Integral Management of Irrigation Water in Intensive Horticultural Systems of Almería
Abstract
:1. Introduction
2. Current Status of Conventional Water Resources
3. Sustainable Technological Adaptation Trends
3.1. Water Use Efficiency Improvements in Almería
3.1.1. Automated Fertigation Systems
3.1.2. Localized Irrigation Systems
3.1.3. Tensiometers
3.2. Complementary Sustainable Systems
3.2.1. Recirculation
3.2.2. Cascade Cropping Systems
3.2.3. Phytodepuration
4. Alternative Water Resources in Almería
4.1. Desalinated Water
4.2. Reclaimed Water
4.3. Integral Management of Water Resources
4.4. Water Balances Including Alternative Water Resources
4.5. Economic Study of Water Resources
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
COD | Chemical oxygen demand |
EC | Electrical conductivity |
EEA | European Environment Agency |
IFDM | Integrated Farm Drainage Management |
RO | Reverse osmosis |
SBC | Serial Biological Concentration |
TOC | Total organic carbon |
WUE | Water use efficiency |
References
- CAPDR. Cartografía de Invernaderos en Almería, Granada y Málaga; Consejeria de Agricultura, Pesca y Desarrollo Rural: Andalucia, Spain, 2017.
- Contreras, J.I.; Plaza, B.M.; Lao, M.T.; Segura, M.L. Growth and nutritional response of melon to water quality and nitrogen and potassium levels under greenhouse Mediterranean conditions. Commun. Soil Sci. Plant Anal. 2012, 43, 434–444. [Google Scholar] [CrossRef]
- Cabrera, A.; Ucles, D.; Aguera, T.; de la Cruz, E. Análisis de la Campaña Hortofrutícola de Almería Campaña 2015/2016; Cajamar Caja Rural: Almería, Spain, 2016. [Google Scholar]
- Langle, G. Diagnosis for the Design and Implementation of a Crisis Manual in the Horticultural Export Industry of Almería. Master’s Thesis, University of Almería, Almería, Spain, 2012; 66p. [Google Scholar]
- Castilla, N.; Baeza, E.J.; Papadopulos, A.P. Greenhouse Technology and Management, 2nd ed.; CAB International: Oxfordshire, UK, 2013. [Google Scholar]
- Montero, J.I.; Teitel, M.; Baeza, E.; Lopez, J.C.; Kacira, M. Greenhouse design and covering materials. In Good Agricultural Practices for Greenhouse Vegetable crops: Principles for Mediterranean Climate Areas; Paper 217; FAO, Plant Production and Protection: Rome, Italy, 2013; pp. 35–62. [Google Scholar]
- Nisen, A.; Grafiadellis, M.; Jiménez, R.; La Malfa, G.; Martínez-García, P.F.; Monteiro, A.; Verlodt, H.; Villele, O.; Zabeltitz, C.H.; Denis, J.C.; et al. Cultures Protegees en Climat Mediterraneen; FAO: Rome, Italy, 1988; 335p, ISBN 92-5-202719-X. [Google Scholar]
- Tolón, A.; Lastra, X. La agricultura intensiva del poniente almeriense. Diagnóstico e instrumentos de gestión ambiental. Revista Electrónica de Medio Ambiente 2010, 8, 18–40. [Google Scholar]
- AGAPA. Caracterización de los Invernaderos de Andalucía; Agencia de Gestión Agraria y Pesquera de Andalucía: Andalucia, Spain, 2015.
- Muñoz, I.; Gómez, M.M.; Fernandez-Alba, A.R. Life cycle assessment of biomass production in a Mediterranean greenhouse using different water sources: Groundwater, treated wastewater and desalinated seawater. Agric. Syst. 2010, 103, 1–9. [Google Scholar] [CrossRef]
- Gallardo, M.; Thompson, R.B.; Rodriguez, J.S.; Rodriguez, F.; Sanchez, J.A.; Magan, J.J. Simulation of transpiration, drainage, N uptake, nitrate leaching, and N uptake concentration in tomato grown in open substrate. Agric. Water Manag. 2012, 96, 1773–1784. [Google Scholar] [CrossRef]
- Granados, M.R.; Thompson, R.B.; Fernandez, M.D.; Martinez-Gaitan, C.; Gallardo, M. Prescriptive-corrective nitrogen and irrigation management of fertigated and drip-irrigated vegetable crops using modelling and monitoring approaches. Agric. Water Manag. 2013, 119, 121–134. [Google Scholar] [CrossRef]
- CMAOT. Plan Hidrológico 2015. Ciclo de Planificación Hidrológica 2015/2021. Demarcación Hidrográfica de las Cuencas Mediterráneas Andaluzas; Consejería Medio Ambiente y Ordenación del Territorio, Gobierno de España: Madrid, Spain, 2015.
- Downward, S.R.; Taylor, R. An assessment of Spain’s Programa AGUA and its implications for sustainable water management in the province of Almería, southeast Spain. J. Environ. Manag. 2007, 82, 277–289. [Google Scholar] [CrossRef] [PubMed]
- IGME. Mapa hidrológico de España; Instituto Geográfico y Minero de España: Madrid, Spain, 1998. [Google Scholar]
- Dukes, M.D.; Zotarelli, L.; Morgan, K.T. Use of irrigation technologies for vegetable crops in Florida. HortTechnology 2010, 20, 133–142. [Google Scholar]
- Montesano, F.F.; Serio, F.; Mininni, C.; Signore, A.; Parente, A.; Santamaria, P. Tensiometer-based irrigation management of subirrigated soilless tomato: Effects of substrate matric potential control on crop performance. Front. Plant Sci. 2015, 6, 1150. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.R.; Kumar, R.; Ram, H.; Yadav, V.; Yadav, B. Fertigation: An efficient technique for achieving high nutrient use efficiency in crop production system. Marumegh 2017, 2, 2017. [Google Scholar]
- Incrocci, L.; Massa, D.; Pardossi, A. New trends in the fertigation management of irrigated vegetable crops. Horticulturae 2017, 3, 37. [Google Scholar] [CrossRef]
- Romero, R.; Muriel, J.L.; García, I.; Muñoz de la Peña, D. Research on automatic irrigation control: State of the art and recent results. Agric. Water Manag. 2012, 114, 59–66. [Google Scholar] [CrossRef]
- Sunny, C.S.A.C.; Hakkim, V.M.A. Fertigation automation system for poly houses. Int. J. Eng. Sci. Comput. 2016, 6, 3061–3067. [Google Scholar]
- Gallardo, M.; Thompson, R.; Rodriguez, J.; Rodriguez, F.; Fernandez, M.; Sanchez, J.; Magan, J. Simulation of transpiration, drainage, N uptake, nitrate leaching, and N uptake concentration in tomato grown in open substrate. Agric. Water Manag. 2009, 96, 1773–1784. [Google Scholar] [CrossRef]
- García-García, M.C.; Céspedes, A.J.; Lorenzo, P.; Pérez-Parra, J.J.; Escudero, M.C.; Sánchez-Guerrero, M.C.; Medrano, E.; Baeza, E.; López, J.C.; Magán, J.J.; et al. El Sistema de Producción Hortícola de la Provincia de Almería; IFAPA (Instituto de Formación Agraria y Pesquera de Andalucía): Huelva, Spain, 2016; 179p. [Google Scholar]
- Morales, I.; Urrestarazu, M. Effect of a passive mixing device on the electrical conductivity and ph values of a nutrient solution. J. Irrig. Drain. Eng. 2014, 140. [Google Scholar] [CrossRef]
- Urrestarazu, M.; Morales, I.; La Malfa, T.; Checa, R.; Wamser, A.F.; Alvaro, J.E. Effects of fertigation duration on the pollution, water consumption, and productivity of soilless vegetable cultures. HortScience 2015, 50, 819–825. [Google Scholar]
- Rodriguez, D.; Reca, J.; Martinez, J.; Urrestarazu, M. New adaptive hybrid-automatic irrigation control system for soilless culture. J. Irrig. Drain. Eng. 2015, 141, 7. [Google Scholar] [CrossRef]
- Céspedes, A.J.; García, M.C.; Pérez-Parra, J.J.; Cuadrado, I.M. Caracterización de la Explotación Hortícola Protegida Almeriense; Fundación para la Investigación Agraria en la Provincia de Almería (FIAPA): Almería, Spain, 2009. [Google Scholar]
- Barbieri, G.; Maggio, A. Microirrigation. In Good Agricultural Practices for Greenhouse Vegetable Crops. Principles for Mediterranean Climate Areas; Paper 217; FAO, Plant Production and Protection: Rome, Italy, 2013; pp. 149–168. [Google Scholar]
- De Pascale, S.; Barbieri, G.; Rouphael, Y.; Gallardo, M.; Orsini, F.; Pardossi, A. Good Agricultural Practices for Greenhouse Vegetable Production in the South East European countries. In Principles for Sustainable Intensification of Smallholder Farms. 3. Irrigation Management: Challenges and Opportunities; Paper 230; FAO, Plant Production and Protection: Rome, Italy, 2017; pp. 79–105. [Google Scholar]
- Fernandez, M.D.; Gonzalez, A.M.; Carreño, J.; Perez, C.; Bonachela, S. Analysis of on-farm irrigation performance in Mediterranean greenhouses. Agric. Water Manag. 2007, 89, 251–260. [Google Scholar] [CrossRef]
- Alcon, F.; de Miguel, M.D.; Burton, M. Duration analysis of adoption of drip irrigation technology in southeastern Spain. Technol. Forecast. Soc. Chang. 2011, 78, 991–1000. [Google Scholar] [CrossRef]
- Tarjuelo, J.M.; Rodriguez-Diaz, J.A.; Abadia, R.; Camacho, E.; Rocamora, C.; Moreno, M.A. Efficient water and energy use in irrigation modernization: Lessons from Spanish case studies. Agric. Water Manag. 2015, 162, 67–77. [Google Scholar] [CrossRef]
- Sanchez, J.A.; Reca, J.; Martinez, J. Irrigation water management in a Mediterranean greenhouse district: Irrigation adequacy assessment. Irrig. Drain. 2015, 64, 299–313. [Google Scholar] [CrossRef]
- Van Iersel, M.W.; Chappell, M.; Lea-Cox, J.D. Sensors for improved efficiency of irrigation in greenhouse and nursery production. HortTechnology 2013, 23, 735–746. [Google Scholar]
- Gallardo, M.; Thompson, R.B.; Fernandez, M.D. Good Agricultural Practices for Greenhouse Crop Vegetable Crops: Principles for Mediterranean Climate Areas. 6. Water Requirements and Irrigation Management in Mediterranean Greenhouses: The Case of the Southeast Coast of Spain; Paper 217; FAO, Plant Production and Protection Production: Rome, Italy, 2013; pp. 109–136. [Google Scholar]
- Van Iersel, M.W. Modern strategies for irrigation management in protected environments. In Modern Technologies, Strategies and Tools for Sustainable Irrigation Management and Governance in Mediterranean Agriculture (IrriMed 2015); Montesano, F.F., Parente, A., Lamaddalena, N., Todorovic, M., Trotta, L., Eds.; Proceedings—Book of Abstracts; CIHEAM: Valenzano, Italy, 2015; pp. 127–130. [Google Scholar]
- Bhatt, R.; Arora, S.; Chew, C.C. Improving irrigation water productivity using tensiometers. J. Soil Water Conserv. 2016, 15, 120–124. [Google Scholar]
- Buttaro, D.; Santamaria, P.; Signore, A.; Cantore, V.; Boari, F.; Montesano, F.F.; Parente, A. Irrigation management of greenhouse tomato and cucumber using tensiometer: Effects on yield, quality and water use. Agric. Sci. Procedia 2015, 4, 440–444. [Google Scholar] [CrossRef]
- Létourneau, G.; Caron, J.; Anderson, L.; Cormier, J. Matric potential-based irrigation management of field-grown strawberry: Effects on yield and water use efficiency. Agric. Water Manag. 2015, 161, 102–113. [Google Scholar] [CrossRef]
- Lao, M.T.; Jiménez, S. Leaching of nutrients in greenhouse cultivation of tomato crop in the Mediterranean area under different fertirrigation managements. J. Food Agric. Environ. 2004, 2, 370–375. [Google Scholar]
- Thompson, R.B.; Gallardo, M.; Valdez, L.C.; Fernández, M.D. Using plant water status to define threshold values for irrigation management of vegetable crops using soil moisture sensors. Agric. Water Manag. 2007, 88, 147–158. [Google Scholar] [CrossRef]
- Gonzalez, A.M.; Bonachela, S.; Fernandez, M.D. Regulated deficit irrigation in green bean and watermelon greenhouse crops. Sci. Hortic. 2009, 122, 527–531. [Google Scholar] [CrossRef]
- Jimenez, S.; Plaza, B.M.; Segura, M.L.; Lao, M.T. Improve water and nutrient efficiency in tomato crop by a dynamic fertigation management under saline conditions. Commun. Soil Sci. Plant Anal. 2012, 43, 258–264. [Google Scholar] [CrossRef]
- Contreras, J.I.; Alonso, F.; Cánovas, G.; Baeza, R. Irrigation management of greenhouse zucchini with different soil matric potential level. Agronomic and environmental effects. Agric. Water Manag. 2017, 183, 26–34. [Google Scholar] [CrossRef]
- Lao, M.T. Leaching in greenhouses cultivation. In Crops: Growth, Quality and Biotechnology; WFL Publisher Science and Technology: Helsinki, Finland, 2005; pp. 406–431. [Google Scholar]
- Plaza, B.M.; Soriano, F.; Jiménez-Becker, S.; Lao, M.T. Nutritional responses of Cordyline fruticosa var. “Red Edge” to fertigation with leachates vs. conventional fertigation: Chloride, nitrogen, phosphorus and sulphate. Agric. Water Manag. 2016, 173, 61–66. [Google Scholar] [CrossRef]
- Plaza, B.M.; Paniagua, F.; Ruiz, R.; Jiménez-Becker, S.; Lao, M.T. Nutritional responses of Cordyline fruticosa var. “Red Edge” to fertigation with leachates vs. conventional fertigation: Sodium, potassium, calcium and magnesium. Sci. Hortic. 2017, 215, 157–163. [Google Scholar] [CrossRef]
- García-Caparrós, P.; Llanderal, A.; Rodríguez, J.C.; Maksimovic, I.; Urrestarazu, M.; Lao, M.T. Rosemary growth and nutrient balance in response to leachates vs conventional fertigation. Sci. Hortic. 2017. under minor revision. [Google Scholar]
- Savvas, D.; Gianquinto, G.; Tuzel, Y.; Gruda, N. Good Agricultural Practices for Greenhouse Vegetable Crops, Principles for Mediterranean Climate Areas. 12. Soilless Culture; Paper 217; FAO, Plant Production and Protection: Rome, Italy, 2013; pp. 303–354. [Google Scholar]
- Putra, P.A.; Yuliando, H. Soilless culture system to support water use efficiency and product quality: A review. Agric. Agric. Sci. Procedia 2015, 3, 283–288. [Google Scholar] [CrossRef]
- Grafiadellis, I.; Mattas, K.; Maloupa, E.; Tzouramani, I.; Galanopoulos, K. An economic analysis of soilless culture in Gerbera production. HortScience 2000, 35, 300–303. [Google Scholar]
- Raviv, M.; Lieth, J.H. Significance of soilless cultivation in agriculture. In Soilless Culture: Theory and Practice; Academic Press: San Diego, CA, USA, 2008; pp. 1–11. [Google Scholar]
- Nejad, A.R.; Ismaili, A. Changes in growth, essential oil yield and composition of geranium (Pelargonium graveolens L.) as affected by growing media. J. Sci. Food Agric. 2014, 94, 905–910. [Google Scholar] [CrossRef] [PubMed]
- van Os, E. Closed soilless growing systems: a sustainable solution for Dutch greenhouse horticulture. Water Sci. Technol. 1999, 39, 105–112. [Google Scholar]
- Savvas, D. Nutrient solution recycling. In Hydroponic Production of Vegetables and Ornamentals; Embryo Publications: Athens, Greece, 2002; pp. 299–343. [Google Scholar]
- Vox, G.; Teitel, M.; Pardossi, A.; Minuto, A.; Tinivella, F.; Schettini, E. Agriculture: technology, planning and management. In Sustainable Greenhouse Systems; Salazar, A., Rios, I., Eds.; Nova Science Publishers: New York, NY, USA, 2010; pp. 1–79. [Google Scholar]
- Ahmed, A.K.; Cresswell, G.C.; Haigh, A.M. Comparison of sub-irrigation and overhead irrigation of tomato and lettuce seedlings. J. Hortic. Sci. 2000, 75, 350–354. [Google Scholar] [CrossRef]
- Pardossi, A.; Malorgio, F.; Incrocci, L.; Tognoni, F. Hydroponic technologies for greenhouse crops. In Crops: Quality, Growth and Biotechnology; Dris, R., Ed.; WFL Publisher: Helsinki, Finland, 2006; pp. 360–378. [Google Scholar]
- Burrage, S.W. Soilless Culture and Water Use Efficiency for Greenhouses in Arid, Hot Climates. 2014. Available online: http://ftp.cgiar.org/icarda/APRP/APRP_2/html/Publications/Right/PrWS/WUE.pdf (accessed on 3 September 2017).
- Urrestarazu, M.; Mazuela, P.C.; Boukhalfa, A.; Arán, A.; Salas, M.C. Oxygen content and its diurnal variation in a new recirculanting water soilless culture for horticultural crops. HortScience 2005, 40, 1729–1730. [Google Scholar]
- Magán, J.J.; Gallardo, M.; Thompson, R.B.; Lorenzo, P. Effects of salinity on fruit yield and quality of tomato grown in soil-less culture in greenhouses in Mediterranean climatic conditions. Agric. Water Manag. 2008, 95, 1041–1055. [Google Scholar] [CrossRef]
- Rodríguez, D.; Reca, J.; Martínez, J.; Urrestarazu, M. Automatic irrigation control system for soilless culture based on feedback from drainage hydrograph. Appl. Eng. Agric. 2017, 33, 531–542. [Google Scholar] [CrossRef]
- Ayars, J.E.; Basinal, L. A Technical Advisor’s Manual. Managing Agricultural Irrigation Drainage Water: A Guide for Developing Integrated On-Farm Drainage Management Systems; Westside Resources Conservation District and Center for Irrigation Technology, California State University: Fresno, CA, USA, 2005. [Google Scholar]
- Nichols, M.D.; Davis, G.; Spear, M. San Joaquin Valley Drainage Monitoring Program 1999; District Report of The Resources Agency; Department of Water Resources San Joaquin District: Red Bluff, CA, USA, 2003.
- Khan, S.; Abbas, A.; Blackwell, J.; Gabriel, H.F.; Ahmad, A. Hydrogeological assessment of serial biological concentration of salts to manage saline drainage. Agric. Water Manag. 2007, 92, 64–72. [Google Scholar] [CrossRef]
- Cervinka, V.A. Farming System for the Management of Salt and Selenium on Irrigated Land (Agroforestry); California Department of Food and Agriculture Resources Branch: Sacramento, CA, USA, 1990.
- Linneman, C.; Falaschi, A.; Oster, J.D.; Kaffka, S.; Benes, S. Drainage reuse by grassland area farmers: The road to zero discharge. In Groundwater Issues and Water Management—Strategies Addressing the Challenges of Sustainability, Proceedings of the USCID Water Management Conference, Sacramento, CA, USA, 4–7 March 2014; Macauley, S., Thoreson, B.P., Anderson, S.S., Eds.; USCID: Bartlett, TN, USA; pp. 65–78.
- Su, N.; Bethune, M.; Mann, L.; Heuperman, A. Simulating water and salt movement in tile-drained fields irrigated with saline water under a Serial Biological Concentration management scenario. Agric. Water Manag. 2005, 78, 165–180. [Google Scholar] [CrossRef]
- Plaza, B.M. Study of the Feasibility of Leachates Reuse for Ornamental Plants Production, within the Framework of a Sustainable Production. Ph.D. Thesis, University of Almería, Almería, Spain, 2013. [Google Scholar]
- García-Caparrós, P.; Llanderal, A.; El-Tarawy, A.; Maksimovic, I.; Lao, M.T. Crop and irrigation management systems under greenhouse conditions. Water 2017. under review. [Google Scholar]
- Huang, C.; Zeng, P.; Yang, S.; Shao, Y.; Liu, Y. Water reclamation and reuse. Water Environ. Res. 2016, 88, 1261–1278. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, N. Integrated system of phytodepuration for agro-industrial waste water—An ecofriendly technology. Recent Res. Sci. Technol. 2013, 5, 100–102. [Google Scholar]
- Andreo-Martínez, P.; García-Martínez, N.; Quesada-Medina, J.; Almela, L. Domestic wastewaters reuse reclaimed by an improved horizontal subsurface-flow constructed wetland: A case study in the southeast of Spain. Bioresour. Technol. 2017, 233, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J. Constructed wetlands for wastewater treatment. Water 2010, 2, 530–549. [Google Scholar] [CrossRef]
- Fonder, N.; Headley, T. Systematic classification, nomenclature and reporting for constructed treatment wetlands. In Water and Nutrient Management in Natural and Constructed Wetlands; Vymazal, J., Ed.; Springer: Dordrecht, The Netherlands, 2010; pp. 191–219. [Google Scholar]
- Vymazal, J. Emergent plants used in free water surface constructed wetlands: A review. Ecol. Eng. 2013, 61, 582–592. [Google Scholar] [CrossRef]
- Abou-Elela, S.I.; Hellal, M.S. Municipal wastewater treatment using vertical flow constructed wetlands planted with Canna, Phragmites and Cyprus. Ecol. Eng. 2012, 47, 209–213. [Google Scholar] [CrossRef]
- Zhang, D.Q.; Jinadasa, K.B.S.N.; Gersberg, R.M.; Liu, Y.; Jern, W.; Keat-Tan, S. Application of constructed wetlands for wastewater treatment in developing countries: A review of recent developments (2000–2013). J. Environ. Manag. 2014, 141, 116–131. [Google Scholar] [CrossRef] [PubMed]
- Malaviya, P.; Singh, A. Constructed wetlands for management of urban stormwater runoff. Crit. Rev. Environ. Sci. Technol. 2012, 42, 2153–2214. [Google Scholar] [CrossRef]
- Avila, C.; Salas, J.J.; Martin, I.; Aragon, C.; García, J. Integrated treatment of combined sewer wastewater and stormwater in a hybrid constructed wetland system in southern Spain and its further reuse. Ecol. Eng. 2013, 50, 13–20. [Google Scholar] [CrossRef]
- Ballantine, D.J.; Tanner, C.H. Substrate and filter materials to enhance phosphorus removal in constructed wetlands treating diffuse farm runoff: A review. N. Z. J. Agric. Res. 2010, 53, 71–95. [Google Scholar] [CrossRef]
- Diaz, F.; O’Geen, A.T.; Dahlgren, R.A. Agricultural pollutant removal by constructed wetlands: Implications for water management and design. Agric. Water Manag. 2012, 104, 171–183. [Google Scholar] [CrossRef]
- Dordio, A.; Carvalho, A.J.P. Constructed wetlands with light expanded clay aggregates for agricultural wastewater treatment. Sci. Total Environ. 2013, 463, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J.; Brezinová, T. The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: A review. Environ. Int. 2015, 75, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Tournebize, J.; Chaumont, C.; Mander, U. Implications for constructed wetlands to mitigate nitrate and pesticide pollution in agricultural drained watersheds. Ecol. Eng. 2017, 103, 415–425. [Google Scholar] [CrossRef]
- García-Caparrós, P.; Llanderal, A.; El-Tarawy, A.; Correia, P.J.; Pestana, M.; Lao, M.T. Irrigation with drainage solutions improves the growth and nutrients uptake in Juncus acutus. Ecol. Eng. 2016, 95, 237–244. [Google Scholar] [CrossRef]
- Morillo, J.; Usero, J.; Rosado, D.; El Bakouri, H.; Riaza, A.; Bernaola, F.J. Comparative study of brine management technologies for desalination plants. Desalination 2014, 336, 32–49. [Google Scholar] [CrossRef]
- Wada, Y.; Bierkens, M.F. Sustainability of global water use: past reconstruction and future projections. Environ. Res. Lett. 2014, 9, 104003. [Google Scholar] [CrossRef]
- Greenlee, L.F.; Lawler, D.F.; Freeman, B.D.; Marrot, B.; Moulin, P. Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Res. 2009, 43, 2317–2348. [Google Scholar] [CrossRef] [PubMed]
- David, B.; Pinot, J.P.; Morrillon, M. Beach wells for large-scale reserve osmosis reverse: The Sur case study. In IDA World Congress-Atlantis; The Palm: Dubai, UAE, 2009. [Google Scholar]
- Sola, F.; Vallejos, A.; López-Geta, J.A.; Pulido-Bosch, A. The role of aquifer media in improving the quality of seawater feed to desalination plants. Water Resour. Manag. 2013, 27, 1377–1392. [Google Scholar] [CrossRef]
- Peters, T.; Pintó, D. Seawater intake and pre-treatment/brine discharge: environmental issue. Desalination 2008, 221, 576–584. [Google Scholar] [CrossRef]
- Anderson, D.J.; Timms, W.A.; Glamore, W.C. Optimising subsurface well design for coastal desalination water harvesting. Aust. J. Earth Sci. 2009, 56, 53–60. [Google Scholar] [CrossRef]
- Pulido-Bosch, A.; Vallejos, A.; Sola, F. Reflexiones Sobre las Plantas Desaladoras de Andalucía; Instituto Geológico y Minero de España: Madrid, Spain, 2015.
- Roberts, D.A.; Johnston, E.L.; Knott, N.A. Impacts of desalination plant discharges on the marine environment: a critical review of published studies. Water Res. 2010, 44, 5117–5128. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, A.; Diaz-Anadon, L. The water-energy nexus in Middle East and North Africa. Energy Policy 2011, 39, 4529–4540. [Google Scholar] [CrossRef]
- Domènech, L.; March, H.; Saurí, D. Degrowth initiatives in the urban water sector? A social multi-criteria evaluation of non-conventional water alternatives in Metropolitan Barcelona. J. Clean. Prod. 2013, 38, 44–55. [Google Scholar] [CrossRef]
- Zarzo, D.; Campos, E.; Terrero, P. Spanish experience in desalination for agriculture. Desalin. Water Treat. 2013, 51, 53–66. [Google Scholar] [CrossRef]
- Valera, D.L.; Marín, P.; Camacho, F.; Belmonte, L.J.; Molina, F.; López, A. Captación de Datos de Campo y Análisis Para la Toma de Decisiones Sobre el Consumo de Agua, Desalada y de Pozos Para los Cultivos de Tomate, Sandía y Pimiento; I Jornadas de Transferencia Hortofruticola de CIAMBITAL: Almería, Spain, 2017; pp. 103–138. [Google Scholar]
- Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; Valera, D.L. Perceptions and acceptance of desalinated seawater for irrigation: A case study in the Níjar district (Southeast Spain). Water 2017, 9, 408. [Google Scholar] [CrossRef]
- Papadopoulos, I.; Savvides, S. Optimisation of the use of nitrogen in the treated wastewater reused for irrigation. Water Sci. Technol. Water Supply 2003, 3, 217–221. [Google Scholar]
- Rodriguez-Manzano, J.; Alonso, J.L.; Ferrús, M.A.; Moreno, Y.; Amorós, I.; Calgua, B.; Hudesa, A.; Guerrero-Latorre, L.; Carratala, A.; Rusiñol, M.; et al. Standard and new faecal indicators and pathogens in sewage treatment plants, microbiological parameters for improving the control of reclaimed water. Water Sci. Technol. 2012, 66, 2517–2523. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, C.; Wang, Z.; Huang, S. Assessment of the contamination and genotoxicity of soil irrigated with wastewater. Plant Soil 2004, 261, 189–196. [Google Scholar] [CrossRef]
- Alonso, C. Reutilización de aguas residuales urbanas, su aplicación al regadío: Ozonificación. Riegos y Drenajes XXI 1993, 70, 18–24. [Google Scholar]
- Norton-Brandão, D.; Scherrenberg, S.M.; van Lier, J.B. Reclamation of used urban waters for irrigation purposes—A review of treatment technologies. J. Environ. Manag. 2013, 122, 85–98. [Google Scholar] [CrossRef] [PubMed]
- García-Delgado, C.; Eymar, E.; Contreras, J.; Segura, M.L. Effect of disinfection systems on the content of inorganic and organic contaminants in urban wastewater. Acta Hortic. 2010, 852, 269–274. [Google Scholar] [CrossRef]
- Martínez, S.B.; Peréz-Parra, J.; Suay, R. Use of ozone in wastewater treatment to produce water suitable for irrigation. Water Resour. Manag. 2011, 25, 2109–2124. [Google Scholar] [CrossRef]
- Segura, M.L.; Contreras, J.; García-Delgado, C.; Eymar, E. Use of disinfected wastewater for pepper fertigation in Almería (Spain): Evaluation of chemical risks in soil and leachates. Acta Hortic. 2010, 852, 275–282. [Google Scholar] [CrossRef]
- Martínez, S.; Suay, R.; Moreno, J.; Segura, M.L. Reuse of tertiary municipal wastewater effluent for irrigation of Cucumis melo L. Irrig. Sci. 2013, 31, 661–672. [Google Scholar] [CrossRef]
- Segura, M.L.; Contreras, J.I.; Plaza, B.M.; Lao, M.T. Assessment of the nitrogen and potassium fertilizer in green bean irrigated with disinfected urban wastewater. Commun. Soil Sci. Plant Anal. 2012, 43, 426–433. [Google Scholar] [CrossRef]
- De Miguel, J.; López, J.G.; Baeza, R. Use of desalinated water in agriculture. Experiences in Almería (Spain). In Proceedings of the IDA World Congress, Perth, Australia, 4–9 September 2011. IDAWC/pr11-129. [Google Scholar]
- Baeza, R.; Contreras, J.I.; Parra, M.M.; López, J.G.; López, F.; Lao, M.T.; Sierra, A.J. Caracterización y Mezclas de los Diferentes Recursos Hídricos Para la Sostenibilidad del Riego de Cultivos Hortícolas Intensivos en el Campo de Dalias. 2017. Available online: http://www.agronomoscentro.org/index.php/a-investigacion-desarrollo-e (accessed on 3 September 2017).
- Del Villar, A. El Coste Energético de la Desalinización en el Programa A.G.U.A. Investigaciones Geográficas. 2014. Available online: http://www.redalyc.org/articulo.oa?id=17632456007 (accessed on 3 September 2017).
- Melgarejo, J.; López, M.I. Depuración y reutilización de aguas en España. Agua y Territorio 2016, 8, 22–35. [Google Scholar] [CrossRef]
Horticultural Crop | Water Consumption (m3 ha−1) | |
---|---|---|
Soil Culture | Hydroponics Culture | |
Pepper | 3950 | 3933 |
Tomato | 4110 | 6052 |
Cucumber | 2780 | 2664 |
Zucchini | 3490 | 3876 |
Eggplant | 4190 | 4059 |
Green bean | 1680 | 1554 |
Watermelon | 2120 | 2262 |
Melon | 2520 | 2360 |
Systems | Surface (km2) | Surface Water Supplies (106 m3) | Groundwater (106 m3) | Total Water (106 m3) | Irrigation Consumption (106 m3 year−1) | Horticultural Water Exploitation Index |
---|---|---|---|---|---|---|
III.4 | 1457 | 49.3 | 97.8 | 147.1 | 168.3 | 1.1 |
IV.1 | 2161 | 18.6 | 26.4 | 45.0 | 44.1 | 0.9 |
IV.2 | 780 | 0.4 | 11.2 | 11.6 | 34.3 | 2.9 |
V.1 | 925 | 1.1 | 9.0 | 10.1 | 21.3 | 2.1 |
V.2 | 2500 | 16.0 | 29.1 | 45.1 | 85.9 | 1.9 |
Total | 7823 | 85.4 | 173.5 | 258.9 | 353.9 | 1.4 |
Systems | Water Consumption | ||||
---|---|---|---|---|---|
Urban | Irrigation | Animal Husbandry | Golf Courses | Industry | |
III.4 | 20.0 | 79.2 | 0.0 | 0.7 | 0.0 |
IV.1 | 8.9 | 88.4 | 0.2 | 0.0 | 2.5 |
IV.2 | 4.8 | 93.9 | 0.2 | 1.0 | 0.1 |
V.1 | 27.0 | 68.2 | 0.2 | 4.1 | 0.5 |
V.2 | 9.0 | 88.6 | 0.8 | 0.7 | 0.9 |
Total | 14.7 | 83.6 | 0.3 | 0.9 | 0.6 |
Chemical Composition | Aquifers | ||||
---|---|---|---|---|---|
III.4 | IV.1 | IV.2 | V.1 | V.2 | |
COD (mg L−1) | <15 | <15 | 15.0–30.0 | <15 | <15 |
TOC (mg L−1) | 4–11 | 10–15 | 4–7 | 5–11 | 6–8 |
EC (dS m−1) | 0.5–2.7 | 1.6–2.0 | 3.5–5.1 | 3.6–6.6 | 0.8–1.0 |
pH | 7.5–8.1 | 7.3–7.7 | 7.0–8.4 | 7.0–7.3 | 7.4–7.6 |
HCO3− (mg L−1) | 205–351 | 218–359 | 252–279 | 270–340 | 195–229 |
CO32− (mg L−1) | <20 | <20 | <20 | <20 | <20 |
Cl− (mg L−1) | 478–815 | 73–176 | 997–1617 | 500–660 | 16–21 |
NO2− (mg L−1) | 0.02–0.04 | 0.02–0.04 | 0.02–0.04 | 0.02–0.05 | 0.02–0.03 |
NO3− (mg L−1) | 1–6 | 9–25 | 1–2 | 65–100 | 1–3 |
PO43− (mg L−1) | 0.05–0.06 | 0.05–0.15 | <0.05 | 0.05–0.08 | 0.05–0.14 |
SO42− (mg L−1) | 38–188 | 580–686 | 241–603 | 1487–1,897 | 284–404 |
Ca2+ (mg L−1) | 61–133 | 208–229 | 50–290 | 487–690 | 138–161 |
Mg2+ (mg L−1) | 27–101 | 85–109 | 87–104 | 159–188 | 58–61 |
Na+ (mg L−1) | 238–398 | 72–167 | 687–1,156 | 412–546 | 10–17 |
K+ (mg L−1) | 5–17 | 2–5 | 7–27 | 21–37 | 2.0–2.5 |
Horticultural Crop | Water Use Efficiency |
---|---|
Pepper | 20.7 |
Tomato | 20.3 |
Cucumber | 37.6 |
Zucchini | 28.3 |
Eggplant | 13.7 |
Green bean | 4.1 |
Watermelon | 20.1 |
Melon | 10.1 |
SN | SL | % | |
---|---|---|---|
Water | 351.4 | 163.3 | 46 |
NO3− | 212.7 | 123.7 | 58 |
H2PO4− | 47.3 | 3.3 | 7 |
K+ | 72.1 | 6.4 | 9 |
Ca2+ | 38.9 | 54.2 | 139 |
Mg2+ | 41.3 | 46.9 | 114 |
SO42− | 89.6 | 95.4 | 106 |
Na+ | 163.5 | 139.6 | 85 |
Cl− | 280.8 | 246.1 | 88 |
Watermelon | Melon | |||||
---|---|---|---|---|---|---|
SN | SL | % | SN | SL | % | |
Water | 215.0 | 73.8 | 34 | 254.3 | 71.3 | 28 |
NO3− | 190.0 | 73.3 | 39 | 149.9 | 26.1 | 17 |
H2PO4− | 18.1 | 4.1 | 23 | 34.5 | 0.1 | 0 |
K+ | 41.2 | 15.9 | 38 | 48.4 | 6.9 | 14 |
Ca2+ | 42.4 | 16.8 | 40 | 52.3 | 40.7 | 78 |
Mg2+ | 52.8 | 25.5 | 48 | 9.7 | 10.2 | 105 |
SO42− | 157.4 | 66.1 | 42 | 54.5 | 14.5 | 27 |
Na+ | 103.2 | 46.1 | 45 | 15.2 | 18.6 | 123 |
Cl− | 35.0 | 19.0 | 54 | 31.1 | 41.6 | 134 |
Desalination Plants | Water Capacity (106 m3 Per Year) |
---|---|
Bajo Almanzora | 20 |
Palomares | 9 |
Carboneras | 42 |
Rambla Morales | 22 |
Almería | 18 |
Campo de Dalias | 30 |
Total | 141 |
River Basin | Surface and Groundwater (106 m3) | Desalination (106 m3) | Reclaimed Water (106 m3) | Total (106 m3) | Irrigation Consumption (106 m3 year−1) | Horticultural Water Exploitation Index |
---|---|---|---|---|---|---|
III.4 | 147.1 | 30 | 8.4 | 185.5 | 168.3 | 0.9 |
IV.1 | 45.0 | 6.7 | 8 | 59.7 | 44.1 | 0.7 |
IV.2 | 11.6 | 0 | 0.5 | 12.1 | 34.3 | 2.8 |
V.1 | 10.1 | 19.2 | 0 | 29.3 | 21.2 | 0.7 |
V.2 | 45.1 | 9.3 | 1.1 | 55.5 | 85.9 | 1.5 |
Total | 258.9 | 65.2 | 18.0 | 342.1 | 353.8 | 1.0 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Caparros, P.; Contreras, J.I.; Baeza, R.; Segura, M.L.; Lao, M.T. Integral Management of Irrigation Water in Intensive Horticultural Systems of Almería. Sustainability 2017, 9, 2271. https://doi.org/10.3390/su9122271
Garcia-Caparros P, Contreras JI, Baeza R, Segura ML, Lao MT. Integral Management of Irrigation Water in Intensive Horticultural Systems of Almería. Sustainability. 2017; 9(12):2271. https://doi.org/10.3390/su9122271
Chicago/Turabian StyleGarcia-Caparros, Pedro, Juana Isabel Contreras, Rafael Baeza, Maria Luz Segura, and Maria Teresa Lao. 2017. "Integral Management of Irrigation Water in Intensive Horticultural Systems of Almería" Sustainability 9, no. 12: 2271. https://doi.org/10.3390/su9122271
APA StyleGarcia-Caparros, P., Contreras, J. I., Baeza, R., Segura, M. L., & Lao, M. T. (2017). Integral Management of Irrigation Water in Intensive Horticultural Systems of Almería. Sustainability, 9(12), 2271. https://doi.org/10.3390/su9122271