Efficacy of Landfill Tax and Subsidy Policies for the Emergence of Industrial Symbiosis Networks: An Agent-Based Simulation Study
Abstract
:1. Introduction
2. Theoretical Background
2.1. A complex Adaptive Systems Approach for Self-Organized ISNs
2.2. Agent-Based Modeling
2.3. Policy Measures Supporting Self-Organized ISNs
3. Methods
3.1. The Agent-Based Model of a Generic ISN
3.2. The Agent-Based Model Dynamics
3.3. Policy Measures Investigated
3.4. Simulation Analysis
4. Results and Discussion
4.1. Simulation Results
4.2. Monetary Flows Generated by Policy Measures
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chertow, M.R. Industrial Symbiosis: Literature and Taxonomy. Annu. Rev. Energy Environ. 2000, 25, 313–337. [Google Scholar] [CrossRef]
- Fraccascia, L.; Magno, M.; Albino, V. Business models for industrial symbiosis: A guide for firms. Procedia Environ. Sci. Eng. Manag. 2016, 3, 83–93. [Google Scholar]
- Mirata, M. Experiences from early stages of a national industrial symbiosis programme in the UK: Determinants and coordination challenges. J. Clean. Prod. 2004, 12, 967–983. [Google Scholar] [CrossRef]
- Esty, D.C.; Porter, M.E. Industrial Ecology and Competitiveness. J. Ind. Ecol. 1998, 2, 35–43. [Google Scholar] [CrossRef]
- Albino, V.; Fraccascia, L.; Savino, T. Industrial Symbiosis for a Sustainable City: Technical, Economical and Organizational Issues. Procedia Eng. 2015, 118, 950–957. [Google Scholar] [CrossRef]
- Wang, H.; Xu, X.; Zhu, G. Landscape Changes and a Salt Production Sustainable Approach in the State of Salt Pan Area Decreasing on the Coast of Tianjin, China. Sustainability 2015, 7, 10078–10097. [Google Scholar] [CrossRef]
- European Commission. Roadmap to a Resource Efficient Europe; European Commission: Bruxelles, Belgium, 2011. [Google Scholar]
- European Commission. Closing the Loop—An EU action plan for the Circular Economy; European Commission: Bruxelles, Belgium, 2015. [Google Scholar]
- Fichtner, W.; Tietze-Stöckinger, I.; Frank, M.; Rentz, O. Barriers of interorganisational environmental management: Two case studies on industrial symbiosis. Prog. Ind. Ecol. Int. J. 2005, 2, 73–88. [Google Scholar] [CrossRef]
- Hage, J.; Alter, C. A Typology of interorganizational relationships and networks. In Contemporary Capitalism: The Embeddedness of Institutions; Rogers Hollingsworth, J., Boyer, R., Eds.; Cambridge University Press: New York, NY, USA, 1997; pp. 94–126. [Google Scholar]
- Chertow, M.R. “Uncovering” Industrial Symbiosis. J. Ind. Ecol. 2007, 11, 11–30. [Google Scholar] [CrossRef]
- Doménech, T.; Davies, M. The role of Embeddedness in Industrial Symbiosis Networks: Phases in the Evolution of Industrial Symbiosis Networks. Bus. Strategy Environ. 2011, 20, 281–296. [Google Scholar] [CrossRef]
- Jacobsen, N.B. Industrial Symbiosis in Kalundborg, Denmark: A Quantitative Assessment of Economic and Environmental Aspects. J. Ind. Ecol. 2006, 10, 239–255. [Google Scholar] [CrossRef]
- Garner, A.; Keoleian, G.A. Industrial Ecology: An Introduction; University of Michigan: Ann Arbor, MI, USA, 1995. [Google Scholar]
- Tudor, T.; Adam, E.; Bates, M. Drivers and limitations for the successful development and functioning of EIPs (eco-industrial parks): A literature review. Ecol. Econ. 2007, 61, 199–207. [Google Scholar] [CrossRef]
- Fraccascia, L.; Giannoccaro, I.; Albino, V. Rethinking Resilience in Industrial Symbiosis: Conceptualization and measurements. Ecol. Econ. 2017, 137, 148–162. [Google Scholar] [CrossRef]
- Paquin, R.L.; Busch, T.; Tilleman, S.G. Creating Economic and Environmental Value through Industrial Symbiosis. Long Range Plan. 2015, 48, 95–107. [Google Scholar] [CrossRef]
- Costa, I.; Ferrão, P. A case study of industrial symbiosis development using a middle-out approach. J. Clean. Prod. 2010, 18, 984–992. [Google Scholar] [CrossRef]
- Gibbs, D.; Deutz, P. Reflections on implementing industrial ecology through eco-industrial park development. J. Clean. Prod. 2007, 15, 1683–1695. [Google Scholar] [CrossRef]
- Costa, I.; Massard, G.; Agarwal, A. Waste management policies for industrial symbiosis development: Case studies in European countries. J. Clean. Prod. 2010, 18, 815–822. [Google Scholar] [CrossRef]
- Boons, F.; Chertow, M.; Park, J.; Spekkink, W.; Shi, H. Industrial Symbiosis Dynamics and the Problem of Equivalence: Proposal for a Comparative Framework. J. Ind. Ecol. 2016. [Google Scholar] [CrossRef]
- Ohnishi, S.; Fujita, T.; Chen, X.; Fujii, M. Econometric analysis of the performance of recycling projects in Japanese Eco-Towns. J. Clean. Prod. 2012, 33, 217–225. [Google Scholar] [CrossRef]
- Shi, H.; Chertow, M.; Song, Y. Developing country experience with eco-industrial parks: A case study of the Tianjin Economic-Technological Development Area in China. J. Clean. Prod. 2010, 18, 191–199. [Google Scholar] [CrossRef]
- Behera, S.K.; Kim, J.-H.; Lee, S.-Y.; Suh, S.; Park, H.-S. Evolution of “designed” industrial symbiosis networks in the Ulsan Eco-industrial Park: “Research and development into business” as the enabling framework. J. Clean. Prod. 2012, 29, 103–112. [Google Scholar] [CrossRef]
- Jiao, W.; Boons, F. Toward a research agenda for policy intervention and facilitation to enhance industrial symbiosis based on a comprehensive literature review. J. Clean. Prod. 2014, 67, 14–25. [Google Scholar] [CrossRef]
- Chertow, M.R. Dynamics of geographically based industrial ecosystems. In The Dynamics of Regions and Networks in Industrial Ecosystems; Ruth, M., Davidsdottir, B., Eds.; Edward Elgar: Cheltenham, UK; Northampton, MA, USA, 2009. [Google Scholar]
- Chertow, M.R.; Ehrenfeld, J. Organizing Self-Organizing Systems. J. Ind. Ecol. 2012, 16, 13–27. [Google Scholar] [CrossRef]
- Albino, V.; Fraccascia, L.; Giannoccaro, I. Exploring the role of contracts to support the emergence of self-organized industrial symbiosis networks: An agent-based simulation study. J. Clean. Prod. 2016, 112, 4353–4366. [Google Scholar] [CrossRef]
- Dooley, K.J. A Complex Adaptive Systems Model of Organization Change. Nonlinear Dyn. Psychol. Life Sci. 1997, 1, 69–97. [Google Scholar] [CrossRef]
- Holland, J.H. Hidden Order: How Adaptation Builds Complexity; Addison-Wesley: Reading, MA, USA, 1995. [Google Scholar]
- Holland, J.H. Complex Adaptive Systems and Spontaneous Emergence. In Complexity and Industrial Clusters; Quadro Curzio, A., Fortis, M., Eds.; Physica-Verlag HD: Heidelberg, Germany, 2002; pp. 25–34. [Google Scholar]
- Lou, H.; Kulkarni, M.A.; Singh, A.; Huang, Y. A game theory based approach for emergy analysis of industrial ecosystem under uncertainty. Clean Technol. Environ. Policy 2004, 6, 156–161. [Google Scholar] [CrossRef]
- Ehrenfeld, J.; Gertler, N. Industrial Ecology in Practice: The Evolution of Interdependence at Kalundborg. J. Ind. Ecol. 1997, 1, 67–79. [Google Scholar] [CrossRef]
- Goldstein, J. Emergence as a Construct: History and Issues. Emergence 1999, 1, 49–72. [Google Scholar] [CrossRef]
- Arthur, W.B. Increasing Returns and Path Dependence in the Economy; The University of Michigan Press: Ann Arbor, MI, USA, 1994. [Google Scholar]
- David, P.A. Why are institutions the “carriers of history”: Path dependence and the evolution of conventions, organizations and institutions. Struct. Chang. Econ. Dyn. 1994, 5, 205–220. [Google Scholar] [CrossRef]
- Levin, S.A. Ecosystems and the Biosphere as Complex Adaptive Systems. Ecosystems 1998, 1, 431–436. [Google Scholar] [CrossRef]
- Choi, T.Y.; Dooley, K.J.; Rungtusanatham, M. Supply networks and complex adaptive systems: Control versus emergence. J. Oper. Manag. 2001, 19, 351–366. [Google Scholar] [CrossRef]
- Capaldo, A.; Giannoccaro, I. How does trust affect performance in the supply chain? The moderating role of interdependence. Int. J. Prod. Econ. 2015, 166, 36–49. [Google Scholar] [CrossRef]
- Capaldo, A.; Giannoccaro, I. Interdependence and network-level trust in supply chain networks: A computational study. Ind. Mark. Manag. 2015, 44, 180–195. [Google Scholar] [CrossRef]
- Giannoccaro, I. Adaptive supply chains in industrial districts: A complexity science approach focused on learning. Int. J. Prod. Econ. 2015, 170, 576–589. [Google Scholar] [CrossRef]
- Giannoccaro, I. Assessing the influence of the organization in the supply chain management using NK simulation. Int. J. Prod. Econ. 2011, 131, 263–272. [Google Scholar] [CrossRef]
- Liwarska-Bizukojc, E.; Bizukojc, M.; Marcinkowski, A.; Doniec, A. The conceptual model of an eco-industrial park based upon ecological relationships. J. Clean. Prod. 2009, 17, 732–741. [Google Scholar] [CrossRef]
- Seuring, S. Industrial ecology, life cycles, supply chains: Differences and interrelations. Bus. Strateg. Environ. 2004, 13, 306–319. [Google Scholar] [CrossRef]
- Côté, R.; Hall, J. Industrial parks as ecosystems. J. Clean. Prod. 1995, 3, 41–46. [Google Scholar] [CrossRef]
- Ashton, W.S. Managing Performance Expectations of Industrial Symbiosis. Bus. Strateg. Environ. 2011, 20, 297–309. [Google Scholar] [CrossRef]
- Lyons, D. A Spatial Analysis of Loop Closing Among Recycling, Remanufacturing, and Waste Treatment Firms in Texas. J. Ind. Ecol. 2007, 11, 43–54. [Google Scholar] [CrossRef]
- Fraccascia, L.; Albino, V.; Garavelli, C.A. Technical efficiency measures of industrial symbiosis networks using enterprise input-output analysis. Int. J. Prod. Econ. 2017, 183, 273–286. [Google Scholar] [CrossRef]
- Yuan, Z.; Shi, L. Improving enterprise competitive advantage with industrial symbiosis: Case study of a smeltery in China. J. Clean. Prod. 2009, 17, 1295–1302. [Google Scholar] [CrossRef]
- Sinding, K. Environmental management beyond the boundaries of the firm: Definitions and constraints. Bus. Strategy Environ. 2000, 9, 79–91. [Google Scholar] [CrossRef]
- Yazan, D.M.; Fraccascia, L.; Albino, V.; Zijm, H. Cooperation in industrial symbiosis business models: An agent-based modelling approach. In Proceedings of the ISIE Americas Meeting 2016 “Industrial Ecology and Green Transformation”, Bogotà, Colombia, 25–27 May 2016. [Google Scholar]
- Axelrod, R. The Complexity of Cooperation: Agent-Based Models of Competition and Collaboration; Princeton University Press: Princeton, NJ, USA, 1997. [Google Scholar]
- Weiss, G. Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence; The MIT Press: Cambrigde, MA, USA; London, UK, 1999. [Google Scholar]
- Bonabeau, E. Agent-based modeling: Methods and techniques for simulating human systems. Proc. Natl. Acad. Sci. USA 2002, 99, 7280–7287. [Google Scholar] [CrossRef] [PubMed]
- Macal, C.M.; North, M.J. Tutorial on agent-based modelling and simulation. J. Simul. 2010, 4, 151–162. [Google Scholar] [CrossRef]
- Deissenberg, C.; van der Hoog, S.; Dawid, H. EURACE: A massively parallel agent-based model of the European economy. Appl. Math. Comput. 2008, 204, 541–552. [Google Scholar] [CrossRef]
- Samanidou, E.; Zschischang, E.; Stauffer, D.; Lux, T. Agent-based models of financial markets. Rep. Prog. Phys. 2007, 70, 409–450. [Google Scholar] [CrossRef]
- Rand, W.; Rust, R.T. Agent-based modeling in marketing: Guidelines for rigor. Int. J. Res. Mark. 2011, 28, 181–193. [Google Scholar] [CrossRef]
- Shen, W.; Norrie, D.H. Agent-Based Systems for Intelligent Manufacturing: A State-of-the-Art Survey. Knowl. Inf. Syst. Int. J. 1999, 1, 129–156. [Google Scholar] [CrossRef]
- Albino, V.; Carbonara, N.; Giannoccaro, I. Innovation in industrial districts: An agent-based simulation model. Int. J. Prod. Econ. 2006, 104, 30–45. [Google Scholar] [CrossRef]
- Jiao, J.; You, X.; Kumar, A. An agent-based framework for collaborative negotiation in the global manufacturing supply chain network. Robot. Comput. Integr. Manuf. 2006, 22, 239–255. [Google Scholar] [CrossRef]
- Albino, V.; Carbonara, N.; Giannoccaro, I. Supply Chain Management models for Industrial Districts: An Agent-Based Simulation study. Int. J. Intell. Syst. Technol. Appl. 2009, 6, 332–348. [Google Scholar] [CrossRef]
- Albino, V.; Carbonara, N.; Giannoccaro, I. Supply chain cooperation in industrial districts: A simulation analysis. Eur. J. Oper. Res. 2007, 177, 261–280. [Google Scholar] [CrossRef]
- Batten, D.F. Fostering Industrial Symbiosis With Agent-Based Simulation and Participatory Modeling. J. Ind. Ecol. 2009, 13, 197–213. [Google Scholar] [CrossRef]
- Romero, E.; Ruiz, M.C. Proposal of an agent-based analytical model to convert industrial areas in industrial eco-systems. Sci. Total Environ. 2014, 468–469, 394–405. [Google Scholar] [CrossRef] [PubMed]
- Yazdanpanah, V.; Yazan, D.M.; Zijm, W.H.M. Normative Industrial Symbiotic Networks: A Position Paper. In Proceedings of the 14th European Conference on Multi-Agent Systems, Valencia, Spain, 14–19 December 2016. [Google Scholar]
- Cao, K.; Feng, X.; Wan, H. Applying agent-based modeling to the evolution of eco-industrial systems. Ecol. Econ. 2009, 68, 2868–2876. [Google Scholar] [CrossRef]
- Chertow, M.R.; Lombardi, D.R. Quantifying Economic and Environmental Benefits of Co-Located Firms. Environ. Sci. Technol. 2005, 39, 6535–6541. [Google Scholar] [CrossRef] [PubMed]
- Deutz, P.; Ioppolo, G. From Theory to Practice: Enhancing the Potential Policy Impact of Industrial Ecology. Sustainability 2015, 7, 2259–2273. [Google Scholar] [CrossRef]
- Lehtoranta, S.; Nissinen, A.; Mattila, T. Industrial symbiosis and the policy instruments of sustainable consumption and production. J. Clean. Prod. 2011, 19, 1865–1875. [Google Scholar] [CrossRef]
- Van Berkel, R.; Fujita, T.; Hashimoto, S.; Fujii, M. Quantitative Assessment of Urban and Industrial Symbiosis in Kawasaki, Japan. Environ. Sci. Technol. 2009, 43, 1271–1281. [Google Scholar] [CrossRef] [PubMed]
- Park, J.M.; Park, J.Y.; Park, H.-S. A review of the National Eco-Industrial Park Development Program in Korea: Progress and achievements in the first phase, 2005–2010. J. Clean. Prod. 2016, 114, 33–44. [Google Scholar] [CrossRef]
- Trokanas, N.; Cecelja, F.; Raafat, T. Semantic input/output matching for waste processing in industrial symbiosis. Comput. Chem. Eng. 2014, 66, 259–268. [Google Scholar] [CrossRef]
- Luciano, A.; Barberio, G.; Mancuso, E.; Sbaffoni, S.; La Monica, M.; Scagliarino, C.; Cutaia, L. Potential Improvement of the Methodology for Industrial Symbiosis Implementation at Regional Scale. Waste Biomass Valoriz. 2016, 7, 1007–1015. [Google Scholar] [CrossRef]
- Yazan, D.M.; Romano, V.A.; Albino, V. The design of industrial symbiosis: An input–output approach. J. Clean. Prod. 2016, 129, 537–547. [Google Scholar] [CrossRef]
- Yazan, D.M. Constructing joint production chains: An enterprise input-output approach for alternative energy use. Resour. Conserv. Recycl. 2016, 107, 38–52. [Google Scholar] [CrossRef]
- Yang, S.; Feng, N. A case study of industrial symbiosis: Nanning Sugar Co., Ltd. in China. Resour. Conserv. Recycl. 2008, 52, 813–820. [Google Scholar] [CrossRef]
- Zhu, Q.; Lowe, E.A.; Wei, Y.; Barnes, D. Industrial Symbiosis in China: A Case Study of the Guitang Group. J. Ind. Ecol. 2007, 11, 31–42. [Google Scholar] [CrossRef]
- Pathak, S.D.; Day, J.M.; Nair, A.; Sawaya, W.J.; Kristal, M.M. Complexity and Adaptivity in Supply Networks: Building Supply Network Theory Using a Complex Adaptive Systems Perspective. Decis. Sci. 2007, 38, 547–580. [Google Scholar] [CrossRef]
- Reeves, M.; Deimler, M. Adaptability: The New Competitive Advantage. Harward Bus. Rev. 2011, 89, 134–141. [Google Scholar]
- Organisation for Economic Co-operation and Development (OECD). Addressing the Economics of Waste; OECD: Paris, France, 2004. [Google Scholar]
- Ferrara, I.; Missios, P. Recycling and Waste Diversion Effectiveness: Evidence from Canada. Environ. Resour. Econ. 2005, 30, 221–238. [Google Scholar] [CrossRef]
- Zaman, A.U.; Lehmann, S. Urban growth and waste management optimization towards “zero waste city”. City Cult. Soc. 2011, 2, 177–187. [Google Scholar] [CrossRef]
- Ajayi, S.O.; Oyedele, L.O.; Bilal, M.; Akinade, O.O.; Alaka, H.A.; Owolabi, H.A.; Kadiri, K.O. Waste effectiveness of the construction industry: Understanding the impediments and requisites for improvements. Resour. Conserv. Recycl. 2015, 102, 101–112. [Google Scholar] [CrossRef]
- Yuan, H.; Wang, J. A system dynamics model for determining the waste disposal charging fee in construction. Eur. J. Oper. Res. 2014, 237, 988–996. [Google Scholar] [CrossRef]
- Nicolli, F.; Mazzanti, M. Landfill diversion in a decentralized setting: A dynamic assessment of landfill taxes. Resour. Conserv. Recycl. 2013, 81, 17–23. [Google Scholar] [CrossRef]
- Calvo, N.; Varela-Candamio, L.; Novo-Corti, I. A Dynamic Model for Construction and Demolition (C&D) Waste Management in Spain: Driving Policies Based on Economic Incentives and Tax Penalties. Sustainability 2014, 6, 416–435. [Google Scholar]
- Mazzanti, M.; Montini, A.; Nicolli, F. The dynamics of landfill diversion: Economic drivers, policy factors and spatial issues. Resour. Conserv. Recycl. 2009, 54, 53–61. [Google Scholar] [CrossRef]
Industry | Main Product | Input | Waste |
---|---|---|---|
I1 | sugar | fertilizer | molasses |
I2 | alcohol | molasses | alcohol slops |
I3 | fertilizer | alcohol slops | waste fertilizer |
Industry | Main Product Average Demand | R | Input Purchasing Cost | W | Waste Disposal Cost |
---|---|---|---|---|---|
I1 | 450,000 t/year | 0.044 | 4000 €/t | 0.2 | 90 €/t |
I2 | 25,000 t/year | 4 | 80 €/t | 0.8 | 90 €/t |
I3 | 30,000 t/year | 0.4 | 70 €/t | 0.1 | 90 €/t |
Policy Measure | Values |
---|---|
Landfill tax (LT) | 0 €/t, 9 €/t, 18 €/t, 27 €/t |
Economic subsidy (S) | 0 €/t, 9 €/t, 18 €/t, 27 €/t |
Variable | Modeling Variable | Values |
---|---|---|
Environmental uncertainty (EU) | Standard deviation of the main product demand | 0.1, 0.2, 0.3, 0.4 |
Environmental turbulence (ET) | Number of time periods the main product demand is fixed | 5, 1 |
EU = 0.1 | EU = 0.2 | EU = 0.3 | EU = 0.4 | |
---|---|---|---|---|
Low ET | 78.13 | 71.09 | 67.42 | 66.43 |
(2.37) | (2.88) | (3.18) | (2.96) | |
High ET | 60.15 | 49.42 | 44.91 | 44.39 |
(2.98) | (3.39) | (3.60) | (3.64) |
Landfill Tax Policy | Subsidy Policy | ||||||||
---|---|---|---|---|---|---|---|---|---|
LT = 9 | S = 9 | ||||||||
EU = 0.1 | EU = 0.2 | EU = 0.3 | EU = 0.4 | EU = 0.1 | EU = 0.2 | EU = 0.3 | EU = 0.4 | ||
Low ET | 85.75 | 75.92 | 71.43 | 67.44 | Low ET | 87.47 | 76.98 | 72.57 | 68.39 |
(2.01) | (2.53) | (2.80) | (2.74) | (1.98) | (2.46) | (3.04) | (3.01) | ||
Δ% | +9.74 | +6.79 | +5.94 | +1.53 | Δ% | +11.95 | +8.28 | +7.63 | +2.96 |
High ET | 70.44 | 54.16 | 49.01 | 46.18 | High ET | 72.92 | 55.88 | 48.95 | 47.07 |
(2.80) | (3.91) | (3.19) | (3.44) | (3.16) | (2.84) | (3.40) | (3.15) | ||
Δ% | +17.10 | +9.59 | +9.13 | +4.02 | Δ% | +21.22 | +13.07 | +9.00 | +6.02 |
LT = 18 | S = 18 | ||||||||
EU = 0.1 | EU = 0.2 | EU = 0.3 | EU = 0.4 | EU = 0.1 | EU = 0.2 | EU = 0.3 | EU = 0.4 | ||
Low ET | 90.68 | 79.63 | 74.57 | 70.24 | Low ET | 92.47 | 81.19 | 75.43 | 71.79 |
(1.77) | (3.19) | (2.58) | (3.04) | (1.56) | (2.20) | (2.70) | (3.25) | ||
Δ% | +16.06 | +12.01 | +10.60 | +5.74 | Δ% | +18.34 | +14.20 | +11.89 | +8.07 |
High ET | 79.28 | 59.48 | 52.77 | 49.34 | High ET | 82.34 | 61.33 | 53.88 | 49.89 |
(2.36) | (2.84) | (4.07) | (3.69) | (2.50) | (3.44) | (3.87) | (3.28) | ||
Δ% | +31.80 | +20.36 | +17.50 | +11.14 | Δ% | +36.88 | +24.11 | +19.97 | +12.39 |
LT = 27 | S = 27 | ||||||||
EU = 0.1 | EU = 0.2 | EU = 0.3 | EU = 0.4 | EU = 0.1 | EU = 0.2 | EU = 0.3 | EU = 0.4 | ||
Low ET | 93.78 | 82.33 | 76.70 | 72.55 | Low ET | 95.57 | 84.61 | 78.27 | 73.59 |
(1.34) | (2.76) | (2.82) | (3.09) | (1.30) | (2.22) | (2.55) | (2.61) | ||
Δ% | +20.03 | +15.81 | +13.76 | +9.21 | Δ% | +22.31 | +19.01 | +16.10 | +10.78 |
High ET | 84.97 | 62.78 | 54.83 | 50.91 | High ET | 88.93 | 66.60 | 57.31 | 51.93 |
(2.24) | (3.35) | (3.49) | (4.20) | (1.86) | (3.37) | (3.16) | (4.03) | ||
Δ% | +41.26 | +27.03 | +22.09 | +14.67 | Δ% | +47.84 | +34.76 | +27.59 | +16.98 |
S = 9 LT = 9 | S = 9 LT = 18 | ||||||||
EU = 0.1 | EU = 0.2 | EU = 0.3 | EU = 0.4 | EU = 0.1 | EU = 0.2 | EU = 0.3 | EU = 0.4 | ||
Low ET | 91.82 | 80.09 | 74.07 | 70.82 | Low ET | 94.08 | 83.23 | 76.71 | 72.88 |
(1.85) | (2.46) | (3.16) | (2.95) | (1.33) | (2.51) | (2.88) | (3.41) | ||
Δ% | +17.52 | +12.65 | +9.87 | +6.61 | Δ% | +20.41 | +17.08 | +13.78 | +9.71 |
High ET | 80.22 | 59.15 | 52.49 | 48.89 | High ET | 86.30 | 64.09 | 56.01 | 50.85 |
(2.29) | (3.20) | (3.78) | (3.54) | (2.19) | (3.58) | (3.27) | (3.65) | ||
Δ% | +33.36 | +19.70 | +16.88 | +10.14 | Δ% | +43.47 | +29.68 | +24.70 | +14.55 |
S = 9 LT = 27 | S = 18 LT = 9 | ||||||||
EU = 0.1 | EU = 0.2 | EU = 0.3 | EU = 0.4 | EU = 0.1 | EU = 0.2 | EU = 0.3 | EU = 0.4 | ||
Low ET | 95.73 | 84.72 | 79.03 | 73.72 | Low ET | 95.11 | 83.55 | 77.23 | 73.61 |
(1.26) | (2.46) | (2.37) | (3.17) | (1.43) | (2.09) | (2.77) | (2.81) | ||
Δ% | +22.53 | +19.17 | +17.22 | +10.98 | Δ% | +21.73 | +17.52 | +14.55 | +10.82 |
High ET | 90.08 | 67.60 | 58.51 | 53.23 | High ET | 87.67 | 64.99 | 56.01 | 51.54 |
(1.95) | (3.85) | (3.75) | (3.24) | (2.11) | (2.79) | (3.83) | (3.39) | ||
Δ% | +49.75 | +36.79 | +30.28 | +19.90 | Δ% | +45.75 | +31.50 | +24.71 | +16.10 |
S = 18 LT = 18 | S = 18 LT = 27 | ||||||||
EU = 0.1 | EU = 0.2 | EU = 0.3 | EU = 0.4 | EU = 0.1 | EU = 0.2 | EU = 0.3 | EU = 0.4 | ||
Low ET | 96.08 | 85.87 | 78.62 | 74.51 | Low ET | 97.35 | 86.86 | 80.84 | 75.62 |
(1.26) | (2.39) | (2.48) | (2.90) | (1.01) | (2.10) | (2.60) | (2.63) | ||
Δ% | +22.97 | +20.78 | +16.62 | +12.17 | Δ% | +24.60 | +22.18 | +19.91 | +13.84 |
High ET | 90.86 | 68.63 | 59.29 | 53.65 | High ET | 92.36 | 71.37 | 60.21 | 54.43 |
(1.84) | (3.45) | (3.65) | (3.40) | (1.32) | (3.31) | (3.73) | (3.85) | ||
Δ% | +51.05 | +38.87 | +32.01 | +20.86 | Δ% | +53.54 | +44.41 | +34.05 | +22.62 |
S = 27 LT = 9 | S = 27 LT = 18 | ||||||||
EU = 0.1 | EU = 0.2 | EU = 0.3 | EU = 0.4 | EU = 0.1 | EU = 0.2 | EU = 0.3 | EU = 0.4 | ||
Low ET | 96.51 | 86.22 | 79.57 | 75.11 | Low ET | 97.37 | 87.35 | 80.56 | 76.51 |
(1.32) | (2.13) | (2.82) | (2.75) | (1.02) | (1.95) | (2.60) | (2.74) | ||
Δ% | +23.52 | +21.28 | +18.02 | +13.08 | Δ% | +24.62 | +22.87 | +19.49 | +15.18 |
High ET | 91.89 | 69.99 | 58.96 | 54.66 | High ET | 93.28 | 71.85 | 61.25 | 55.56 |
(1.70) | (2.98) | (3.83) | (3.34) | (1.59) | (3.06) | (3.24) | (3.63) | ||
Δ% | +52.75 | +41.62 | +31.28 | +23.13 | Δ% | +55.07 | +45.39 | +36.37 | +25.15 |
S = 27 LT = 27 | |||||||||
EU = 0.1 | EU = 0.2 | EU = 0.3 | EU = 0.4 | ||||||
Low ET | 97.69 | 88.11 | 82.15 | 76.76 | |||||
(0.80) | (1.87) | (2.40) | (2.74) | ||||||
Δ% | +25.03 | +23.94 | +21.85 | +15.55 | |||||
High ET | 94.01 | 73.48 | 63.12 | 57.19 | |||||
(1.51) | (3.05) | (3.90) | (3.76) | ||||||
Δ% | +56.28 | +48.69 | +40.53 | +28.83 |
Scenario | EU = 0.1 | EU = 0.2 | EU = 0.3 | EU = 0.4 | ||
---|---|---|---|---|---|---|
S = 0 | LT = 9 | Low ET | 11.43 | 16.50 | 18.13 | 20.21 |
High ET | 25.21 | 31.12 | 33.06 | 34.21 | ||
S = 0 | LT = 18 | Low ET | 20.26 | 31.38 | 36.99 | 40.74 |
High ET | 35.27 | 54.44 | 60.53 | 63.84 | ||
S = 0 | LT = 27 | Low ET | 22.55 | 41.12 | 49.39 | 56.18 |
High ET | 37.54 | 72.86 | 84.74 | 91.37 | ||
S = 9 | LT = 0 | Low ET | −83.33 | −73.26 | −69.75 | −65.32 |
High ET | −61.20 | −48.39 | −43.96 | −42.76 | ||
S = 18 | LT = 0 | Low ET | −184.14 | −159.16 | −148.63 | −141.37 |
High ET | −155.85 | −114.46 | −100.81 | −93.42 | ||
S = 27 | LT = 0 | Low ET | −290.58 | −255.11 | −234.78 | −218.87 |
High ET | −264.82 | −195.94 | −165.53 | −149.64 | ||
S = 9 | LT = 9 | Low ET | −81.34 | −63.08 | −53.69 | −48.90 |
High ET | −58.34 | −28.49 | −19.14 | −14.85 | ||
S = 9 | LT = 18 | Low ET | −80.89 | −57.99 | −45.46 | −35.24 |
High ET | −62.45 | −16.20 | −0.08 | 13.33 | ||
S = 9 | LT = 27 | Low ET | −81.64 | −52.63 | −36.58 | −22.25 |
High ET | −66.84 | −8.03 | 17.24 | 33.44 | ||
S = 18 | LT = 9 | Low ET | −185.32 | −154.61 | −138.98 | −130.88 |
High ET | −163.23 | −102.75 | −77.93 | −66.13 | ||
S = 18 | LT = 18 | Low ET | −186.97 | −152.08 | −131.80 | −116.11 |
High ET | −171.33 | −97.26 | −66.64 | −47.88 | ||
S = 18 | LT = 27 | Low ET | −188.07 | −151.68 | −128.50 | −107.29 |
High ET | −178.03 | −96.27 | −52.45 | −25.23 | ||
S = 27 | LT = 9 | Low ET | −291.50 | −253.83 | −230.86 | −210.27 |
High ET | −275.75 | −191.86 | −150.45 | −130.99 | ||
S = 27 | LT = 18 | Low ET | −292.95 | −251.21 | −223.47 | −207.87 |
High ET | −282.11 | −190.05 | −139.11 | −111.61 | ||
S = 27 | LT = 27 | Low ET | −293.99 | −250.80 | −220.50 | −193.29 |
High ET | −285.68 | −187.83 | −132.05 | −100.97 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fraccascia, L.; Giannoccaro, I.; Albino, V. Efficacy of Landfill Tax and Subsidy Policies for the Emergence of Industrial Symbiosis Networks: An Agent-Based Simulation Study. Sustainability 2017, 9, 521. https://doi.org/10.3390/su9040521
Fraccascia L, Giannoccaro I, Albino V. Efficacy of Landfill Tax and Subsidy Policies for the Emergence of Industrial Symbiosis Networks: An Agent-Based Simulation Study. Sustainability. 2017; 9(4):521. https://doi.org/10.3390/su9040521
Chicago/Turabian StyleFraccascia, Luca, Ilaria Giannoccaro, and Vito Albino. 2017. "Efficacy of Landfill Tax and Subsidy Policies for the Emergence of Industrial Symbiosis Networks: An Agent-Based Simulation Study" Sustainability 9, no. 4: 521. https://doi.org/10.3390/su9040521
APA StyleFraccascia, L., Giannoccaro, I., & Albino, V. (2017). Efficacy of Landfill Tax and Subsidy Policies for the Emergence of Industrial Symbiosis Networks: An Agent-Based Simulation Study. Sustainability, 9(4), 521. https://doi.org/10.3390/su9040521