Investigating Low-Carbon Agriculture: Case Study of China’s Henan Province
Abstract
:1. Introduction
2. Methodologies and Data Definitions
2.1. Measurement of Carbon Emission
2.1.1. Carbon Emissions from Agricultural Material Input
2.1.2. Carbon Emissions from Soil Surface
2.1.3. Carbon Emissions from Livestock Farming
2.2. Decoupling Elasticity Model
2.3. Logarithmic Mean Divisia Index (LMDI)
2.4. Data Source
3. Result and Analysis
3.1. Temporal Characteristics of Agricultural Carbon Emission
3.2. The Decoupling Elasticity Analysis
3.3. Decomposition Analysis of Agricultural Carbon Emissions
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- IPCC. The Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change; Climate Change 1995; Cambridge University Press: New York, NY, USA, 1996. [Google Scholar]
- Zaman, K.; Khan, M.M.; Ahmad, M.; Khilji, B.A. The relationship between agricultural technologies and carbon emissions in Pakistan: Peril and promise. Econ. Model. 2012, 29, 1632–1639. [Google Scholar] [CrossRef]
- Pratt, C.; Redding, M.; Hill, J.; Shilton, A.; Chung, M.; Guieysse, B. Good science for improving policy: Greenhouse gas emissions from agricultural manures. Anim. Prod. Sci. 2014, 55, 691–701. [Google Scholar] [CrossRef]
- IPCC. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Climate Change 2007; Cambridge University Press: London, UK, 2007. [Google Scholar]
- Lin, E. Climate Change and Sustainable Development of Agriculture; Beijing Press: Beijing, China, 2001. (In Chinese) [Google Scholar]
- Wang, Q.; Chen, X. Energy policies for managing China’s carbon emission. Renew. Sustain. Energy Rev. 2015, 50, 470–479. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, Y. Energy saving and emission reduction revolutionizing China’s environmental protection. Renew. Sustain. Energy Rev. 2010, 14, 535–539. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, X. China’s electricity market-oriented reform: From an absolute to a relative monopoly. Energy Policy 2012, 51, 143–148. [Google Scholar] [CrossRef]
- Li, Q.; Han, Y.F. Decoupling Effect of Agricultural Carbon Emission in Anhui Province and Factors Influencing the Emission. J. Anhui Agric. Univ. 2016, 24. (In Chinese) [Google Scholar]
- Linda, J. Climate Change and Agricultural Sustainable Development; Beijing Press: Beijing, China, 2001; p. 35. (In Chinese) [Google Scholar]
- Johnson, J.M.; Franzluebbers, A.J.; Weyers, S.L.; Reicosky, D.C. Agricultural opportunities to mitigate greenhouse gas emissions. Environ. Pollut. 2007, 150, 107–124. [Google Scholar] [CrossRef] [PubMed]
- Gifford, R.M. Energy in Different Agricultural Systems: Renewable and Nonrenewable Sources; Springer: Berlin/Heidelberg, Germany, 1984; pp. 84–112. [Google Scholar]
- Pimentel, D. Energy inputs in production agriculture. Energy World Agric. 1992, 184, 103–117. [Google Scholar]
- Marland, G.; West, T.O.; Schlamadinger, B.; Canella, L. Managing soil organic carbon in agriculture: The net effect on greenhouse gas emissions. Tellus Ser. B Chem. Phys. Meteorol. 2003, 55, 613–621. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, J.B.; He, Y.Y. Research on spatial-temporal characteristics and driving factor of agricultural carbon emissions in China. J. Integr. Agric. 2014, 13, 1393–1403. [Google Scholar] [CrossRef]
- Gomiero, T.; Paoletti, M.G.; Pimentel, D. Energy and environmental issues in organic and conventional agriculture. Crit. Rev. Plant Sci. 2008, 27, 239–254. [Google Scholar] [CrossRef]
- Wise, M.; Calvin, K.; Thomson, A.; Clarke, L.; Bondlamberty, B.; Sands, R.; Smith, S.J.; Janetos, A.; Edmonds, J. Implications of limiting CO2 concentrations for land use and energy. Science 2009, 324, 1183–1186. [Google Scholar] [CrossRef] [PubMed]
- Cbm, A.; Bhatti, J.S.; Chang, S.X.; Sidders, D. Land use change effects on ecosystem carbon balance: From agricultural to hybrid poplar plantation. Agric. Ecosyst. Environ. 2011, 141, 342–349. [Google Scholar]
- Galford, G.L.; Cerri, C.C. Historical carbon emissions and uptake from the agricultural frontier of the Brazilian Amazon. Ecol. Appl. 2011, 21, 750–763. [Google Scholar] [CrossRef] [PubMed]
- Qin, K.C. Construction of Low-Carbon Agriculture. Manag. Eng. 2012, 9, 87–90. [Google Scholar]
- Hong, L. The transformation of agricultural economy development mode under the background of low carbon economy—Aking guangdong as an example. Chin. J. Agric. Resour. Reg. Plan. 2016, 37, 215–219. [Google Scholar]
- Weng, B.; Lei, J.; Xibin, H.U. Develop low-carbon agriculture by relying on scientific and technological progress. Ecol. Environ. Sci. 2010, 19, 1491–1501. [Google Scholar]
- Li, Y.Y. Innovation of China’s circular agricultural development in the perspective of low carbon economy. Agric. Res. 2011, 3, 5–8. [Google Scholar]
- Yu, W.; Wu, F.; Peng, X.; Tong, X. Analysis of economic efficiency and energy flow characteristics of a circular and integrated agriculture model in the Loess hilly region. Trans. Chin. Soc. Agric. Eng. 2016, 32, 199–206. [Google Scholar]
- Colleran, E. Hygienic and Sanitation Requirements in Biogas Plants Treating Animal Manures or Mixtures of Manures and Other Organic Wastes. Anaerobic Digestion: Making Energy and Solving Modern Waste Problem. 2000, pp. 77–86. Available online: http://americanbiogascouncil.org/pdf/Pathogen_kills%20in%20AD.pdf (accessed on 10 December 2017).
- Mccarl, B.A.; Schneider, U.A. U.S. Agriculture’s role in a greenhouse gas emission mitigation world: An economic perspective. Appl. Econ. Perspect. Policy 2000, 22, 134–159. [Google Scholar] [CrossRef]
- Peters, M.; House, R.; Lewandrowski, J.; Mcdowell, H. Economic impacts of carbon charges on U.S. Agriculture. Clim. Chang. 2001, 50, 445–473. [Google Scholar] [CrossRef]
- Pugh, T.A.M.; Arneth, A.; Olin, S.; Ahlström, A.; Bayer, A.D.; Klein Goldewijk, K.; Lindeskog, M.; Schurgers, G. Simulated carbon emissions from land-use change are substantially enhanced by accounting for agricultural management. Environ. Res. Lett. 2015, 10, 124008. [Google Scholar] [CrossRef]
- Wang, Q.; Li, R. Journey to burning half of global coal: Trajectory and drivers of China’s coal use. Renew. Sustain. Energy Rev. 2016, 58, 341–346. [Google Scholar] [CrossRef]
- Wang, Q.; Li, R. Sino-Venezuelan oil-for-loan deal—The Chinese strategic gamble? Renew. Sustain. Energy Rev. 2016, 64, 817–822. [Google Scholar] [CrossRef]
- Wang, Q.; Li, R. Drivers for energy consumption: A comparative analysis of China and India. Renew. Sustain. Energy Rev. 2016, 62, 954–962. [Google Scholar] [CrossRef]
- Wang, Q.; Li, R. Natural gas from shale formation: A research profile. Renew. Sustain. Energy Rev. 2016, 57, 1–6. [Google Scholar] [CrossRef]
- Wang, Q. Effective policies for renewable energy—The example of China’s wind power—Lessons for China’s photovoltaic power. Renew. Sustain. Energy Rev. 2010, 14, 702–712. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, Y. Status and outlook of China’s free-carbon electricity. Renew. Sustain. Energy Rev. 2010, 14, 1014–1025. [Google Scholar] [CrossRef]
- Wu, X.R.; Zhang, J.B.; Tian, Y.; Li, P. Provincial agricultural carbon emissions in China: Calculation, performance change and influencing factors. Resour. Sci. 2014, 36, 129–138. [Google Scholar]
- Tian, Y.; Bo, L.I.; Zhang, J.B. Research on stage characteristics and factor decomposition of agricultural land carbon emission in China. J. China Univ. Geosci. 2011, 11, 59–63. [Google Scholar]
- Duan, H.P.; Zhang, Y.; Zhao, J.B.; Bian, X.M. Carbon footprint analysis of farmland ecosystem in China. J. Soil Water Conserv. 2011, 25, 203–208. [Google Scholar]
- Zhou, J.B.; Jiang, M.M.; Chen, G.Q. Estimation of methane and nitrous oxide emission from livestock and poultry in China during 1949–2003. Energy Policy 2007, 35, 3759–3767. [Google Scholar] [CrossRef]
- Liu, L.; Wang, S.; Wang, K.; Zhang, R.; Tang, X. LMDI decomposition analysis of industry carbon emissions in Henan Province, China: Comparison between different 5-year plans. Nat. Hazards 2016, 80, 997–1014. [Google Scholar] [CrossRef]
- Zhao, R.Q.; Liu, Y.; Ding, M.L.; Jiao, S.X. Research on carbon source and sink of farmland ecosystem in Henan Province. J. Henan Agric. Sci. 2010, 7, 40–44. [Google Scholar]
- Li, Y.-L.; Liang, H.; Liang, B.S. Factor decomposition and correlation analysis on the carbon emissions in Henan Province. J. Henan Agric. Univ. 2011, 45, 605–610. [Google Scholar]
- Zhang, M.; Tan, J.; Huang, X.; Lai, L. A gis-based approach for estimating land use related carbon emissions—A case study in Henan Province. In Proceedings of the International Conference on Geoinformatics, Kaifeng, China, 20–22 June 2013; pp. 1–4. [Google Scholar]
- Wang, X.; Qin, Y.; Jiang, X.; Sun, Y. Study for the carbon emission influencing factors of Henan province based on LMDI model. In Proceedings of the International Conference on Geoinformatics, Kaifeng, China, 20–22 June 2013; pp. 1–5. [Google Scholar]
- Peng, S.L.; Xie, H.; Zhao, G.Q. Decoupling analysis of economic growth and carbon emissions in Henan Province. Adv. Mater. Res. 2015, 1073, 2545–2548. [Google Scholar] [CrossRef]
- Liu, J.C. An empirical study on decoupling relation between carbon emissions and economic growth—A case study of Henan Province. Econ. Surv. 2014, 31, 132–136. [Google Scholar]
- Zhao, Q. Low carbon economy and thinking of agricultural development. Ecol. Environ. Sci. 2009, 18, 1609–1614. [Google Scholar]
- Li, Y.C.; Lin, E.D.; Zhen, X.L. Advances in methods of agricultural greenhouse gas inventories. Adv. Earth Sci. 2007, 2, 335–346. [Google Scholar]
- Qi, Y.-C.; Dong, Y.-S. Nitrous oxide emissions from soil and some influence factors. Acta Geogr. Sin. 1999, 54, 534–542. (In Chinese) [Google Scholar]
- Tian, Y.; Zhang, J.; Li, B. Agricultural carbon emissions in China: Calculation, spatial-temporal comparison and decoupling effects. Resour. Sci. 2012, 34, 2097–2105. [Google Scholar]
- LI, Q.; Han, Y. Decoupling effect of agricultural carbon emission in Anhui Province and factors influencing the emission. J. Anhui Agric. Univ. 2016, 2, 6. [Google Scholar]
- Tian, Y.Z.; Zhang, J.B. Regional differentiation research on net carbon effect of agricultural production in China. J. Nat. Resour. 2013, 28, 1298–1309. [Google Scholar]
- Song, D.-Y.; Liu, Z.B. The factor decomposition and periodic fluctuations of carbon emission in China. China Popul. Resour. Environ. 2009, 19, 18–24. [Google Scholar]
- Wang, Q. China should aim for a total cap on emissions. Nature 2014, 512, 115. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, R. Impact of cheaper oil on economic system and climate change: A SWOT analysis. Renew. Sustain. Energy Rev. 2016, 54, 925–931. [Google Scholar] [CrossRef]
- Greenhouse Gas Inventory: IPCC Guidelines for National Greenhouse Gas Inventories; United Kingdom Meteorological Office: Bracknell, UK, 2006.
- Huang, M.; Jiang, Q.E. Study on the Measurement of Carbon Emission in Zhejiang: The Comparison of Consumption-based and Production-based Emission. East China Econ. Manag. 2012, 2, 5. [Google Scholar]
- Zhang, L.; Chen, S.; Zhu, Y.; Xu, X. The measurement of carbon emission effect of construction land changes in Anhui Province based on the extended LMDI model. J. Resour. Ecol. 2012, 4, 186–192. [Google Scholar]
- Pereira, A.B.; Utsumi, S.A.; Dorich, C.D.; Brito, A.F. Integrating spot short-term measurements of carbon emissions and backward dietary energy partition calculations to estimate intake in lactating dairy cows fed ad libitum or restricted. J. Dairy Sci. 2015, 98, 8913–8925. [Google Scholar] [CrossRef] [PubMed]
- Zhi, J.; Gao, J. Analysis of carbon emission caused by food consumption in urban and rural inhabitants in China. Prog. Geogr. 2009, 28, 1–6. [Google Scholar]
- Wang, Z. Estimation of nitrous oxide emission of farmland in China. Rural Eco-Environ. 1997, 13, 51–55. [Google Scholar]
- Xiong, Z. The effects of summer legume crop cultivation on nitrous oxide emissions from upland farmland. Sci. Agric. Sin. 2002, 35, 977–981. [Google Scholar]
- Pang, J.; Wang, X.; Mu, Y.; Ouyang, Z.; Zhang, H.; Lu, F.; Liu, W. Nitrous oxide emissions from winter wheat field in the Loess Plateau. Acta Ecol. Sin. 2011, 6, 1896–1903. [Google Scholar]
- Wang, S.; Su, W. Estimation of nitrous oxide emission and its future change in China. Environ. Sci. 1993, 3, 12. [Google Scholar] [CrossRef]
- Qiu, W.; Liu, J.; Chengxiao, H.U.; Tan, Q. Comparison of nitrous oxide emission from bare soil and planted vegetable soil. Ecol. Environ. Sci. 2010, 19, 2982–2985. [Google Scholar]
- Tian, J.; Yang, H.; Xiang, P.; Liu, D.; Li, L. Drivers of agricultural carbon emissions in Hunan Province, China. Environ. Earth Sci. 2016, 75, 1–17. [Google Scholar] [CrossRef]
- Tapio, P. Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transp. Policy 2005, 12, 137–151. [Google Scholar] [CrossRef]
- Gray, D.; Anable, J.; Illingworth, L.; Graham, W. Decoupling the Link between Economic Growth, Transport Growth and Carbon Emissions in Scotland. 2006. Available online: https://www.researchgate.net/publication/267221393 (accessed on 31 December 2014).
- Li, W.; Sun, S.; Li, H. Decomposing the decoupling relationship between energy-related CO2 emissions and economic growth in China. Nat. Hazards 2015, 79, 977–997. [Google Scholar] [CrossRef]
- Arrow, K.; Bolin, B.; Costanza, R.; Dasgupta, P.; Folke, C.; Holling, C.S.; Jansson, B.O.; Levin, S.; Mäler, K.G.; Perrings, C. Economic growth, carrying capacity, and the environment. Ecol. Appl. 1996, 268, 89–90. [Google Scholar]
- De Bruyn, S.M.; van den Bergh, J.C.; Opschoor, J.B. Economic growth and emissions: Reconsidering the empirical basis of environmental Kuznets curves. Ecol. Econ. 1998, 25, 161–175. [Google Scholar] [CrossRef]
- Yang, K.; Chen, B.; Tang, X. Decoupling relationship between cultivated land occupation by construction and economic growth in China during 1998–2007. China Popul. Resour. Environ. 2010, 8, 38–46. [Google Scholar]
- Ren, S.; Hu, Z. Effects of decoupling of carbon dioxide emission by Chinese nonferrous metals industry. Energy Policy 2012, 43, 407–414. [Google Scholar] [CrossRef]
- Ang, B.W.; Liu, F.; Chew, E.P. Perfect decomposition techniques in energy and environmental analysis. Energy Policy 2003, 31, 1561–1566. [Google Scholar] [CrossRef]
- Ang, B.W. Decomposition analysis for policymaking in energy: Which is the preferred method? Energy Policy 2004, 32, 1131–1139. [Google Scholar] [CrossRef]
- Ang, B.; Liu, N. Energy decomposition analysis: IEA model versus other methods. Energy Policy 2007, 35, 1426–1432. [Google Scholar] [CrossRef]
- Liu, L.C.; Fan, Y.; Wu, G.; Wei, Y.M. Using LMDI method to analyze the change of China’s industrial CO2 emissions from final fuel use: An empirical analysis. Energy Policy 2007, 35, 5892–5900. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Rural Statistical Yearbook 2015; China Statistics Press: Beijing, China, 2015. (In Chinese) [Google Scholar]
- Henan Province Bureau of Statistics. Henan Statistical Yearbook-2015; Henan Province Bureau of Statistics: Zhengzhou, China, 2015. (In Chinese)
Source | Carbon Emission Coefficient |
---|---|
Fertilizers | 0.8956 t CO2/t |
Pesticides | 4.9341 t CO2/t |
Plastic sheeting | 5.18 t CO2/t |
Diesel oil | 0.5927 t CO2/t |
Irrigation | 0.26648 t CO2/million hm2 |
Source | N2O Emission Coefficient |
---|---|
t N2O/million hm2 | |
Paddy rice | 0.0024 |
Winter wheat | 0.0205 |
Soybeans | 0.0077 |
Corn | 0.02532 |
Vegetable | 0.0421 |
Other dryland crops | 0.0095 |
Source | Enteric Fermentation | Emissions from Manure | |
---|---|---|---|
CH4 | CH4 | N2O | |
kg/head/year | kg/head/year | kg/head/year | |
Cow | 54.33 | 7 | 1.24 |
Horse | 18 | 1.64 | 1.39 |
Donkey | 10 | 0.9 | 1.39 |
Mule | 10 | 0.90 | 1.39 |
Pig | 1 | 4 | 0.53 |
Goat | 5 | 0.17 | 0.33 |
Sheep | 5 | 0.15 | 0.33 |
Year | Agricultural Material | Soil Surface | Livestock Farming | Total Carbon Emissions | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Carbon Emissions | Proportion | Growth Rate | Carbon Emissions | Proportion | Growth Rate | Carbon Emissions | Proportion | Growth Rate | Carbon Emissions | Growth Rate | |
1999 | 4.9382 | 29.73% | - | 0.0194 | 0.12% | - | 11.6503 | 70.15% | - | 16.6079 | - |
2000 | 5.1761 | 30.22% | 4.82% | 0.0202 | 0.12% | 4.19% | 11.9307 | 69.66% | 2.41% | 17.1270 | 3.13% |
2001 | 5.4240 | 31.21% | 4.79% | 0.0204 | 0.12% | 1.06% | 11.9349 | 68.67% | 0.04% | 17.3793 | 1.47% |
2002 | 5.7169 | 32.06% | 5.40% | 0.0209 | 0.12% | 2.68% | 12.0927 | 67.82% | 1.32% | 17.8306 | 2.60% |
2003 | 5.7034 | 30.94% | −0.24% | 0.0216 | 0.12% | 3.22% | 12.7070 | 68.94% | 5.08% | 18.4321 | 3.37% |
2004 | 5.9706 | 31.28% | 4.68% | 0.0220 | 0.12% | 1.61% | 13.0955 | 68.61% | 3.06% | 19.0880 | 3.56% |
2005 | 6.2653 | 31.61% | 4.94% | 0.0223 | 0.11% | 1.41% | 13.5352 | 68.28% | 3.36% | 19.8227 | 3.85% |
2006 | 6.5682 | 40.03% | 4.83% | 0.0227 | 0.14% | 2.04% | 9.8186 | 59.83% | −27.46% | 16.4095 | −17.22% |
2007 | 6.9249 | 41.15% | 5.43% | 0.0232 | 0.14% | 1.97% | 9.8789 | 58.71% | 0.61% | 16.8269 | 2.54% |
2008 | 7.2551 | 41.37% | 4.77% | 0.0234 | 0.13% | 0.99% | 10.2583 | 58.50% | 3.84% | 17.5368 | 4.22% |
2009 | 7.5929 | 42.55% | 4.66% | 0.0235 | 0.13% | 0.23% | 10.2293 | 57.32% | −0.28% | 17.8457 | 1.76% |
2010 | 7.8985 | 44.07% | 4.02% | 0.0236 | 0.13% | 0.61% | 10.0000 | 55.80% | −2.24% | 17.9221 | 0.43% |
2011 | 8.1265 | 45.50% | 2.89% | 0.0238 | 0.13% | 0.79% | 9.7095 | 54.37% | −2.90% | 17.8598 | −0.35% |
2012 | 8.2457 | 46.51% | 1.47% | 0.0239 | 0.13% | 0.56% | 9.4584 | 53.35% | −2.59% | 17.7280 | −0.74% |
2013 | 8.4332 | 47.45% | 2.27% | 0.0242 | 0.14% | 1.05% | 9.3149 | 52.41% | −1.52% | 17.7723 | 0.25% |
2014 | 8.5099 | 47.45% | 0.91% | 0.0243 | 0.14% | 0.54% | 9.4001 | 52.41% | 0.91% | 17.9342 | 0.91% |
2015 | 8.5815 | 47.49% | 0.84% | 0.0245 | 0.14% | 0.82% | 9.4637 | 52.37% | 0.68% | 18.0697 | 0.76% |
Year | ∆C/C | ∆GDP/GDP | D | Decoupling Status |
---|---|---|---|---|
2000 | 0.0313 | 0.0519 | 0.6024 | Weak Decoupling |
2001 | 0.0147 | 0.0567 | 0.2599 | Weak Decoupling |
2002 | 0.0260 | 0.0441 | 0.5893 | Weak Decoupling |
2003 | 0.0337 | −0.0398 | −0.8481 | Strong Negative Decoupling |
2004 | 0.0356 | 0.1421 | 0.2505 | Weak Decoupling |
2005 | 0.0385 | 0.0766 | 0.5022 | Weak Decoupling |
2006 | −0.1722 | 0.0757 | −2.2750 | Strong Decoupling |
2007 | 0.0254 | 0.0372 | 0.6844 | Weak Decoupling |
2008 | 0.0422 | 0.0576 | 0.7330 | Weak Decoupling |
2009 | 0.0176 | 0.0411 | 0.4284 | Weak Decoupling |
2010 | 0.0043 | 0.0455 | 0.0941 | Weak Decoupling |
2011 | −0.0035 | 0.0355 | −0.0979 | Strong Decoupling |
2012 | −0.0074 | 0.0434 | −0.1699 | Strong Decoupling |
2013 | 0.0025 | 0.0410 | 0.0608 | Weak Decoupling |
2014 | 0.0091 | 0.0397 | 0.2295 | Weak Decoupling |
2015 | 0.0076 | 0.0440 | 0.1718 | Weak Decoupling |
Year | |||||
---|---|---|---|---|---|
2000 | −0.3341 | −0.0338 | −0.3826 | 1.2697 | 0.5191 |
2001 | −0.6990 | 0.0112 | 1.3636 | −0.4235 | 0.2523 |
2002 | −0.3078 | −0.0326 | 1.1947 | −0.4030 | 0.4513 |
2003 | 1.3372 | −0.3695 | 0.0201 | −0.3864 | 0.6014 |
2004 | −1.8363 | 0.2163 | 2.7677 | −0.4917 | 0.6560 |
2005 | −0.7019 | 0.0298 | 2.0579 | −0.6511 | 0.7347 |
2006 | −4.7311 | 0.0283 | 1.8080 | −0.5185 | −3.4133 |
2007 | −0.1890 | −0.0293 | 1.3579 | −0.7222 | 0.4175 |
2008 | −0.2515 | −0.0073 | 1.4034 | −0.4348 | 0.7098 |
2009 | −0.4040 | −0.0658 | 1.2985 | −0.5198 | 0.3089 |
2010 | −0.7191 | −0.0088 | 1.1514 | −0.3471 | 0.0764 |
2011 | −0.6865 | −0.0430 | 0.9416 | −0.2744 | −0.0623 |
2012 | −0.8878 | −0.0271 | 1.0683 | −0.2851 | −0.1317 |
2013 | −0.6690 | −0.0511 | 1.2117 | −0.4474 | 0.0442 |
2014 | −0.5332 | −0.0393 | 0.1240 | 0.6105 | 0.1619 |
2015 | −0.6393 | −0.0348 | 1.2550 | −0.4454 | 0.1355 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, M.; Jiang, R.; Li, R. Investigating Low-Carbon Agriculture: Case Study of China’s Henan Province. Sustainability 2017, 9, 2295. https://doi.org/10.3390/su9122295
Su M, Jiang R, Li R. Investigating Low-Carbon Agriculture: Case Study of China’s Henan Province. Sustainability. 2017; 9(12):2295. https://doi.org/10.3390/su9122295
Chicago/Turabian StyleSu, Min, Rui Jiang, and Rongrong Li. 2017. "Investigating Low-Carbon Agriculture: Case Study of China’s Henan Province" Sustainability 9, no. 12: 2295. https://doi.org/10.3390/su9122295
APA StyleSu, M., Jiang, R., & Li, R. (2017). Investigating Low-Carbon Agriculture: Case Study of China’s Henan Province. Sustainability, 9(12), 2295. https://doi.org/10.3390/su9122295