Cover Crops as an Agroecological Practice on Organic Vegetable Farms in Wisconsin, USA
Abstract
:1. Introduction
2. Historical Overview of Agroecology and Organic Agriculture
3. Cover Crops: An Indicator Agroecological Practice within Organic Management
4. Methods: Can Perspectives from Wisconsin’s Organic Vegetable Farmers Help Gauge Their Agroecological Priorities?
5. Results
6. Discussion
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wezel, A.; Soldat, V. A quantitative and qualitative historical analysis of the scientific discipline agroecology. Int. J. Agric. Sustain. 2009, 7, 3–18. [Google Scholar] [CrossRef]
- Altieri, M.A. Agroecology: The Science of Sustainable Agriculture; Westview Press: Boulder, CO, USA, 1995; p. 433. [Google Scholar]
- Francis, C.; Lieblein, G.; Gliessman, S.; Breland, T.A.; Creamer, N.; Harwood, R.; Salomonsson, L.; Helenius, J.; Rickerl, D.; Salvador, R.; et al. Agroecology: The ecology of food systems. J. Sustain. Agric. 2003, 22, 99–118. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I.; Henao, A.; Lana, M.A. Agroecology and the design of climate change-resilient farming systems. Agron. Sustain. Dev. 2015, 35, 869–890. [Google Scholar] [CrossRef]
- Lampkin, N.H. Organic Farming; Farming Press: Ipswich, UK, 1990; p. 701. [Google Scholar]
- International Federation of Organic Agriculture Movements (IFOAM). Definition of Organic Agriculture. Available online: http://www.ifoam.bio/en/organic-landmarks/definition-organic-agriculture (accessed on 1 October 2016).
- Méndez, V.E. Agroecology. In Encyclopedia of Geography; Warf, B., Ed.; Sage Publications: Thousand Oaks, CA, USA, 2010; pp. 55–59. [Google Scholar]
- Paull, J. The farm as organism: The foundational idea of organic agriculture. Elem. J. Bio-Dyn. Tasmania 2006, 80, 14–18. [Google Scholar]
- Drinkwater, L.E. Ecological knowledge: Foundation for sustainable organic agriculture. In Organic Farming: The Ecological System; Francis, C., Ed.; American Society of Agronomy: Madison, WI, USA, 2009; Monograph 54; pp. 19–48. [Google Scholar]
- Frost, D. Deconstructing the Organic Movement. In UK Organic Research 2002: Proceedings of the COR Conference; Powell, J., Ed.; University of Wales Aberystwyth: Aberystwyth, UK, 2002; pp. 113–114. [Google Scholar]
- De Abreu, L.S.; Lamine, C.; Bellon, S. Trajetórias da Agroecologia no Brasil: Entre Movimentos Sociais, Redes Científicas e Políticas Públicas. Available online: http://www.aba-agroecologia.org.br/revistas/index.php/rbagroecologia/article/view/8346/5922 (accessed on 1 October 2016).
- Wezel, A.; Casagrande, M.; Celette, F.; Vian, J.-F.; Ferrer, A.; Peigné, J. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 2014, 34, 1–20. [Google Scholar] [CrossRef]
- Gliessman, S.R. Agroecology: Ecological Processes in Sustainable Agriculture; Ann Arbor Press: Chelsea, MI, USA, 1998; p. 357. [Google Scholar]
- U.S. Government Publishing Office. Electronic Code of Federal Regulations. Available online: http://www.ecfr.gov/cgi-bin/text-idx?c=ecfr&sid=3f34f4c22f9aa8e6d9864cc2683cea02&tpl=/ecfrbrowse/Title07/7cfr205_main_02.tpl (accessed on 1 October 2016).
- Buck, D.; Getz, C.; Guthman, J. From farm to table: The organic vegetable commodity chain of northern California. Sociol. Rural. 1997, 37, 3–20. [Google Scholar] [CrossRef]
- Hall, A.; Mogyorody, V. Organic Farmers in Ontario: An examination of the conventionalisation argument. Sociol. Rural. 2001, 41, 399–422. [Google Scholar] [CrossRef]
- Dabney, S.M. Cover crop impacts on watershed hydrology. J. Soil Water Conserv. 1998, 53, 207–213. [Google Scholar]
- Tonitto, C.; David, M.B.; Drinkwater, L.E. Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: A meta-analysis of crop yield and N dynamics. Agric. Ecosyst. Environ. 2006, 112, 58–72. [Google Scholar] [CrossRef]
- Lundgren, J.G.; Fergen, J.K. Enhancing predation of a subterranean insect pest: A conservation benefit of winter vegetation in agroecosystems. Appl. Soil Ecol. 2011, 51, 9–16. [Google Scholar] [CrossRef]
- Ryan, M.R.; Mirsky, S.B.; Mortensen, D.A.; Teasdale, J.R.; Curran, W.S. Potential synergistic effects of cereal rye biomass and soybean planting density on weed suppression. Weed Sci. 2011, 59, 238–246. [Google Scholar] [CrossRef]
- Schipanski, M.E.; Drinkwater, L.E. Nitrogen fixation of red clover interseeded with winter cereals across a management-induced fertility gradient. Nutr. Cycl. Agroecosyst. 2011, 90, 105–119. [Google Scholar] [CrossRef]
- Schipanski, M.E.; Barbercheck, M.; Douglas, M.R.; Finney, D.M.; Haider, K.; Kaye, J.P.; Kemanian, R.; Mortensen, D.A.; Ryan, M.R.; Tooker, J.; et al. A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agric. Syst. 2014, 125, 12–22. [Google Scholar] [CrossRef]
- Altieri, M.A.; Funes, F.; Petersen, P. Agroecologically efficient agricultural systems for smallholder farmers: Contributions to food sovereignty. Agron. Sustain. Dev. 2012, 32, 1–13. [Google Scholar] [CrossRef]
- Abdollahi, L.; Munkholm, L.J. Tillage system and cover crop effects on soil quality: Chemical, mechanical, and biological properties. Soil Sci. Soc. Am. J. 2014, 78, 262–270. [Google Scholar]
- Blanco-Canqui, H.; Claassen, M.M.; Presley, D.R. Summer cover crops fix nitrogen, increase crop yield, and improve soil–crop relationships. Agron. J. 2012, 104, 137–147. [Google Scholar] [CrossRef]
- Chen, G.; Weil, R.R. Root growth and yield of maize as affected by soil compaction and cover crops. Soil Tillage Res. 2011, 117, 17–27. [Google Scholar] [CrossRef]
- Calonego, J.; Rosolem, C. Soybean root growth and yield in rotation with cover crops under chiseling and no-till. Eur. J. Agron. 2010, 33, 242–249. [Google Scholar] [CrossRef]
- Cruz, J.L.; da Silva Souza, L.; dos Santos de Souza, N.C.; Pelacani, C.R. Effect of cover crops on the aggregation of a soil cultivated with papaya (Carica papaya L.). Sci. Hortc. 2014, 172, 82–85. [Google Scholar] [CrossRef]
- Hermawan, B.; Bomke, A.A. Effects of winter cover crops and successive spring tillage on soil aggregation. Soil Till. Res. 1997, 44, 109–120. [Google Scholar] [CrossRef]
- Alliaume, F.; Rossing, W.A.H.; Tittonell, P.; Jorgea, G.; Dogliotti, S. Reduced tillage and cover crops improve water capture and reduce erosion of fine textured soils in raised bed tomato systems. Agric. Ecosyst. Environ. 2014, 183, 127–137. [Google Scholar] [CrossRef]
- Mailapalli, D.R.; Horwath, W.R.; Wallender, W.W.; Burger, M. Infiltration, runoff, and export of dissolved organic carbon from furrow-irrigated forage fields under cover crop and no-till management in the arid climate of California. J. Irrig. Drain Eng. 2012, 138, 35–42. [Google Scholar] [CrossRef]
- Folorunso, O.A.; Rolston, D.E.; Prichard, T.; Louie, D.T. Soil surface strength and infiltration rate as affected by winter cover crops. Soil Technol. 1992, 25, 189–197. [Google Scholar] [CrossRef]
- Silva, E.M. Screening five fall-sown cover crops for use in organic no-till crop production in the Upper Midwest. Agroecol. Sustain. Food Syst. 2014, 38, 748–763. [Google Scholar] [CrossRef]
- Villamil, M.B.; Bollero, G.A.; Darmody, R.G.; Simmons, F.W.; Bullock, D.G. No-till corn/soybean systems including winter cover crops: Effects on soil properties. Soil Sci. Soc. Am. J. 2006, 70, 1936–1944. [Google Scholar] [CrossRef]
- Sainju, U.M.; Whitehead, W.F.; Singh, B.R. Cover crops and nitrogen fertilization effects on soil aggregation and carbon and nitrogen pools. Can. J. Soil Sci. 2003, 83, 155–165. [Google Scholar] [CrossRef]
- Nascente, A.S.; Li, Y.C.; Crusciol, C.A.C. Cover crops and no-till effects on physical fractions of soil organic matter. Soil Tillage Res. 2013, 130, 52–57. [Google Scholar] [CrossRef]
- Ding, G.; Liu, X.; Herbert, S.; Novak, J.; Amarasiriwardenae, D.; Xing, B. Effect of cover crop management on soil organic matter. Geoderma 2006, 30, 229–239. [Google Scholar] [CrossRef]
- Collins, H.P.; Delgado, J.A.; Alva, A.K.; Follett, R.E. Use of nitrogen-15 isotopic techniques to estimate nitrogen cycling from a mustard cover crop to potatoes. Agron. J. 2007, 99, 27–35. [Google Scholar] [CrossRef]
- Abdul-Baki, A.A.; Teasdale, J.R.; Korcak, R.F. Nitrogen requirements of fresh- market tomatoes on hairy vetch and black polyethylene mulch. HortScience 2007, 32, 217–221. [Google Scholar]
- Schutter, M.E.; Dick, R.P. Microbial community profiles and activities among aggregates of winter fallow and cover-cropped soil. Soil Sci. Soc. Am. J. 2002, 66, 142–153. [Google Scholar] [CrossRef]
- Buyer, J.S.; Teasdale, J.R.; Roberts, D.P.; Zasada, I.A.; Maul, J.E. Factors affecting soil microbial community structure in tomato cropping systems. Soil Biol. Biochem. 2010, 42, 831–841. [Google Scholar] [CrossRef]
- Lehman, R.M.; Taheria, W.T.; Osborne, S.L.; Buyer, J.S.; Douds, D.D., Jr. Fall cover cropping can increase arbuscular mycorrhizae in soils supporting intensive agricultural production. Appl. Soil Ecol. 2012, 61, 300–304. [Google Scholar] [CrossRef]
- De Baets, S.; Poesen, J.; Meersmans, J. Cover crops and their erosion-reducing effects during concentrated flow erosion. Catena 2011, 85, 237–244. [Google Scholar] [CrossRef]
- Kaspar, T.C.; Radke, J.K.; Laflen, J.M. Small grain cover crops and wheel traffic effects on infiltration, runoff, and erosion. J. Soil Water Conserv. 2001, 56, 160–164. [Google Scholar]
- Ryder, M.H.; Fares, A. Evaluating cover crops for use as vegetative filters to control sediment and nutrient loading from agricultural runoff in a Hawaiian watershed. J. Am. Water Res. Assoc. 2008, 44, 640–653. [Google Scholar] [CrossRef]
- Kaspar, T.C.; Jaynes, D.B.; Parkin, T.B.; Moorman, T.B.; Singer, J.W. Effectiveness of oat and rye cover crops in reducing nitrate losses in drainage water. Agric. Water Manag. 2012, 110, 25–33. [Google Scholar] [CrossRef]
- Heinrich, A.; Smith, R.; Cahn, M. Winter-killed cereal rye cover crop influence on nitrate leaching in intensive vegetable production systems. HortTechnology 2014, 24, 502–511. [Google Scholar]
- Wyland, L.; Jackson, L.; Chaney, W.; Klonsky, K.; Koike, S.; Kimple, B. Winter cover crops in a vegetable cropping system: Impacts on nitrate leaching, soil water, crop yield, pests and management costs. Ecosyst. Environ. 1996, 59, 1–17. [Google Scholar] [CrossRef]
- Kunz, C.; Sturm, D.J.; Varnholt, D.; Walker, F.; Gerhards, R. Allelopathic effects and weed suppressive ability of cover crops. Plant Soil Environ. 2016, 62, 60–66. [Google Scholar]
- Brust, J.; Claupein, W.; Gerhards, R. Growth and weed suppression ability of common and new cover crops in Germany. Crop Prot. 2014, 63, 1–8. [Google Scholar] [CrossRef]
- Björkman, T.; Lowry, C.; Shail, J.W., Jr.; Brainard, D.C.; Anderson, D.S.; Masiunas, J.B. Mustard cover crops for biomass production and weed suppression in the Great Lakes Region. Agron. J. 2015, 107, 1235–1249. [Google Scholar] [CrossRef]
- Ellis, K.E.; Barbercheck, M.E. Management of Overwintering Cover Crops Influences Floral Resources and Visitation by Native Bees. Environ. Entomol. 2015, 44, 999–1010. [Google Scholar] [CrossRef] [PubMed]
- Ponti, L.; Altieri, M.A.; Gutierrez, A.P. Effects of crop diversification levels and fertilization regimes on abundance of Brevicoryne brassicae (L.) and its parasitization by Diaeretiella rapae (M’Intosh) in broccoli. Agric. For. Entomol. 2007, 9, 209–214. [Google Scholar] [CrossRef]
- Aguilar-Fenollosa, E.; Ibáñez-Gual, M.V.; Pascual-Ruiz, S.; Hurtado, M.; Jacas, J.A. Effect of ground-cover management on spider mites and their phytoseiid natural enemies in clementine mandarin orchards (I): Bottom-up regulation mechanisms. Biolog. Control 2011, 59, 158–170. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Y.; Klassen, W.; Handoo, Z. Influence of cover crops and soil amendments on okra (Abelmoschus esculentus L.) production and soil nematodes. Renew. Agric. Food Syst. 2006, 22, 41–53. [Google Scholar] [CrossRef]
- Viaene, N.M.; Abawi, G.S. Management of Meloidogyne hapla on lettuce in organic soil with sudangrass as a cover crop. Plant Dis. 1998, 82, 945–952. [Google Scholar] [CrossRef]
- Butler, D.M.; Rosskopf, E.N.; Kokalis-Burelle, N.; Albano, J.P.; Muramoto, J.; Shennan, C. Exploring warm-season cover crops as carbon sources for anaerobic soil disinfestation (ASD). Plant Soil 2012, 355, 149–165. [Google Scholar] [CrossRef]
- Scholberg, J.M.; Dogliotti, S.; Leoni, C.; Cherr, C.M.; Zotarelli, L.; Rossing, W.A. Cover Crops for Sustainable Agrosystems in the Americas. In Genetic Engineering, Biofertilisation, Soil Quality and Organic Farming, 4th ed.; Lichtfouse, Ed.; Springer: New York, NY, USA; pp. 23–58.
- Lu, Y.-C.; Watkins, K.B.; Teasdale, J.R.; Abdul-Baki, A.A. Cover crops in sustainable food production. Food Rev. Intern. 2000, 16, 121–157. [Google Scholar] [CrossRef]
- Reicosky, D.; Forcella, F. Cover crop and soil quality interactions in agroecosystems. J. Soil Water Conserv. 1998, 53, 224–229. [Google Scholar]
- Carrera, L.M.; Abdul-Baki, A.A.; Teasdale, J.R. Cover crop management and weed suppression in no-tillage sweet corn production. HortScience 2004, 39, 1262–1266. [Google Scholar]
- Creamer, N.G.; Bennett, M.A.; Stinner, B.R.; Cardina, J. A comparison of four processing tomato production systems differing in cover crop and chemical inputs. J. Am. Soc. Hortc. Sci. 1996, 121, 559–568. [Google Scholar]
- Ess, D.; Vaughan, D.; Luna, J.; Sullivan, P. Energy and economic savings from the use of legume cover crops in Virginia corn production. Am. J. Altern. Agric. 1994, 9, 178–185. [Google Scholar] [CrossRef]
- Frye, W.; Smith, W.; Williams, R. Economics of winter cover crops as a source of nitrogen for no-till corn. J. Soil Water Conserv. 1985, 40, 246–249. [Google Scholar]
- Langdale, G.; Blevins, R.; Karlen, D.; McCool, D.; Nearing, M.; Skidmore, E.; Thomas, A.; Tyler, D.; Williams, J. Cover crop effects on soil erosion by wind and water. In Cover Crops for Clean Water; Hargrove, W., Ed.; Soil and Water Conservation Society; West Tennessee Experiment Station: Jackson, TN, USA, 1991; pp. 141–145. [Google Scholar]
- Gabriel, J.L.; Garrido, A.; Quemada, M. Cover crops effect on farm benefits and nitrate leaching: Linking economic and environmental analysis. Agric. Syst. 2013, 121, 23–32. [Google Scholar] [CrossRef]
- Meisinger, J.; Hargrove, W.; Mikkelsen, R.; Williams, J.; Benson, V. Effects of cover crops on groundwater quality. In Cover Crops for Clean Water; Hargrove, W., Ed.; Soil and Water Conservation Society; West Tennessee Experiment Station: Jackson, TN, USA, 1991; pp. 57–68. [Google Scholar]
- Sharpley, A.; Smith, S. Effects of cover crops on surface water quality. In Cover Crops for Clean Water; Hargrove, W., Ed.; Soil and Water Conservation Society; West Tennessee Experiment Station: Jackson, TN, USA, 1991; pp. 41–49. [Google Scholar]
- Bjorkman, T.; Shail, J.W. Using a buckwheat cover crop for maximum weed suppression after Early vegetables. HortTechnology 2013, 23, 575–580. [Google Scholar]
- Altieri, M.A.; Nicholls, C.I. Biodiversity and Pest Management in Agroecosystems, 2nd ed.; Howarth Press: Binghamton, NY, USA, 2004; p. 252. [Google Scholar]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Proc. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Bland, W.L.; Bell, M.M. A holon approach to agroecology. Int. J. Agric. Sustain. 2007, 5, 280–294. [Google Scholar]
- Mariola, M.; Miller, M.; Hendrickson, J. Organic Agriculture in Wisconsin: 2003 Status Report. Available online: http://www.cias.wisc.edu/wp-content/uploads/2008/07/org113.pdf (accessed on 1 October 2016).
- Carusi, C.E.; Gurda, A.; McNair, R.; Pfeiffer, A.; Silva, E.M. Organic Agriculture in Wisconsin: 2014 Status Report. Available online: http://www.cias.wisc.edu/wp-content/uploads/2015/02/ciasorganicreport2015final041615.pdf (accessed on 1 October 2016).
- Silva, E.M.; Dong, F.; Mitchell, P.D.; Hendrickson, J. Impact of marketing channels on perceptions of quality of life and profitability of Wisconsin’s organic vegetable farmers. Renew. Agric. Food Syst. 2014, 30, 428–438. [Google Scholar] [CrossRef]
- Moore, V.M.; Mitchell, P.D.; Silva, E.M.; Barham, B. Cover Crop Adoption and Intensity on Wisconsin’s Organic Vegetable Farms. Agroecol. Sustain. Food Syst. 2016, 40, 693–713. [Google Scholar] [CrossRef]
- Dillman, D.A.; Smyth, J.D.; Christian, L.M. Internet, Mail, and Mixed-Mode Surveys: The Tailored Design Method, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; pp. 15–41. [Google Scholar]
- Darnhofer, I.; Lindenthal, T.; Bartel-Kratochvil, R.; Zollitsch, W. Conventionalisation of organic farming practices: From structural criteria towards an assessment based on organic principles. A review. Agron. Sustain. Dev. 2010, 30, 67–81. [Google Scholar] [CrossRef]
- Guthman, J. Regulating meaning, appropriating nature: The codification of California organic agriculture. Antipode 1998, 30, 135–154. [Google Scholar] [CrossRef]
- Lyon, A.; Silva, E.M.; Bell, M.; Zystro, J. Seed and plant breeding for Wisconsin’s organic vegetable sector: Understanding farmers’ needs and practices. Agroecol. Sustain. Food Syst. 2015, 39, 601–624. [Google Scholar] [CrossRef]
- Hazell, P.; Wood, S. From science to technology adoption: The role of policy research in improving natural resource management. Agric. Ecosyst. Environ. 2000, 82, 385–393. [Google Scholar] [CrossRef]
- Watzold, F.; Drechsler, M.; Armstrong, C.W.; Baumgartner, S.; Grimm, V.; Huth, A.; Perrings, C.; Possingham, H.P.; Shogren, J.F.; Skonhoft, A.; et al. Ecological-economic modeling for biodiversity management: Potential, pitfalls, and prospects. Conserv. Biol. 2006, 20, 1034–1041. [Google Scholar] [CrossRef] [PubMed]
- Allen, P.; Kovach, M. The capitalistic composition of organic: The potential of markets in fulfilling the promise of organic agriculture, Agric. Hum. Values 2000, 17, 221–232. [Google Scholar] [CrossRef]
- Alrøe, H.; Noe, E. What makes organic agriculture move: Protest, meaning or market? A polyocular approach to the dynamics and governance of organic agriculture. Int. J. Agric. Resour. Gov. Ecol. 2008, 7, 5–22. [Google Scholar] [CrossRef]
- DeLind, L.B. Transforming organic agriculture into industrial organic products: Reconsidering nationalorganic standards. Hum. Organ. 2000, 59, 198–208. [Google Scholar] [CrossRef]
- Flaten, O.; Lien, G.; Ebbesvik, M.; Koesling, M.; Valle, P.S. Do the new organic producers differ from the ‘old guard’? Empirical results from Norwegian dairy farming. Renew. Agric. Food Syst. 2006, 21, 174–182. [Google Scholar] [CrossRef]
- Guptill, A. Exploring the conventionalization of organic dairy: Trends and counter-trends in upstate New York. Agric. Hum. Values 2009, 26, 29–42. [Google Scholar] [CrossRef]
- De Wit, J.; Verhoog, H. Organic values and the conventionalization of organic agriculture. NJAS Wagening. J. Life Sci. 2007, 54, 449–462. [Google Scholar] [CrossRef]
- Watson, C.; Walker, R.; Stockdale, E. Research in organic production systems—Past, present and future. J. Agric. Sci. 2008, 146, 1–19. [Google Scholar] [CrossRef]
- Lamine, C.; Bellon, S. Conversion to organic farming: A multidimensional research object at the crossroads of agricultural and social sciences. A review. Agron. Sustain. Dev. 2009, 29, 97–112. [Google Scholar] [CrossRef]
Agroecosystem Service | Cover Crop | Cash Crop System | Study Location | Citation |
---|---|---|---|---|
Reduce soil compaction | Forage radish (Raphanus sativus) | Not specified | Denmark | [24] |
Hairy vetch (Vicia villosa), sunnhemp (Crotalaria juncea), soybeans (Glycine max) | Winter wheat (Triticum aestivum) and grain sorghum (Sorghum bicolor) | Kansas, USA | [25] | |
Forage radish; rapeseed (Brassica napus); cereal rye (Secale cereale) | Maize (Zea mays) | Maryland, USA | [26] | |
Millet (Pennisetum glaucum); sorghum; and sunn hemp | Soybean | Sao Paulo, Brazil | [27] | |
Improve soil structure | Hairy vetch; sunnhemp; soybean | Winter wheat and grain sorghum | Kansas, USA | [25] |
Calopo (Calopogonio muconoides), sunn hemp, sorghum, pigeon pea (Cajanus cajan) and jack bean (Canavalia ensiformis) with sorghum | Papaya (Carica papaya) | Bahia, Brazil | [28] | |
Spring barley (Hordeum vulgare), cereal rye, and annual ryegrass (Lolium multiflorum) | Not specified | British Columbia, Canada | [29] | |
Improve water infiltration | Black oat (Avena strigose) | Tomato (Solanum lycopersicum) | Uraguay | [30] |
Winter wheat | Silage maize | California, USA | [31] | |
Bromegrass (Bromus inermis), resident vegetation, and strawberry clover (Trifolium fragiferum) | Not specified | California, USA | [32] | |
Improve soil moisture retention | Forage radish; rapeseed; cereal rye | Maize | Maryland, USA | [26] |
Cereal rye, winter barley (Hordeum vulgare), triticale (x Triticosecale spp.), hairy vetch, Austrian winter pea (Pisum sativum) | Soybean | Wisconsin, USA | [33] | |
Cereal rye and hairy vetch | Maize | Illinois, USA | [34] | |
Increase soil organic matter and soil carbon | Cereal rye and hairy vetch, alone and in mixtures | Cotton (Gossypium hirsutum) and sorghum (Sorghum bicolor) | Georgia, USA | [35] |
Guinea grass (Panicum maximum), Congo grass (Brachiaria ruziziensis), palisade grass (Brachiaria brizantha), and pearl millet (Pennisetum glaucum) | Rice (Oryza sativa) | Santo Antônio de Goiás, Brazil | [36] | |
Cereal rye and hairy vetch, rye/vetch combination | Maize | Massachusetts, USA | [37] | |
Enhance nitrogen fixation | Brown mustard (Brassica hirta) | Potato (Solanum tuberosum) | Washington, USA | [38] |
Hairy vetch | Tomato | Maryland, USA | [39] | |
Hairy vetch, sunnhemp, soybeans | [25] | |||
Increase microbial activity | Oat and common vetch (Vicia sativa) | Green beans (Phaseolus vulgaris) | Oregon, USA | [40] |
Hariy vetch and cereal rye | Tomato | Maryland, USA | [41] | |
Oat; hairy vetch; winter canola (Brassica napus); cover crop mixture 1 (cowpea (Vigna sinensis, V. unguiculata), winter pea (Pisum sativum), millet (Pennisetum americanum), forage radish, turnip (Brassica rapa); cover crop mixture 2 (winter canola, forage oats/winter pea, crimson (Trifolium incarnatum)/alsike clover (Trifolium hybridum), field pea (Pisum sativum)/timothy (Phleum pretense), forage radish/field pea) | Wheat and oat | South Dakota, USA | [42] | |
Reduce erosion | White mustard (Sinapis alba), phacelia (Phacelia tanacetifoli), annual ryegrass (Lolium perenne), oats, cereal rye, forage radish | Not provided | Belgium | [43] |
Cereal rye and oat | Corn-soybean rotation | Iowa, USA | [44] | |
Sunn hemp; sorghum sudangrass; oats | Sugarcane (Saccharum officinarum) | Hawaii, USA | [45] | |
Reduce nutrient leaching and loss | Cereal rye and oat | Corn-soybean rotation | Iowa, USA | [46] |
Cereal rye | Lettuce (Latuca sativa) | California, USA | [47] | |
Phacelia and cereal rye | Broccoli (Brassica oleraceae) | California, USA | [48] | |
Meta-analysis | [18] | |||
Suppress weeds | Mustard (Sinapis alba), forage radish, and spring vetch (Vicia sativa); mixture 1 (spring vetch, forage radish, berseem clover (Trifolium alexandrinum); mixture 2 (field pea, lupin (Lupinus angustifolius), black oat (Avena strigose) berseem clover, phacelia, niger (Guizotia abyssinica) | - | Germany | [49] |
White mustard (Sinapis alba), oilseed radish, phacelia, tartary buckwheat (Fagopyrum tataricum), forage radish, red oat (Avena byzantine), grain amaranth (Amaranthus cruentus) | Wheat and barley (Hordeum vulgare) | Germany | [50] | |
Mustard (Sinapis alba) and Indian mustard (Brassica juncea) | Vegetables | Illinois, New York, and Michigan, USA | [51] | |
Enhance pollinator and beneficial habitat | Rapeseed, medium red clover (Trifolium pratense), Austrian winter pea (Pisum sativum subsp. arvense), and cereal rye; and a six species mix that included rapeseed, medium red clover Austrian winter pea, cereal rye, forage radish and oats | Corn-soybean-winter wheat rotation | Pennsylvania, USA | [52] |
Increase beneficial insects | Mustard (Brassica spp.) and buckwheat (Fagopyrum esculentum) | Broccoli | California, USA | [53] |
Tall fescue (Festuca arundinace) | Clementine mandarin (Citrus clementina) | Spain | [54] | |
Suppress soil disease and nematodes | Sunnhemp and sorghum sudangrass | Okra (Abelmoschus esculentus) | Florida, USA | [55] |
Sudangrass | Lettuce (Latuca sativa) | New York, USA | [56] | |
Cowpea, sunnhemp, pearl millet, sorghum sudangrass, alone and in a mixture | Tomato | Florida, USA | [57] |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, E.M.; Moore, V.M. Cover Crops as an Agroecological Practice on Organic Vegetable Farms in Wisconsin, USA. Sustainability 2017, 9, 55. https://doi.org/10.3390/su9010055
Silva EM, Moore VM. Cover Crops as an Agroecological Practice on Organic Vegetable Farms in Wisconsin, USA. Sustainability. 2017; 9(1):55. https://doi.org/10.3390/su9010055
Chicago/Turabian StyleSilva, Erin M., and Virginia M. Moore. 2017. "Cover Crops as an Agroecological Practice on Organic Vegetable Farms in Wisconsin, USA" Sustainability 9, no. 1: 55. https://doi.org/10.3390/su9010055
APA StyleSilva, E. M., & Moore, V. M. (2017). Cover Crops as an Agroecological Practice on Organic Vegetable Farms in Wisconsin, USA. Sustainability, 9(1), 55. https://doi.org/10.3390/su9010055