Willingness to Adopt Biochar in Agriculture: The Producer’s Perspective
Abstract
:1. Introduction
2. Methods
2.1. Literature Review
2.2. Survey
2.3. Study Side and Profile of Respondents
2.4. Follow-Up Interviews
2.5. Data Processing
3. Results and Discussion
3.1. Familiarity with Biochar
3.2. Willingness to Adopt Biochar in Agricultural Practice
3.3. What Drives Farmers’ Interest in Adopting Biochar?
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References and Notes
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science and Technology; Routledge: Abingdon, UK, 2012. [Google Scholar]
- Peake, L.; Freddo, A.; Reid, B.J. Sustaining soils and mitigating climate change using biochar. Sustain. Sci. Technol. 2014. [Google Scholar] [CrossRef]
- Haider, G.; Steffens, D.; Moser, G.; Müller, C.; Kammann, C.I. Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study. Agric. Ecosyst. Environ. 2017, 237, 80–94. [Google Scholar] [CrossRef]
- Vanclay, F. Social principles for agricultural extension to assist in the promotion of natural resource management. Aust. J. Exp. Agric. 2004, 44, 213–222. [Google Scholar] [CrossRef]
- Laird, D.A.; Fleming, P.; Davis, D.D.; Horton, R.; Wang, B.; Karlen, D.L. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 2010, 158, 443–449. [Google Scholar] [CrossRef]
- Latawiec, A.E.; Strassburg, B.B.N.; Silva, D.; Alves-Pinto, H.N.; Feltran-Barbieri, R.; Castro, A.; Iribarrem, A.; Rangel, M.C.; Kalif, K.A.; Gardner, T.; et al. Improving land management in Brazil: A perspective from producers. Agric. Ecosyst. Environ. 2017, 240, 276–286. [Google Scholar] [CrossRef]
- Rasul, F.; Ahmad, A.; Arif, M.; Mian, I.A.; Ali, K.; Qayyum, M.F.; Hussain, Q.; Aon, M.; Latif, S.; Sakrabani, R.; et al. Biochar for Agriculture in Pakistan. Sustain. Agric. Rev. 2017, 22, 57–113. [Google Scholar]
- Hale, S.E.; Elmquist, M.; Brändli, R.; Hartnik, T.; Jakob, L.; Henriksen, T.; Werner, D.; Cornelissen, G. Activated carbon amendment to sequester PAHs in contaminated soil: A lysimeter field trial. Chemosphere 2012, 87, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Handzel, A.; Królczyk, J.B.; Latawiec, A.E.; Pluta, K.; Malina, D.; Sobczak-Kupiec, A. Analiza właściwości fizykochemicznych gleb i oznaczanie zawartości wybranych pierwiastków. Infrastrukt. Ekol. Teren. Wiej. 2017, I/2, 419–432. [Google Scholar]
- Latawiec, A.E.; Peake, L.; Baxter, H.; Cornelissen, G.; Grotkiewicz, K.; Hale, S.; Krolczyk, J.B.; Kubon, M.; Lopatka, A.; Medynska-Juraszek, A.; et al. A reconnaissance-scale GIS-based multicriteria decision analysis to support sustainable biochar use: Poland as a case study. J. Environ. Eng. Landsc. Manag. 2017. under review. [Google Scholar]
- Conte, P.; Schmidt, H.P.; Cimò, G. Research and application of biochar in Europe. In Agricultural and Environmental Applications of Biochar: Advances and Barriers; Soil Science Society of America, Inc.: Fitchburg, WI, USA, 2016; pp. 409–422. [Google Scholar] [CrossRef]
- Medyńska-Juraszek, A. Research report 2. INoGiOŚ 2014. [Google Scholar]
- Bis, Z. Biowęgiel—Powrót do przeszłości, szansa dla przyszłości. Czysta Energia 2012, 6, 28–31. [Google Scholar]
- Radawiec, W.; Dubicki, M.; Karwowska, A.; Żelazna, K.; Gołaszewski, J. Biochar from a digestate as an energy product and soil improver. Agric. Eng. 2014, 18, 149–156. [Google Scholar]
- Czekała, W.; Malińska, K.; Cáceres, R.; Janczak, D.; Dach, J.; Lewicki, A. Co-composting of poultry manure mixtures amended with biochar–The effect of biochar on temperature and C-CO2 emission. Bioresour. Technol. 2016, 200, 921–927. [Google Scholar] [CrossRef] [PubMed]
- Malińska, K.; Golańska, M.; Caceres, R.; Rorat, A.; Weisser, P.; Ślęzak, E. Biochar amendment for integrated composting and vermicomposting of sewage sludge–The effect of biochar on the activity of Eisenia fetida and the obtained vermicompost. Bioresource Technol. 2017, 225, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Malińska, K.; Zabochnicka-Świątek, M.; Dach, J. Effects of biochar amendment on ammonia emission during composting of sewage sludge. Ecol. Eng. 2014, 71, 474–478. [Google Scholar] [CrossRef]
- Malińska, K.; Zabochnicka-Świątek, M.; Cáceres, R.; Marfà, O. The effect of precomposted sewage sludge mixture amended with biochar on the growth and reproduction of Eisenia fetida during laboratory vermicomposting. Ecol. Eng. 2016, 90, 35–41. [Google Scholar] [CrossRef]
- Bogusz, A.; Oleszczuk, P. Phytotoxicity of biochars after the adsorption of heavy metals. In V Krajowa Konferencja Bioindykacyjna ”Praktyczne Wykorzystanie Systemów Bioindykacyjnych do Oceny Jakości i Toksyczności Środowiska i Substancji Chemicznych”; Seidel Przywecki: Józefosław, Poland, 2015. (In Polish) [Google Scholar]
- Zawadzka, D.; Szafraniec-Siluta, E. Kapitałochłonność a stopa inwestycji gospodarstw rolnych w Polsce na tle krajów UE. Stow. Ekon. Rol. Agrobiz. 2015, 17, 353–360. [Google Scholar]
- Malińska, K. Biowęgiel odpowiedzią na aktualne problemy ochrony środowiska. Inżynieria Ochrona Środowiska 2012, 15, 387–403. (In Polish) [Google Scholar]
- Central Statistical Office. Statistical Yearbook of Agriculture; Central Statistical Office: Warsaw, Poland, 2013; ISSN 2080-8798. [Google Scholar]
- Grotkiewicz, K.; Michałek, R.; Kuboń, M.; Peszek, A. Postęp Naukowo-Techniczny w Procesie Modernizacji Polskiego Rolnictwa i Obszarów Wiejskich; Polish Society of Agricultural Engineering in Krakow: Kraków, Poland, 2013; ISBN 978-83-935020-5-9. (In Polish) [Google Scholar]
- Królczyk, J.B.; Latawiec, A.E.; Kuboń, M. Sustainable Agriculture-the Potential to Increase Wheat and Rapeseed Yields in Poland. Pol. J. Environ. Stud. 2014, 23, 663–672. [Google Scholar]
- Michałek, R.; Grotkiewicz, K. Miejsce i rola postępu naukowego w warunkach rolnictwa zrównoważonego. Problemy Inżynierii Rolniczej 2010, 1, 1–8. [Google Scholar]
- Foresight. The Future of Food and Farming; Final Project Report; The Government Office for Science: London, UK, 2011.
- Shih-Hao, J.; Chung-Chi, W.; Chia-Hsing, L.; Tsung-Yu, L. Stabilization of Organic Matter by Biochar Application in Compost-amended Soils with Contrasting pH Values and Textures. Sustainability 2015, 7, 13317–13333. [Google Scholar]
- Shackley, S.; Ruysschaert, G.; Zwart, K.; Glaser, B. Biochar in European Soils and Agriculture; Routledge: London, UK; New York, NY, USA, 2016. [Google Scholar]
- Bjerregaard, P.P.; Georg, S. The Social Shaping of Technology—A Case Study of Biochar in Denmark. 2011. Available online: http://studenttheses.cbs.dk/bitstream/handle/10417/1766/peter_poul_bjerregaard.pdf?sequence=1 (accessed on 5 January 2016).
- Edward-Jones, G. Modelling farmer decision-making: Concepts, progress and challenges. Anim. Sci. 2006, 82, 783–790. [Google Scholar] [CrossRef]
- Thompson, J.; Scoones, I. Addressing the dynamics of agri-food systems: An emerging agenda for social science research. Environ. Sci. Policy 2009, 12, 386–397. [Google Scholar] [CrossRef]
- Clare, A.; Barnes, A.; McDonagh, J.; Shackley, S. From rhetoric to reality: Farmer perspectives on the economic potential of biochar in China. Int. J. Agric. Sustain. 2014, 12, 440–458. [Google Scholar] [CrossRef]
- Clare, A.; Shackley, S.; Joseph, S.; Hammond, J.; Pan, G.; Bloom, A. Competing uses for China’s straw: The economic and carbon abatement potential of biochar. Gcb Bioenergy 2015, 7, 1272–1282. [Google Scholar] [CrossRef]
- Brown, T.R.; Wright, M.M.; Brown, R.C. Estimating profitability of two biochar production scenarios: Slow pyrolysis vs fast pyrolysis. Soc. Chem. Ind. 2010, 5, 54–68. [Google Scholar] [CrossRef]
- Roberts, K.G.; Gloy, B.A.; Joseph, S.; Scott, N.R.; Lehmann, J. Life cycle assessment of biochar systems: Estimating the energetic, economic, and climate change potential. Environ. Sci. Technol. 2010, 44, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Shackley, S.; Hammond, J.; Gaunt, J.; Ibarrola, R. The feasibility and costs of biochar deployment in the UK. Carbon Manag. 2011, 2, 335–356. [Google Scholar] [CrossRef]
- Malińska, K. Prawne i jakościowe aspekty dotyczące wymagań dla biowęgla. Inżynieria Ochrona Środowiska 2015, 18, 359–371. (In Polish) [Google Scholar]
- Smith, P.; Gregory, P.J.; van Vuuren, D.; Obersteiner, M.; Havlik, P.; Rounsevell, M.; Woods, J.; Stehfest, E.; Bellarby, J. Competition for land. Philos. Trans. R. Soc. B 2010, 365, 2941–2957. [Google Scholar] [CrossRef] [PubMed]
- Halbrendt, J.; Gray, S.A.; Crow, S.; Radovich, T.; Kimura, A.H.; Tamang, B.B. Differences in farmer and expert beliefs and the perceived impacts of conservation agriculture. Glob. Environ. Chang. 2014, 28, 50–62. [Google Scholar] [CrossRef]
- Królczyk, J.B.; Latawiec, A.E. Sustainability indicators for agriculture in the European Union. In Sustainability Indicators; Latawiec, A., Agol, D., Eds.; DeGruyter: Warsaw, Poland; Berlin, Germany, 2015; pp. 182–204. [Google Scholar]
- Delaney, M.R. An Analysis of Biochar’s Appropriateness and Strategic Action Plan for Its Adoption and Diffusion in a High Poverty Context: The Case of Central Haiti; Arizona State University: Phoenix, AZ, USA, 2011. [Google Scholar]
- GreenFacts. Biochar Systems Using Biomass as an Energy Source for Developing Countries. Available online: http://www.greenfacts.org/en/biochar/l-2/index.htm#0 (accessed on 3 July 2015).
Familiarity with Biochar | N | % |
---|---|---|
Yes | 44 | 27 |
No | 116 | 72 |
Total | 160 | 99 |
Lack of data | 1 | 0.6 |
Total | 161 | 100 |
Familiarity with Biochar | Total | |||
---|---|---|---|---|
Yes | No | |||
Less than 5 years | N | 2 | 7 | 9 |
% | 22% | 78% | 100% | |
5–10 years | N | 4 | 19 | 23 |
% | 17% | 83% | 100% | |
10–20 years | N | 14 | 21 | 35 |
% | 40% | 60% | 100% | |
20–30 years | N | 14 | 28 | 42 |
% | 33% | 67% | 100% | |
More than 30 years | N | 8 | 37 | 45 |
% | 18% | 82% | 100% |
Time of Running the Agricultural Business | I Am Interested in Applying Biochar within My Farm Activities | Total | |||
---|---|---|---|---|---|
Yes | No | I Do Not Know | |||
Less than 5 years | N | 2 | 2 | 5 | 9 |
% | 22% | 22% | 56% | 100% | |
5–10 years | N | 6 | 9 | 8 | 23 |
% | 26% | 39% | 35% | 100% | |
10–20 years | N | 7 | 14 | 13 | 34 |
% | 21% | 41% | 38% | 100% | |
20–30 years | N | 8 | 19 | 15 | 42 |
% | 19% | 45% | 36% | 100% | |
More than 30 years | N | 8 | 20 | 17 | 45 |
% | 18% | 44% | 38% | 100% | |
total | N | 31 | 64 | 58 | 153 |
% | 20% | 42% | 38% | 100% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latawiec, A.E.; Królczyk, J.B.; Kuboń, M.; Szwedziak, K.; Drosik, A.; Polańczyk, E.; Grotkiewicz, K.; Strassburg, B.B.N. Willingness to Adopt Biochar in Agriculture: The Producer’s Perspective. Sustainability 2017, 9, 655. https://doi.org/10.3390/su9040655
Latawiec AE, Królczyk JB, Kuboń M, Szwedziak K, Drosik A, Polańczyk E, Grotkiewicz K, Strassburg BBN. Willingness to Adopt Biochar in Agriculture: The Producer’s Perspective. Sustainability. 2017; 9(4):655. https://doi.org/10.3390/su9040655
Chicago/Turabian StyleLatawiec, Agnieszka E., Jolanta B. Królczyk, Maciej Kuboń, Katarzyna Szwedziak, Adam Drosik, Ewa Polańczyk, Katarzyna Grotkiewicz, and Bernardo B. N. Strassburg. 2017. "Willingness to Adopt Biochar in Agriculture: The Producer’s Perspective" Sustainability 9, no. 4: 655. https://doi.org/10.3390/su9040655
APA StyleLatawiec, A. E., Królczyk, J. B., Kuboń, M., Szwedziak, K., Drosik, A., Polańczyk, E., Grotkiewicz, K., & Strassburg, B. B. N. (2017). Willingness to Adopt Biochar in Agriculture: The Producer’s Perspective. Sustainability, 9(4), 655. https://doi.org/10.3390/su9040655