The Driving Force Analysis of NDVI Dynamics in the Trans-Boundary Tumen River Basin between 2000 and 2015
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Study Area
2.2. Data Sources
3. Methods
3.1. Linear Regression Model (LRM)
3.2. Pearson Correlation Analysis
3.3. The RESTREND Analysis
4. Results
4.1. Temporal and Spatial Trends in Growing Season NDVI
4.1.1. Temporal Trends in NDVI and Climatic Factors
4.1.2. Spatial Variations in Seasonal NDVI
4.1.3. Seasonal Climatic Trends in Spatial Variability
4.2. The Effects of Climate Variability on the NDVI
4.3. Trends in the Influence of Human Activities during the Growing Season over the Last 16 Years
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Peng, J.; Liu, Z.H.; Liu, Y.H.; Wu, J.S.; Han, Y.N. Trend analysis of vegetation dynamics in Qinghai-Tibet Plateau using Hurst Exponent. Ecol. Indic. 2012, 14, 28–39. [Google Scholar] [CrossRef]
- Ning, T.T.; Liu, W.Z.; Lin, W.; Song, X.Q. NDVI variation and its responses to climate change on the northern Loess Plateau of China from 1998 to 2012. Adv. Meteorol. 2015, 2015, 725427. [Google Scholar] [CrossRef]
- Liu, X.F.; Zhu, X.F.; Li, S.S.; Liu, Y.X.; Pan, Y.Z. Changes in growing season vegetation and their associated driving forces in China during 2001–2012. Remote Sens. 2015, 7, 15517–15535. [Google Scholar] [CrossRef]
- Eckert, S.; Hüsler, F.; Liniger, H.; Hodel, E. Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia. J. Arid Environ. 2015, 113, 16–28. [Google Scholar] [CrossRef]
- Ichii, K.; Kawabata, A.; Yamaguchi, Y. Global correlation analysis for NDVI and climatic variables and NDVI trends: 1982–1990. Int. J. Remote Sens. 2002, 23, 3873–3878. [Google Scholar] [CrossRef]
- Jiapaer, G.; Liang, S.L.; Yi, Q.X.; Liu, J.P. Vegetation dynamics and responses to recent climate change in Xinjiang using leaf area index as an indicator. Ecol. Indic. 2015, 2015, 64–76. [Google Scholar] [CrossRef]
- Ding, M.J.; Zhang, Y.L.; Liu, L.S.; Zhang, W.; Wang, Z.F.; Bai, W.Q. The relationship between NDVI and precipitation on the Tibetan Plateau. J. Geogr. Sci. 2007, 17, 259–268. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Gao, J.G.; Liu, L.S.; Wang, Z.F.; Ding, M.J.; Yang, X.C. NDVI-based vegetation changes and their responses to climate change from 1982 to 2011: A case study in the Koshi River Basin in the middle Himalayas. Glob. Planet. Chang. 2013, 108, 139–148. [Google Scholar] [CrossRef]
- Tang, Z.G.; Ma, J.H.; Peng, H.H.; Wang, S.H.; Wei, J.F. Spatiotemporal changes of vegetation and their responses to temperature and precipitation in upper Shiyang River Basin. Adv. Space Res. 2017, 60, 969–979. [Google Scholar] [CrossRef]
- Li, C.B.; Qi, J.G.; Yang, L.S.; Wang, S.B.; Yang, W.J.; Zhu, G.F.; Zou, S.B.; Zhang, F. Regional vegetation dynamics and its response to climate change—A case study in the Tao River Basin in Northwestern China. Environ. Res. Lett. 2014, 9, 125003. [Google Scholar] [CrossRef]
- Kawabata, A.; Ichii, K.; Yamaguchi, Y. Global monitoring of interannual changes in vegetation activities using NDVI and its relationships to temperature and precipitation. Int. J. Remote Sens. 2001, 22, 1377–1382. [Google Scholar] [CrossRef]
- Xiao, J.; Moody, A. Geographical distribution of global greening trends and their climatic correlates: 1982–1998. Int. J. Remote Sens. 2005, 26, 2371–2390. [Google Scholar] [CrossRef]
- Li, H.D.; Li, Y.K.; Gao, Y.Y.; Zou, C.X.; Yan, S.G.; Gao, J.X. Human impact on vegetation dynamics around Lhasa, Southern Tibetan Plateau, China. Sustainability 2016, 8, 1146. [Google Scholar] [CrossRef]
- Yang, Y.G.; Zhao, C.Y.; Han, M.; Li, Y.K.; Yang, R.H. Temporal patterns of shrub vegetation and variation with precipitation in Gurbantunggut Desert, Central Asia. Adv. Meteorol. 2015, 2015, 157245. [Google Scholar] [CrossRef]
- He, Y.H.; Guo, X.L.; Dixon, P.; Wilmshurst, J.F. NDVI variation and its relation to climate in Canadian ecozones. Can. Geogr. 2012, 56, 492–507. [Google Scholar] [CrossRef]
- Wang, T. Vegetation NDVI change and its relationship with climate change and human activities in Yulin, Shaanxi Province of China. J. Geosci. Environ. Prot. 2016, 4, 28–40. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, Z.P.; Han, F.; Wang, Z.G.; Wang, C.R. NDVI-based vegetation dynamics and their response to recent climate change: A case study in the Tianshan Mountains, China. Environ. Earth Sci. 2016, 75, 1189. [Google Scholar] [CrossRef]
- Han, G.F.; Yang, Y.C.; Yan, S.Y. Vegetation activity trend and its relationship with climate change in the Three Gorges Area, China. Adv. Meteorol. 2013, 2013, 235378. [Google Scholar] [CrossRef]
- Li, A.; Wu, J.G.; Huang, J.H. Distinguishing between human-induced and climate-driven vegetation changes: A critical application of RESTREND in inner Mongolia. Landsc. Ecol. 2012, 27, 969–982. [Google Scholar] [CrossRef]
- Evans, J.; Geerken, R. Discrimination between climate and human-induced dryland degradation. J. Arid Environ. 2004, 57, 535–554. [Google Scholar] [CrossRef]
- He, C.Y.; Tian, J.; Gao, B.; Zhao, Y.Y. Differentiating climate-and human-induced drivers of grassland degradation in the Liao River Basin, China. Environ. Monit. Assess. 2015, 187, 4199. [Google Scholar] [CrossRef] [PubMed]
- Wessels, K.J.; Prince, S.D.; Malherbe, J.; Small, J.; Frost, P.E.; VanZyl, D. Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. J. Arid Environ. 2007, 68, 271–297. [Google Scholar] [CrossRef]
- Zheng, X.J.; Sun, P.; Zhu, W.H.; Xu, Z.; Fu, J.; Man, W.D.; Li, H.L.; Zhang, J.; Qin, L. Landscape dynamics and driving forces of wetlands in the Tumen River Basin of china over the past 50 years. Landsc. Ecol. Eng. 2017, 2013, 237–250. [Google Scholar] [CrossRef]
- Gao, W.Y.; Zhu, C.F.; Wang, Y.S. Analysis on Characteristic of hydrology and meteorology for Tumenjiang Basin. Jilin Water Resour. 2000, 12, 22–24. [Google Scholar]
- Li, C.J.; Li, S.C.; Lv, B.S. Discuss of the rainstorm flood characteristic and reservoir function in 2000 of Tumen River basin. J. Agric. Sci. Yanbian Univ. 2007, 29, 170–173. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.H.; Matsushita, B.; Eklundh, L. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 2004, 91, 332–344. [Google Scholar] [CrossRef]
- Gong, Z.; Kawamura, K.; Ishikawa, N.; Goto, M.; Wulan, T.; Alateng, D.; Yin, Y.; Ito, Y. MODIS normalized difference vegetation index (NDVI) and vegetation phenology dynamics in the Inner Mongolia grassland. Solid Earth 2015, 6, 1185–1194. [Google Scholar] [CrossRef]
- Piao, S.L.; Wang, X.H.; Ciais, P.; Zhu, B.; Wang, T.A.O.; Liu, J.I.E. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Glob. Chang. Biol. 2011, 17, 3228–3239. [Google Scholar] [CrossRef]
- Lian, J.; Zhao, X.Y.; Li, X.; Zhang, T.H.; Wang, S.K.; Luo, Y.Q.; Zhu, Y.C.; Feng, J. Detecting sustainability of desertification reversion: Vegetation trend analysis in part of the Agro-Pastoral Transitional Zone in Inner Mongolia, China. Sustainability 2017, 9, 211. [Google Scholar] [CrossRef]
- Duo, A.; Zhao, W.J.; Qu, X.Y.; Jing, R.; Xiong, K. Spatio-temporal variation of vegetation coverage and its response to climate change in North China plain in the last 33 years. Int. J. Appl. Earth Obs. Geoinf. 2016, 2016, 103–117. [Google Scholar] [CrossRef]
- Luo, Z.H.; Yu, S.X. Spatiotemporal variability of land surface phenology in China from 2001–2014. Remote Sens. 2017, 9, 65. [Google Scholar] [CrossRef]
- Huang, F.; Xu, S.L. Spatio-temporal variations of rain-use efficiency in the West of Songliao Plain, China. Sustainability 2016, 8, 308. [Google Scholar] [CrossRef]
- Duan, H.; Yan, C.Z.; Tsunekawa, A.; Song, X.; Li, S.; Xie, J.L. Assessing vegetation dynamics in the Three-North Shelter forest region of China using AVHRR NDVI data. Environ. Earth Sci. 2011, 64, 1011–1020. [Google Scholar] [CrossRef]
- Sun, J.; Qin, X.J. Precipitation and temperature regulate the seasonal changes of NDVI across the Tibetan Plateau. Environ. Earth Sci. 2016, 75, 291. [Google Scholar] [CrossRef]
- Jin, J.X.; Wang, Y.; Jiang, H.; Cheng, M. Recent NDVI-based variation in growth of boreal intact forest landscapes and its correlation with climatic variables. Sustainability 2016, 8, 326. [Google Scholar] [CrossRef]
- Tsai, H.P.; Yang, M.D. Relating vegetation dynamics to climate variables in Taiwan using 1982–2012 NDVI3g data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1624–1639. [Google Scholar] [CrossRef]
- Zhang, G.L.; Xu, X.L.; Zhou, C.P.; Zhang, H.B.; Ou, Y.H. Responses of grassland vegetation to climatic variations on different temporal scales in Hulun Buir Grassland in the past 30 years. J. Geogr. Sci. 2011, 21, 634–650. [Google Scholar] [CrossRef]
- Bhuyan, U.; Zang, C.; Vicente-Serrano, S.M.; Menzel, A. Exploring relationships among tree-ring growth, climate variability, and seasonal leaf activity on varying timescales and spatial resolutions. Remote Sens. 2017, 9, 526. [Google Scholar] [CrossRef]
- Ibrahim, Y.Z.; Balzter, H.; Kaduk, J.; Tucker, C.J. Land degradation assessment using residual trend analysis of GIMMS NDVI3g, soil moisture and rainfall in Sub-Saharan West Africa from 1982 to 2012. Remote Sens. 2015, 7, 5471–5494. [Google Scholar] [CrossRef]
- Wessels, K.J.; van den Bergh, F.; Scholes, R.J. Limits to detectability of land degradation by trend analysis of vegetation index data. Remote Sens. Environ. 2012, 125, 10–22. [Google Scholar] [CrossRef]
- Huang, S.W.; Kong, J.M. Assessing land degradation dynamics and distinguishing human-induced changes from climate factors in the Three-North Shelter forest region of China. ISPRS Int. J. Geo-Inf. 2016, 5, 158. [Google Scholar] [CrossRef]
- Liu, P.L.; Hao, L.; Pan, C.; Zhou, D.C.; Liu, Y.Q.; Sun, G. Combined effects of climate and land management on watershed vegetation dynamics in an arid environment. Sci. Total Environ. 2017, 2017, 73–88. [Google Scholar] [CrossRef] [PubMed]
- Brinkmann, K.; Dickhoefer, U.; Schlecht, E.; Buerkert, A. Quantification of above ground range land productivity and anthropogenic degradation on the Arabian Peninsula using Landsat imagery and field inventory data. Remote Sens. Environ. 2011, 115, 465–474. [Google Scholar] [CrossRef]
- Li, Z.H.; Deng, X.Z.; Yin, F.; Yang, C.Y. Analysis of climate and land use changes impacts on land degradation in the North China Plain. Adv. Meteorol. 2015, 2015, 976370. [Google Scholar] [CrossRef]
- Du, Z.Q.; Zhang, X.Y.; Xu, X.M.; Zhang, H.; Wu, Z.T.; Pang, J. Quantifying influences of physiographic factors on temperate dryland vegetation, Northwest China. Sci. Rep. 2017, 2017, 40092. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Z.; Dai, J.H.; Ge, Q.S. Variation in vegetation greenness in spring across eastern China during 1982–2006. J. Geogr. Sci. 2013, 23, 45–56. [Google Scholar] [CrossRef]
- Guo, L.H.; Wu, S.H.; Zhao, D.S.; Yin, Y.H.; Leng, G.Y.; Zhang, Q.Y. NDVI-Based vegetation change in Inner Mongolia from 1982 to 2006 and its relationship to climate at the biome scale. Adv. Meteorol. 2014, 2014, 692068. [Google Scholar] [CrossRef]
- Song, Y.; Ma, M.G. A statistical analysis of the relationship between climatic factors and the Normalized Difference Vegetation Index in China. Int. J. Remote Sens. 2011, 32, 3947–3965. [Google Scholar] [CrossRef]
- Nan, Y.; Ji, Z.; Dong, Y.H.; Ni, X.J. Study of land use/cover dynamic change in Tumen River across national border region during the last 30 years. J. Nat. Sci. Hunan Norm. Univ. 2012, 35, 82–89. [Google Scholar]
- Xu, L.L.; Li, B.L.; Yuan, Y.C.; Gao, X.Z.; Zhang, T.; Sun, Q.L. Detecting different types of directional land cover changes using MODIS NDVI time series dataset. Remote Sens. 2016, 8, 495. [Google Scholar] [CrossRef]
Change Categories | Growing Season (%) | Spring (%) | Summer (%) | Autumn (%) |
---|---|---|---|---|
Highly significant decrease | 1.49 | 1.21 | 1.39 | 0.55 |
Significant decrease | 1.16 | 1.37 | 1.62 | 0.85 |
Significant increase | 16.12 | 7.45 | 9.40 | 12.33 |
Highly significant increase | 20.81 | 3.11 | 9.51 | 7.80 |
Vegetation Types | China (year−1) | DPR Korea (year−1) | Russia (year−1) | TRB (year−1) |
---|---|---|---|---|
Forested land | 0.0027 | 0.0017 | 0.0016 | 0.0021 |
Cropland | 0.0021 | 0.0015 | 0.0015 | 0.0017 |
Grassland | 0.0019 | 0.0016 | 0.0015 | 0.0016 |
Other (urban and barren land) | 0.0012 | 0.0011 | 0.0013 | 0.0012 |
mean | 0.0020 | 0.0015 | 0.0015 | 0.0017 |
Season | Significantly Positive (%) | No Significant (%) | Significantly Negative (%) |
---|---|---|---|
Growing season | 21.26 | 75.78 | 2.95 |
Spring | 19.50 | 78.16 | 2.34 |
Summer | 16.72 | 80.34 | 2.94 |
Autumn | 19.61 | 79.30 | 1.09 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, C.; Zhang, Y.; Wang, Z.; Liu, L.; Zhang, H.; Jo, Y. The Driving Force Analysis of NDVI Dynamics in the Trans-Boundary Tumen River Basin between 2000 and 2015. Sustainability 2017, 9, 2350. https://doi.org/10.3390/su9122350
Kang C, Zhang Y, Wang Z, Liu L, Zhang H, Jo Y. The Driving Force Analysis of NDVI Dynamics in the Trans-Boundary Tumen River Basin between 2000 and 2015. Sustainability. 2017; 9(12):2350. https://doi.org/10.3390/su9122350
Chicago/Turabian StyleKang, CholHyok, Yili Zhang, Zhaofeng Wang, Linshan Liu, Huamin Zhang, and Yilgwang Jo. 2017. "The Driving Force Analysis of NDVI Dynamics in the Trans-Boundary Tumen River Basin between 2000 and 2015" Sustainability 9, no. 12: 2350. https://doi.org/10.3390/su9122350
APA StyleKang, C., Zhang, Y., Wang, Z., Liu, L., Zhang, H., & Jo, Y. (2017). The Driving Force Analysis of NDVI Dynamics in the Trans-Boundary Tumen River Basin between 2000 and 2015. Sustainability, 9(12), 2350. https://doi.org/10.3390/su9122350