated Use of GCM, RS, and GIS for the Assessment of Hillslope and Gully Erosion in the Mushi River Sub-Catchment, Northeast China. Sustainability. 2016; 8(4):317. https://doi.org/10.3390/su8040317
Chicago/Turabian StyleWang, Ranghu, Shuwen Zhang, Jiuchun Yang, Luoman Pu, Chaobin Yang, Lingxue Yu, Liping Chang, and Kun Bu. 2016. "Integrated Use of GCM, RS, and GIS for the Assessment of Hillslope and Gully Erosion in the Mushi River Sub-Catchment, Northeast China" Sustainability 8, no. 4: 317. https://doi.org/10.3390/su8040317
APA StyleWang, R., Zhang, S., Yang, J., Pu, L., Yang, C., Yu, L., Chang, L., & Bu, K. (2016). Integrated Use of GCM, RS, and GIS for the Assessment of Hillslope and Gully Erosion in the Mushi River Sub-Catchment, Northeast China. Sustainability, 8(4), 317. https://doi.org/10.3390/su8040317