Using Synergy between Water Limnology and Satellite Imagery to Identify Algal Blooms Extent in a Brazilian Amazonian Reservoir
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Survey Methodology
2.2.1. Phytoplankton Sampling and Analysis
2.2.2. Water Sampling and Analysis
2.2.3. Remote Sensing Data Processing
2.2.4. Chlorophyll-a Algorithm
2.2.5. Algal Blooms Extent
2.3. Performance Assessment
3. Results
3.1. Ecological, Spatial and Temporal Approaches
3.2. Optical, Spatial and Temporal Approaches
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Atmospheric Correction of the OLI Imagery
Appendix A.1. Chl-a Algorithm Processing Steps
Appendix A.2. Rayleigh Corrected Reflectance
References
- Johnson, N.; Revenga, C.; Echeverria, J. Managing water for people and nature. Science 2001, 292, 1071–1072. [Google Scholar] [CrossRef] [PubMed]
- Tundisi, J.G.; Tundisi, T.M. Limnology; CRC Press: São Paulo, Brazil, 2012. [Google Scholar]
- Mur, R.; Skulberg, O.M.; Utkilen, H. Cyanobacteria in the Environment: A Guide to Their Public Health Consequences, Monitoring and Management; Bartram, I.C.A.J., Ed.; WHO: London, UK, 1999; pp. 15–40. [Google Scholar]
- Lee, R.E. Phycology; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- De Figueiredo, D.R.; Azeiteiro, U.M.; Esteves, S.M.; Gonçalves, F.J.; Pereira, M.J. Microcystin-producing blooms—a serious global public health issue. Ecotoxicol. Environ. Saf. 2004, 59, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Chorus, I. Cyanotoxins: Occurrence, Causes, Consequences; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Sivonen, K.; Himberg, K.; Luukkainen, R.; Niemelä, S.; Poon, G.; Codd, G. Preliminary characterization of neurotoxic cyanobacteria blooms and strains from finland. Toxic. Assess. 1989, 4, 339–352. [Google Scholar] [CrossRef]
- Repavich, W.M.; Sonzogni, W.C.; Standridge, J.H.; Wedepohl, R.E.; Meisner, L.F. Cyanobacteria (blue-green algae) in wisconsin waters: Acute and chronic toxicity. Water Res. 1990, 24, 225–231. [Google Scholar] [CrossRef]
- Waxter, M.T. Analysis of Landsat Satellite Data to Monitor Water Quality Parameters in Tenmile Lake, Oregon. Master’s Thesis, Portland State University, Portland, OR, USA, 2014. [Google Scholar]
- Havens, K.E. Cyanobacteria blooms: Effects on aquatic ecosystems. In Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs; Springer: New York, NY, USA, 2008; pp. 733–747. [Google Scholar]
- Chorus, E.I.; Bartram, J. Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management; WHO: London, UK, 1999. [Google Scholar]
- Randolph, K.; Wilson, J.; Tedesco, L.; Li, L.; Pascual, D.L.; Soyeux, E. Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin. Remote Sens. Environ. 2008, 112, 4009–4019. [Google Scholar] [CrossRef]
- Backer, L.C. Cyanobacterial harmful algal blooms (cyanohabs): Developing a public health response. Lake Reserv. Manag. 2002, 18, 20–31. [Google Scholar] [CrossRef]
- Pitois, S.; Jackson, M.; Wood, B. Problems associated with the presence of cyanobacteria in recreational and drinking waters. Int. J. Environ. Health Res. 2000, 10, 203–218. [Google Scholar] [CrossRef]
- Giardino, C.; Pepe, M.; Brivio, P.A.; Ghezzi, P.; Zilioli, E. Detecting chlorophyll, secchi disk depth and surface temperature in a sub-alpine lake using landsat imagery. Sci. Total Environ. 2001, 268, 19–29. [Google Scholar] [CrossRef]
- Koponen, S.; Pulliainen, J.; Kallio, K.; Hallikainen, M. Lake water quality classification with airborne hyperspectral spectrometer and simulated meris data. Remote Sens. Environ. 2002, 79, 51–59. [Google Scholar] [CrossRef]
- Kallio, K.; Kutser, T.; Hannonen, T.; Koponen, S.; Pulliainen, J.; Vepsäläinen, J.; Pyhälahti, T. Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons. Sci. Total Environ. 2001, 268, 59–77. [Google Scholar] [CrossRef]
- Koponen, S.; Attila, J.; Pulliainen, J.; Kallio, K.; Pyhälahti, T.; Lindfors, A.; Rasmus, K.; Hallikainen, M. A case study of airborne and satellite remote sensing of a spring bloom event in the gulf of finland. Cont. Shelf Res. 2007, 27, 228–244. [Google Scholar] [CrossRef]
- Strömbeck, N.; Pierson, D.C. The effects of variability in the inherent optical properties on estimations of chlorophyll a by remote sensing in swedish freshwaters. Sci. Total Environ. 2001, 268, 123–137. [Google Scholar] [CrossRef]
- Thiemann, S.; Kaufmann, H. Lake water quality monitoring using hyperspectral airborne data—A semiempirical multisensor and multitemporal approach for the mecklenburg lake district, germany. Remote Sens. Environ. 2002, 81, 228–237. [Google Scholar] [CrossRef]
- Schalles, J.F.; Yacobi, Y.Z. Remote detection and seasonal patterns of phycocyanin, carotenoid and chlorophyll pigments in eutrophic waters. Ergeb. Limnol. 2000, 55, 153–168. [Google Scholar]
- Dekker, A.G. Detection of Optical Water Quality Parameters for Eutrophic Waters by High Resolution Remote Sensing. Ph.D. Thesis, Vrije Universiteit, Amsterdam, The Netherland, 1993. [Google Scholar]
- Qi, L.; Hu, C.; Duan, H.; Cannizzaro, J.; Ma, R. A novel meris algorithm to derive cyanobacterial phycocyanin pigment concentrations in a eutrophic lake: Theoretical basis and practical considerations. Remote Sens. Environ. 2014, 154, 298–317. [Google Scholar] [CrossRef]
- Hunter, P.D.; Tyler, A.N.; Gilvear, D.J.; Willby, N.J. Using remote sensing to aid the assessment of human health risks from blooms of potentially toxic cyanobacteria. Environ. Sci. Technol. 2009, 43, 2627–2633. [Google Scholar] [CrossRef] [PubMed]
- Simis, S.G.; Peters, S.W.; Gons, H.J. Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water. Limnol. Oceanogr. 2005, 50, 237–245. [Google Scholar] [CrossRef]
- Hunter, P.; Tyler, A.; Willby, N.; Gilvear, D. The spatial dynamics of vertical migration by microcystis aeruginosa in a eutrophic shallow lake: A case study using high spatial resolution time-series airborne remote sensing. Limnol. Oceanogr. 2008, 53, 2391–2406. [Google Scholar] [CrossRef]
- Hunter, P.; Gilvear, D.; Tyler, A.; Willby, N.; Kelly, A. Mapping macrophytic vegetation in shallow lakes using the compact airborne spectrographic imager (CASI). Aquat. Conserv. Mar. Freshw. Ecosyst. 2010, 20, 717–727. [Google Scholar] [CrossRef]
- Vincent, R.K.; Qin, X.; McKay, R.M.L.; Miner, J.; Czajkowski, K.; Savino, J.; Bridgeman, T. Phycocyanin detection from landsat tm data for mapping cyanobacterial blooms in lake erie. Remote Sens. Environ. 2004, 89, 381–392. [Google Scholar] [CrossRef]
- Sun, D.; Hu, C.; Qiu, Z.; Shi, K. Estimating phycocyanin pigment concentration in productive inland waters using landsat measurements: A case study in lake dianchi. Opt. Express 2015, 23, 3055–3074. [Google Scholar] [CrossRef] [PubMed]
- Potes, M.; Costa, M.J.; da Silva, J.C.B.; Silva, A.M.; Morais, M. Remote sensing of water quality parameters over alqueva reservoir in the south of portugal. Int. J. Remote Sens. 2011, 32, 3373–3388. [Google Scholar] [CrossRef]
- Woźniak, M.; Bradtke, K.; Darecki, M.; Krężel, A. Empirical model for phycocyanin concentration estimation as an indicator of cyanobacterial bloom in the optically complex coastal waters of the baltic sea. Remote Sens. 2016, 8, 212. [Google Scholar] [CrossRef]
- Ogashawara, I.; Li, L.; Moreno-Madriñán, M.J. Slope algorithm to map algal blooms in inland waters for landsat 8/operational land imager images. J. Appl. Remote Sens. 2017, 11, 012005. [Google Scholar] [CrossRef]
- Ogashawara, I.; de Alcântara, E.H.; Stech, J.L.; Tundisi, J.G. Cyanobacteria detection in guarapiranga reservoir (São Paulo state, Brazil) using landsat tm and etm+ images. Rev. Ambient. Água 2014, 9, 224–238. [Google Scholar] [CrossRef]
- Pahlevan, N.; Lee, Z.; Wei, J.; Schaaf, C.B.; Schott, J.R.; Berk, A. On-orbit radiometric characterization of oli (landsat-8) for applications in aquatic remote sensing. Remote Sens. Environ. 2014, 154, 272–284. [Google Scholar] [CrossRef]
- Torbick, N.; Corbiere, M. A Multiscale Mapping Assessment of Lake Champlain Cyanobacterial Harmful Algal Blooms. Int. J. Environ. Res. Public Health 2015, 12, 11560–11578. [Google Scholar] [CrossRef] [PubMed]
- Huang, J. Detecting the Spatial Patterns of Blue-Green Algae in Harsha Lake Using Landsat 8 Imagery. Master’s Thesis, East China Normal University, Shanghai, China, 2016. [Google Scholar]
- Tavares, M.D.R.M. Estrutura da Comunidade Microfitoplanctônica da Área de Influência da uhe de Tucuruí-Pará. Available online: http://repositorio.ufpa.br/jspui/handle/2011/6015 (accessed on 27 November 2017).
- Cunha, C.J.D.S. Variação Espacial e Temporal do Fitoplâncton do Reservatório da Usina Hidrelétrica de Tucuruí-Pará. Master’s Thesis, Universidade Federal do Pará, Belém, Brazil, 2013. [Google Scholar]
- International Ocean-Colour Coordinating Group (IOCCG). Ocean-Color Observations from a Geostationary Orbit; IOCCG: Dartmouth, NS, Canada, 2012; p. 110. [Google Scholar]
- Reynolds, C.S.; Huszar, V.; Kruk, C.; Naselli-Flores, L.; Melo, S. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 2002, 24, 417–428. [Google Scholar] [CrossRef]
- Tundisi, J.G.; Santos, M.A.; Menezes, C.F.S. Experience and Lessons Learned Brief—Lbmi Project—Tucurui Hydroelectric Power Plant; World Lake Database, International Lake Envrionment Committee Foundation (ILEC): Shiga, Japan, 2006. [Google Scholar]
- Da Costa Lobato, T.; Hauser-Davis, R.A.; de Oliveira, T.F.; Maciel, M.C.; Tavares, M.R.M.; da Silveira, A.M.; Saraiva, A.C.F. Categorization of the trophic status of a hydroelectric power plant reservoir in the brazilian amazon by statistical analyses and fuzzy approaches. Sci. Total Environ. 2015, 506–507, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Espíndola, E.L.G.; Matsumura-Tundisi, T.; Rietzler, A.C.; Tundisi, J.G. Spatial heterogeneity of the tucuruí reservoir (state of Pará, Amazonia, Brazil) and the distribution of zooplanktonic species. Rev. Bras. Biol. 2000, 60, 179–194. [Google Scholar] [CrossRef] [PubMed]
- Noernberg, M.A.; de Moraes Novo, E.M.L.; Krug, T. Radar system application for the management of aquatic plant infestation in reservoirs: Advantages and disadvantages. Bol. Ciênc. Geod. 1999, 5, 41–54. [Google Scholar]
- Ideflor-Bio. Reserva de Desenvolvimento Sustentável Alcobaça. Available online: http://ideflorbio.pa.gov.br/unidades-de-conservacao/regiao-administrativa-tucurui/reserva-de-desenvolvimento-sustentavel-alcobaca/ (accessed on 1 March 2017).
- De Sousa Brandao, I.L.; Mannaerts, C.M.; Saraiva, A.C.F. Seasonal variation of phytoplankton indicates small impacts of anthropic activities in a brazilian amazonian reserve. Ecohydrol. Hydrobiol. 2017, 17, 217–226. [Google Scholar] [CrossRef]
- Golterman, H.L.; Clymo, R.S.; Ohnstad, M.A.M. Methods for Physical and Chemical Analysis of Fresh Waters; Blackwell Scientific: Wageningen, The Netherlands, 1978. [Google Scholar]
- Utermöhl, H. Zur vervollkommnung der quantitativen phytoplankton-methodik. Mitt. Int. Ver. Theor. Angew. Limnol. 1958, 9, 1–38. [Google Scholar]
- Desikachary, T. Cyanophyta Indian Council of Agricultural Research New Delhi, India; Indian Council of Agricultural Research: New Delhi, India, 1959. [Google Scholar]
- Hillebrand, H.; Dürselen, C.-D.; Kirschtel, D.; Pollingher, U.; Zohary, T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 1999, 35, 403–424. [Google Scholar] [CrossRef]
- Wetzel, R.G.; Likens, G.E. Composition and biomass of phytoplankton. In Limnological Analyses; Wetzel, R.G., Likens, G.E., Eds.; Springer: New York, NY, USA, 2000; pp. 147–174. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2010. [Google Scholar]
- Kutser, T.; Pierson, D.C.; Kallio, K.Y.; Reinart, A.; Sobek, S. Mapping lake cdom by satellite remote sensing. Remote Sens. Environ. 2005, 94, 535–540. [Google Scholar] [CrossRef]
- Perkins, T.; Adler-Golden, S.; Matthew, M.W.; Berk, A.; Bernstein, L.S.; Lee, J.; Fox, M. Speed and accuracy improvements in flaash atmospheric correction of hyperspectral imagery. Opt. Eng. 2012, 51, 111707. [Google Scholar] [CrossRef]
- Gordon, H.R.; Wang, M. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with seawifs: A preliminary algorithm. Appl. Opt. 1994, 33, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Vanhellemont, Q.; Ruddick, K. Turbid wakes associated with offshore wind turbines observed with landsat 8. Remote Sens. Environ. 2014, 145, 105–115. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Advantages of high quality swir bands for ocean colour processing: Examples from landsat-8. Remote Sens. Environ. 2015, 161, 89–106. [Google Scholar] [CrossRef]
- Vermote, E.; Tanré, D.; Deuzé, J.; Herman, M.; Morcrette, J.; Kotchenova, S. Second simulation of a satellite signal in the solar spectrum-vector (6sv). Appl. Opt. 2006, 45, 6762–6774. [Google Scholar]
- Vanhellemont, Q.; Ruddick, K. Acolite for Sentinel-2: Aquatic Applications of MSI Imagery; Living Planet Symposium; Ouwehand, L., Ed.; ESA Communications: Noordwijk, The Netherlands, 2016. [Google Scholar]
- Franz, B.A.; Bailey, S.W.; Kuring, N.; Werdell, P.J. Ocean color measurements with the operational land imager on landsat-8: Implementation and evaluation in seadas. J. Appl. Remote Sens. 2015, 9, 096070. [Google Scholar] [CrossRef]
- USGS. Earth Explorer. Available online: http://earthexplorer.usgs.gov/ (accessed on 3 April 2017).
- Hu, C. A novel ocean color index to detect floating algae in the global oceans. Remote Sens. Environ. 2009, 113, 2118–2129. [Google Scholar] [CrossRef]
- Kirk, J.T.O. Light and Photosynthesis in Aquatic Ecosystems; Cambridge university press: Cambridge, UK, 1994; p. 509. [Google Scholar]
- Tundisi, J.G.; Matsumura-Tundisi, T.; Abe, D.S. Climate monitoring before and during limnological studies: A needed integration. Braz. J. Biol. 2007, 67, 795–796. [Google Scholar] [CrossRef] [PubMed]
- Curtarelli, M.P.; Ogashawara, I.; de Araújo, C.A.S.; Lorenzzetti, J.A.; Leão, J.A.D.; Alcântara, E.; Stech, J.L. Carbon dioxide emissions from tucuruí reservoir (Amazon Biome): New findings based on three-dimensional ecological model simulations. Sci. Total Environ. 2016, 551, 676–694. [Google Scholar] [CrossRef] [PubMed]
- Pettersson, L.H.; Pozdnyakov, D. Monitoring of haRmful Algal Blooms; Springer Science & Business Media: Chichester, UK, 2012. [Google Scholar]
- Tundisi, J.G.; Goldemberg, J.; Matsumura-Tundisi, T.; Saraiva, A.C.F. How many more dams in the amazon? Energy Policy 2014, 74, 703–708. [Google Scholar] [CrossRef]
- Chapman, D. Water Quality Assessment—A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring; CRC Press: New York, NY, USA, 2016. [Google Scholar]
- De Souza Cunha, E.D.; da Cunha, A.C.; da Silveira, A.M., Jr.; Faustino, S.M.M. Phytoplankton of two rivers in the eastern amazon: Characterization of biodiversity and new occurrences. Acta Bot. Bras. 2013, 27, 364–377. [Google Scholar] [CrossRef]
- Li, W.K.; McLaughlin, F.A.; Lovejoy, C.; Carmack, E.C. Smallest algae thrive as the arctic ocean freshens. Science 2009, 326, 539. [Google Scholar] [CrossRef] [PubMed]
- Kasprzak, P.; Padisák, J.; Koschel, R.; Krienitz, L.; Gervais, F. Chlorophyll a concentration across a trophic gradient of lakes: An estimator of phytoplankton biomass? Limnol. Ecol. Manag. Inland Waters 2008, 38, 327–338. [Google Scholar] [CrossRef]
- Felip, M.; Catalan, J. The relationship between phytoplankton biovolume and chlorophyll in a deep oligotrophic lake: Decoupling in their spatial and temporal maxima. J. Plankton Res. 2000, 22, 91–106. [Google Scholar] [CrossRef]
- Cunha, D.G.F.; do Carmo Calijuri, M.; Lamparelli, M.C. A trophic state index for tropical/subtropical reservoirs (Tsi Tsr). Ecol. Eng. 2013, 60, 126–134. [Google Scholar] [CrossRef]
- Vargas, S.R. Influência da Concentração de Nutrientes na Interação Entre Duas Espécies Fitoplanctônicas Isoladas do Reservatório de Itupararanga-SP. Master’s Thsis, Universidade de São Paulo, São Paulo, Brazil, 2012. [Google Scholar]
- Chorus, I.; Bartram, J. Toxic Cyanobacteria in Water; Taylor & Francis: London, UK, 2002. [Google Scholar]
- Sukenik, A.; Hadas, O.; Kaplan, A.; Quesada, A. Invasion of nostocales (cyanobacteria) to subtropical and temperate freshwater lakes—Physiological, regional, and global driving forces. Front. Microbiol. 2012, 3, 86. [Google Scholar] [CrossRef] [PubMed]
- Chenl, Y. Effects of PH on the Growth and Carbon Uptake of Marine Phytoplankton. Mar. Ecol. Prog. Ser. 1994, 109, 83–94. [Google Scholar] [CrossRef]
- Eichner, M.; Rost, B.; Kranz, S.A. Diversity of ocean acidification effects on marine n 2 fixers. J. Exp. Mar. Biol. Ecol. 2014, 457, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, Y.; Nakahara, H. The formation and degradation of cyanobacterium aphanizomenon flos-aquae blooms: The importance of ph, water temperature, and day length. Limnology 2005, 6, 1–6. [Google Scholar] [CrossRef]
- Reynolds, C.S. The Ecology of Phytoplankton; Cambridge University Press: New York, NY, USA, 2006. [Google Scholar]
- Ruddick, K.; Vanhellemont, Q.; Dogliotti, A.; Nechad, B.; Pringle, N.; Van der Zande, D. New Opportunities and Challenges for High Resolution Remote Sensing of Water Colour. In Proceedings of the Ocean Optics XXIII, Victoria, BC, Canada, 23–28 October 2016. [Google Scholar]
Band | Wavelength (nm) Range | GSD (m) |
---|---|---|
1 (Coastal/aerosol) | 433–453 | 30 |
2 (Blue) | 450–515 | 30 |
3 (Green) | 525–600 | 30 |
4 (Red) | 630–680 | 30 |
5 (NIR) | 845–885 | 30 |
6 (SWIR 1) | 1560–1660 | 30 |
7 (SWIR 2) | 2100–2300 | 30 |
8 (PAN) | 500–680 | 15 |
9 (CIRRUS) | 1360–1390 | 30 |
Characteristics | Severe Bloom (SB) | Moderate Bloom (MB) |
---|---|---|
Water surface layer | Characterized by a thick scum of algae | No scums but is visible in the surface layer |
Cyanobacteria counts (cell L−1) | ≥100,000 | 10,000–100,000 |
Toxins | Presence of cyanotoxin | |
Biovolume (mm3 L−1) | ≥10 | 1–10 |
Chl-a (µg L−1) | ≥50 | 5–10 |
SAred-NIR | >0.15 | −0.05–0.15 |
Estimator | Equations |
---|---|
MSE | |
MAPE | |
RMSE | |
bias | |
MNB |
Sites (Spatial Perspective) | Local Characteristics | Functional Groups (Ecological Perpective) |
---|---|---|
April to July | ||
M3 | River zone | P → B |
MPUC | Transition zone | M → B |
MBEL | Transition zone | G → NA |
MR | Transition zone | M |
M1 | Lake | M → F |
BB | Lake | P → B |
C1 | Lake | H1 → MP |
a. Dataset Measured on April 2016 at 7 Sites | |||||
Parameter | Min | Max | Average | SD | CV (%) |
DO (mg L−1) | 4.24 | 6.22 | 5.53 | 0.52 | 9.35 |
Temperature (°C) | 29.28 | 30.91 | 29.73 | 0.52 | 1.75 |
pH | 7.55 | 8.67 | 7.87 | 0.30 | 3.77 |
Suspended solids (mg L−1) | 0.20 | 3.00 | 1.43 | 1.00 | 69.80 |
Transparency (m) | 1.10 | 3.10 | 1.86 | 0.67 | 36.30 |
EC (µs/s) | 36.30 | 40.60 | 37.65 | 1.41 | 3.74 |
Nitrate (mg L−1) | 0.00 | 0.05 | 0.02 | 0.02 | 82.02 |
Ion ammonium (mg L−1) | 0.02 | 0.29 | 0.11 | 0.12 | 107.25 |
Phosphate (µg L−1) | 0.00 | 0.01 | 0.01 | 0.00 | 58.37 |
Silicate (mg L−1) | 1.90 | 5.01 | 4.04 | 1.08 | 26.79 |
Chl-a (mg m−3) | 2.34 | 58.54 | 13.44 | 14.78 | 110.00 |
b. Dataset Measured on July 2016 at 7 Sites | |||||
Parameter | Min | Max | Average | SD | CV (%) |
DO (mg L−1) | 4.62 | 7.14 | 5.57 | 0.82 | 14.78 |
Temperature (°C) | 29.54 | 31.60 | 30.55 | 0.68 | 2.22 |
pH | 6.97 | 7.20 | 7.07 | 0.07 | 1.04 |
Suspended solids (mg L−1) | 0.20 | 1.10 | 0.59 | 0.32 | 53.74 |
Transparency (m) | 1.60 | 4.50 | 2.50 | 0.85 | 33.81 |
EC (µs/s) | 13.00 | 41.30 | 26.26 | 10.12 | 38.54 |
Nitrate (mg L−1) | 0.01 | 0.44 | 0.16 | 0.15 | 90.49 |
Ion ammonium (mg L−1) | 0.02 | 0.47 | 0.16 | 0.13 | 77.26 |
Phosphate (mg L−1) | 0.00 | 0.06 | 0.01 | 0.02 | 132.64 |
Silicate (mg L−1) | 7.04 | 8.16 | 7.77 | 0.38 | 4.92 |
Chl-a (mg m−3) | 0.89 | 8.50 | 2.59 | 2.47 | 95.64 |
Parameter | RMSE (%) | MAPE (%) | Bias | MNB (%) |
---|---|---|---|---|
Chl-a (mg m−3) | 40 | 31.97 | 0.37 | 13.46 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Sousa Brandão, I.L.; Mannaerts, C.M.; Verhoef, W.; Saraiva, A.C.F.; Paiva, R.S.; Da Silva, E.V. Using Synergy between Water Limnology and Satellite Imagery to Identify Algal Blooms Extent in a Brazilian Amazonian Reservoir. Sustainability 2017, 9, 2194. https://doi.org/10.3390/su9122194
De Sousa Brandão IL, Mannaerts CM, Verhoef W, Saraiva ACF, Paiva RS, Da Silva EV. Using Synergy between Water Limnology and Satellite Imagery to Identify Algal Blooms Extent in a Brazilian Amazonian Reservoir. Sustainability. 2017; 9(12):2194. https://doi.org/10.3390/su9122194
Chicago/Turabian StyleDe Sousa Brandão, Isabel Leidiany, Chris M. Mannaerts, Wouter Verhoef, Augusto César Fonseca Saraiva, Rosildo S. Paiva, and Elidiane V. Da Silva. 2017. "Using Synergy between Water Limnology and Satellite Imagery to Identify Algal Blooms Extent in a Brazilian Amazonian Reservoir" Sustainability 9, no. 12: 2194. https://doi.org/10.3390/su9122194
APA StyleDe Sousa Brandão, I. L., Mannaerts, C. M., Verhoef, W., Saraiva, A. C. F., Paiva, R. S., & Da Silva, E. V. (2017). Using Synergy between Water Limnology and Satellite Imagery to Identify Algal Blooms Extent in a Brazilian Amazonian Reservoir. Sustainability, 9(12), 2194. https://doi.org/10.3390/su9122194