A Support Vector Machine for Landslide Susceptibility Mapping in Gangwon Province, Korea
Abstract
:1. Introduction
2. Data
3. Methods
- (1)
- Preparation of the 18 landslide-related factors as GIS data;
- (2)
- Opening of the landslide-related factors to use ENVI software through a TIFF image file;
- (3)
- Defining the region of interest (ROI) through using the landslide location data;
- (4)
- Running the SVM classification algorithm by using the RBF kernel for each factor;
- (5)
- Summarizing the result of SVM classification for each factor;
- (6)
- Validation of the summarized result by using the area-under-the-curve (AUC) method.
4. Results
5. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bertazzi, P.A. Disasters, Natural and Technological. Available online: http://www.ilocis.org/documents/chpt39e.htm (accessed on 26 December 2016).
- Xu, C.; Xu, X.; Dai, F.; Saraf, A.K. Comparison of different models for susceptibility mapping of earthquake triggered landslides related with the 2008 Wenchuan earthquake in China. Comput. Geosci. 2012, 46, 317–329. [Google Scholar] [CrossRef]
- Tien, B.D.; Pradhan, B.; Lofman, O.; Revhaug, I.; Dick, O.B. Landslide susceptibility assessment in the HoaBinh province of Vietnam: A comparison of the Levenberg-Marquardt and Bayesian regularized neural networks. Geomorphology 2012, 171–172, 12–29. [Google Scholar] [CrossRef]
- Alkhasawneh, M.S.; Ngah, U.K.; Tay, L.T.; Isa, N.A.M. Determination of importance for comprehensive topographic factors on landslide hazard mapping using artificial neural network. Environ. Earth Sci. 2014, 72, 787–799. [Google Scholar] [CrossRef]
- Bi, R.; Schleier, M.; Rohn, J.; Ehret, D.; Xiang, W. Landslide susceptibility analysis based on ArcGIS and Artificial Neural Network for a large catchment in Three Gorges region, China. Environ. Earth Sci. 2014, 72, 1925–1938. [Google Scholar] [CrossRef]
- Gelisli, K.; Kaya, T.; Babacan, A.E. Assessing the factor of safety using an artificial neural network: Case studies on landslides in Giresun, Turkey. Environ. Earth Sci. 2015, 73, 8639–8646. [Google Scholar] [CrossRef]
- Song, K.Y.; Oh, H.J.; Choi, J.; Lee, S. Prediction of landslides using ASTER imagery and data mining models. Adv. Space Res. 2012, 49, 978–993. [Google Scholar] [CrossRef]
- Dehnavi, A.; Aghdam, I.N.; Pradhan, B.; Morshed, V.M.H. A new hybrid model using step-wise weight assessment ratio analysis (SWARA) technique and adaptive neuro-fuzzy inference system (ANFIS) for regional landslide hazard assessment in Iran. Catena 2015, 135, 122–148. [Google Scholar] [CrossRef]
- Lee, M.J.; Song, W.K.; Won, J.S.; Park, I.; Lee, S. Spatial and temporal change in landslide hazard by future climate change scenarios using probabilistic based frequency ratio model. Geocarto Int. 2014, 29, 639–662. [Google Scholar]
- Pradhan, B. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput. Geosci. 2013, 51, 350–365. [Google Scholar] [CrossRef] [Green Version]
- Althuwaynee, O.F.; Pradhan, B.; Park, H.J.; Lee, J.H. A novel ensemble decision tree-based CHi-squared Automatic Interaction Detection (CHAID) and multivariate logistic regression models in landslide susceptibility mapping. Landslides 2014, 11, 1063–1078. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Sahin, E.K.; Colkesen, I. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 2014, 11, 425–439. [Google Scholar] [CrossRef]
- Park, I.; Lee, S. Spatial prediction of landslide susceptibility using a decision tree approach: A case study of the PyeongChang area, Korea. Int. J. Remote Sens. 2014, 35, 6089–6112. [Google Scholar] [CrossRef]
- Wang, L.J.; Guo, M.; Sawada, K.; Lin, J.; Zhang, J. A comparative study of landslide susceptibility maps using logistic regression, frequency ratio, decision tree, weights of evidence and artificial neural network. Geosci. J. 2016, 20, 117–136. [Google Scholar] [CrossRef]
- Wu, X.; Ren, F.; Niu, R. Landslide susceptibility assessment using object mapping units, decision tree, and support vector machine models in the Three Gorges of China. Environ. Earth Sci. 2014, 71, 4725–4738. [Google Scholar] [CrossRef]
- Yilmaz, I. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: Conditional probability, logistic regression, artificial neural networks, and support vector machine. Environ. Earth Sci. 2010, 61, 821–836. [Google Scholar] [CrossRef]
- Xu, C.; Dai, F.; Xu, X.; Lee, Y.H. GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China. Geomorphology 2012, 145–146, 70–80. [Google Scholar] [CrossRef]
- Ren, F.; Wu, X.; Zhang, K.; Niu, R. Application of wavelet analysis and a particle swarm-optimized support vector machine to predict the displacement of the Shuping landslide in the Three Gorges, China. Environ. Earth Sci. 2015, 73, 4791–4804. [Google Scholar] [CrossRef]
- Hong, H.; Pradhan, B.; Jebur, M.N.; Bui, D.T.; Xu, C.; Akgun, A. Spatial prediction of landslide hazard at the Luxi area (China) using support vector machines. Environ. Earth Sci. 2016, 75, 1–14. [Google Scholar] [CrossRef]
- Boser, B.; Guyon, I.; Vapnik, V. A Training Algorithm for Optimal Margin Classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992.
- Cortes, C.; Vapnik, V. Support vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995. [Google Scholar]
- Vapnik, V. Statistical Learning Theory; Wiley: Hoboken, NJ, USA, 1998. [Google Scholar]
- Cawley, C.; Talbot, N.L.C. Over-fitting in model selection and subsequent selection bias in performance evaluation. J. Mach. Learn. Res. 2010, 11, 2079–2107. [Google Scholar]
- Ministry of Public Safety and Security, 2006. Hazard Annals of South Korea in 2006. Available online: http://www.mpss.go.kr/board/board.do?boardId=bbs_0000000000000042&mode=view&cntId=16&category=&pageIdx= (accessed on 26 12 2016).
- Sarkar, S.; Kanungo, D.P. An integrated approach for landslide susceptibility mapping using remote sensing and GIS. Photogramm. Eng. Remote Sens. 2004, 70, 617–625. [Google Scholar] [CrossRef]
- Beven, K.J.; Kirkby, M.J. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar] [CrossRef]
- Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital terrain modelling: A review of hydrological, geomorphological and biological applications. Hydrol. Proc. 1991, 5, 3–30. [Google Scholar] [CrossRef]
- Lee, S.; Choi, J.; Min, K.-D. Probabilistic landslide hazard mapping using GIS and remote sensing data at Boun, Korea. Int. J. Remote Sens. 2004, 25, 2037–2052. [Google Scholar] [CrossRef]
- Lee, S.; Min, K.-D. Statistical analysis of landslide susceptibility at Yongin, Korea. Environ. Geol. 2001, 40, 1095–1111. [Google Scholar]
- Lee, S.; Song, K.-Y.; Oh, H.-J.; Choi, J. Detection of landslide using web-based aerial photographs and landslide susceptibility mapping using geospatial analysis. Int. J. Remote Sens. 2012, 33, 4937–4966. [Google Scholar]
- Lee, M.-J.; Park, I.; Lee, S. Forecasting and validation of landslide susceptibility using an integration of frequency ratio and neuro-fuzzy models: A case study of Seorak mountain area in Korea. Environ. Earth Sci. 2015, 74, 413–429. [Google Scholar] [CrossRef]
- Lee, M.-J.; Park, I.; Won, J.-S.; Lee, S. Landslide hazard mapping considering rainfall probability in Inje, Korea. Geomat. Nat. Haz. Risk 2016, 7, 424–446. [Google Scholar] [CrossRef]
- Land Information Platform. Available online: http://map.ngii.go.kr (accessed on 17 December 2016).
- Geological Information System. Available online: http://mgeo.kigam.re.kr (accessed on 17 December 2016).
- Soil Environment Information System. Available online: http://soil.rda.go.kr/soil/soilmap/characteristic.jsp (accessed on 17 December 2016).
- Forest Geospatial Information Service. Available online: http://116.67.44.22/forest (accessed on 17 December 2016).
- Environmental Geospatial Information Service. Available online: https://egis.me.go.kr (accessed on 17 December 2016).
- Dai, F.C.; Lee, C.F. Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 2012, 42, 213–228. [Google Scholar] [CrossRef]
- Lee, S.; Ryu, J.H.; Won, J.S.; Park, H.J. Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Eng. Geol. 2004, 71, 289–302. [Google Scholar] [CrossRef]
- Pirotti, F.; Tarolli, P. Suitability of lidar point density and derived landform curvature maps for channel network extraction. Hydrol. Proc. 2010, 24, 1187–1197. [Google Scholar] [CrossRef]
- Gangodagamage, C.; Belmont, P.; Foufoula, G.E. Revisiting scaling laws in river basins: New considerations across hillslope and fluvial regimes. Water Resour. Res. 2011. [Google Scholar] [CrossRef]
- Tarolli, P.; Borga, M.; Chang, K.; Chiang, S. Modeling shallow landsliding susceptibility by incorporating heavy rainfall statistical properties. Geomorphology 2011, 133, 199–211. [Google Scholar] [CrossRef]
- Lee, S.; Hwang, J.; Park, I. Application of data-driven evidential belief functions to landslide susceptibility mapping in Jinbu, Korea. Catena 2013, 100, 15–30. [Google Scholar] [CrossRef]
- Kincal, C.; Akgun, A.; Koca, M.Y. Landslide susceptibility assessment in the İzmir (West Anatolia, Turkey) city center and its near vicinity by the logistic regression method. Environ. Earth Sci. 2009, 59, 745–756. [Google Scholar] [CrossRef]
- Chauhan, S.; Sharma, M.; Arora, M.K. Landslide susceptibility zonation of the Chamoliregion, Garhwal Himalayas, using logistic regression model. Landslides 2010, 7, 411–423. [Google Scholar] [CrossRef]
- Lee, S.; Won, J.S.; Jeon, S.W.; Park, I.; Lee, M.J. Spatial Landslide Hazard Prediction Using Rainfall Probability and a Logistic Regression Model. Math. Geosci. 2015, 47, 565–589. [Google Scholar] [CrossRef]
- Anbalagan, R. Landslide susceptibility evaluation and zonation mapping in mountainous terrain. Eng. Geol. 1992, 32, 269–277. [Google Scholar] [CrossRef]
- Edeso, J.M.; Merino, A.; Gonzalez, M.J.; Marauri, P. Soil erosion under different harvesting managements in steep forest lands from northern Spain. Land Degrad. Dev. 1999, 10, 79–88. [Google Scholar] [CrossRef]
- Dhakal, A.S.; Sidle, R.C. Long-term modeling of landslides for different forest management practices. Earth Surf. Proc. Land 2003, 28, 853–868. [Google Scholar] [CrossRef]
- Kanevski, M.; Pozdnoukhov, A.; Timonin, V. Machine Learning Algorithms for Geospatial Data. Theory, Applications and Software; PPUR EPFL-Press: Lausanne, Switzerland, 2009. [Google Scholar]
- Abe, S. Support Vector Machines for Pattern Classification; Springer: New York, NY, USA, 2010. [Google Scholar]
- Amari, S.; Wu, S. Improving support vector machine classifiers by modifying kernel functions. Neural Netw. 1999, 12, 783–789. [Google Scholar] [CrossRef]
- Yao, X.; Tham, L.G.; Dai, F.C. Landslide susceptibility mapping based on Support Vector Machine: A case study on natural slopes of Hong Kong, China. Geomorphology 2008, 101, 572–582. [Google Scholar] [CrossRef]
- Scholkopf, B.; Smola, A.; Williamson, R.C.; Bartlett, P.L. New support vector algorithms. Neural Comput. 2000, 12, 1207–1245. [Google Scholar] [CrossRef] [PubMed]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining Inference and Prediction; Springer: New York, NY, USA, 2001. [Google Scholar]
- Pourghasemi, H.R.; Jirandeh, A.G.; Pradhan, B.; Xu, C.; Gokceoglu, C. Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran. J. Earth Syst. Sci. 2013, 122, 349–369. [Google Scholar] [CrossRef] [Green Version]
- Taner, S.B. An evaluation of SVM using polygon-based random sampling in landslide susceptibility mapping: The Candir catchment area (western Antalya, Turkey). Int. J. App. Earth. Obs. Geoinform. 2004, 26, 399–412. [Google Scholar]
- Lee, S.; Dan, N.T. Probabilistic landslide susceptibility mapping in the Lai Chau province of Vietnam: Focus on the relationship between tectonic fractures and landslides. Environ. Geol. 2005, 48, 778–787. [Google Scholar] [CrossRef]
- Lee, S.; Sambath, T. Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environ. Geol. 2006, 50, 847–855. [Google Scholar] [CrossRef]
- Auria, L.; Moro, R.A. Support Vector Machines (SVM) as a Technique for Solvency Analysis. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1424949 (accessed on 17 December 2016).
- Einstein, H.H. Landslide Risk Assessment Procedure. In Proceedings of the Fifth International Symposium on Landslide, Lausanne, Switzerland, 10–15 July 1988.
Category | Factors | Data Type | Scale |
---|---|---|---|
Topographic map [34] | Slope gradient | GRID | 1:5000 |
Slope aspect | |||
Curvature | |||
TWI (Topographic Wetness Index) | |||
SPI (Stream Power Index) | |||
Slope Length (Inje only) | |||
Geological map [35] | Geology | Polygon | 1:50,000 |
Distance from fault | GRID | ||
Soil map [36] | Topography | Polygon | 1:25,000 |
Soil drainage | |||
Soil material | |||
Soil depth | |||
Soil texture | |||
Forest map [37] | Timber diameter | Polygon | 1:25,000 |
Timber type | |||
Timber density | |||
Timber age | |||
Land use map [38] | Land use (PyeongChang only) | Polygon | 1:5000 |
Soil Topography | Soil Texture | Soil Drainage | Soil Material | Soil Effective Thickness |
---|---|---|---|---|
Water | Water | Water | Water | Water |
Fluvial plains | Sandy loam | Somewhat poorly drained | Fluvial alluvium | 0–20 cm |
Valley and alluvial fan | Fine sandy loam | Moderately well drained | Alluvial-Colluvium | 20–50 cm |
Lower hilly area | Gravelly sandy loam | Well drained | Okcheon system residuum formation | 50–100 cm |
Hilly area | Gravelly silt loam | Excessively drained | Colluvium | 100–150 cm |
Piedmont slope area | Loam | Poorly drained | Diluvium | |
Diluvium | Silt loam | Valley alluvium | ||
Valley area | Gravelly loam | Granite residuum | ||
Valley and piedmont slope area | Loamy fine sand | Alluvium | ||
Mountain and hilly area | Overflow area | Phyllite residuum formation | ||
Mountainous area | Rocky silt loam | |||
Rocky sandy loam |
Timber Type | Timber Diameter | Timber Age | Timber Density |
---|---|---|---|
Non-forest | Non-forest | Non-forest | Non-forest |
Rigida pine | Very small diameter (timber diameter is below 6 cm) | 1st age More than (50% 1–10 years old timber) | Loose (Less than 50% forest area) |
Pine | |||
Needle and broad | 2nd age More than (50% 11–20 years old timber) | ||
Artificially afforested broad leaf tree | |||
Korea nut pine | Small diameter (timber diameter is 6–16 cm) | 3rd age More than (50% 21–30 years old timber) | Moderate Less than (51%–70% forest area) |
Larch | |||
Broad leaf tree | 4th age More than (50% 31–40 years old timber) | ||
Field | |||
Cultivated land | Medium diameter (wood diameter is 16–28 cm) | 5th age More than (50% 41–50 years old timber) | Dense More than (71% forest area) |
Chestnut tree | |||
Poplar | |||
Ranch |
PyeongChang | Inje | ||||
---|---|---|---|---|---|
Factor | AUC | Effect | Factor | AUC | Effect |
Aspect | 78.66 | Positive | SPI | 75.93 | Positive |
Land use | 80.32 | Positive | Slope Length | 76.22 | Positive |
SPI | 80.70 | Positive | Aspect | 76.28 | Positive |
Slope | 80.72 | Positive | Slope | 76.68 | Positive |
TWI | 80.81 | Positive | TWI | 76.76 | Positive |
Geology | 80.89 | Positive | Plan curvature | 77.18 | Positive |
Plan curvature | 81.06 | Positive | Geology | 77.22 | Positive |
Distance from fault | 81.07 | Positive | Distance from fault | 77.32 | Positive |
Timber type | 81.18 | Positive | Soil material | 77.37 | Positive |
Soil depth | 81.30 | Positive | Soil depth | 77.37 | Positive |
All factor used | 81.36 | Soil topography | 77.42 | Positive | |
Soil topography | 81.36 | Negative | Soil texture | 77.42 | Positive |
Soil drainage | 81.37 | Negative | Soil drainage | 77.43 | Positive |
Soil material | 81.39 | Negative | Timber type | 77.47 | Positive |
Soil texture | 81.55 | Negative | All factor used | 77.49 | |
Timber diameter | 81.81 | Negative | Timber diameter | 77.79 | Negative |
Timber age | 81.93 | Negative | Timber density | 77.88 | Negative |
Timber density | 82.22 | Negative | Timber age | 78.35 | Negative |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Hong, S.-M.; Jung, H.-S. A Support Vector Machine for Landslide Susceptibility Mapping in Gangwon Province, Korea. Sustainability 2017, 9, 48. https://doi.org/10.3390/su9010048
Lee S, Hong S-M, Jung H-S. A Support Vector Machine for Landslide Susceptibility Mapping in Gangwon Province, Korea. Sustainability. 2017; 9(1):48. https://doi.org/10.3390/su9010048
Chicago/Turabian StyleLee, Saro, Soo-Min Hong, and Hyung-Sup Jung. 2017. "A Support Vector Machine for Landslide Susceptibility Mapping in Gangwon Province, Korea" Sustainability 9, no. 1: 48. https://doi.org/10.3390/su9010048
APA StyleLee, S., Hong, S. -M., & Jung, H. -S. (2017). A Support Vector Machine for Landslide Susceptibility Mapping in Gangwon Province, Korea. Sustainability, 9(1), 48. https://doi.org/10.3390/su9010048