Temporal Changes in Ecosystem Services in European Cities in the Continental Biogeographical Region in the Period from 1990–2012
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Assessment of Ecosystem Services and Biodiversity
- Recreational areas [ha]—consisted of land-cover classes related to forests (CLC class codes 311, 312 and 313), green urban areas (141 and 142) and water (511, 512, 521, 522 and 523). Within the CLC class 142 “sports and leisure facilities”, sealed surfaces (sports facilities with infrastructure) are also included.
- Accessibility of recreational areas [%]—comprised the share of the category of a recreation center with a buffer of 300 m around settlements (CLC classes 111, 112)—deemed residential buildings. The regulatory agency English Nature recommends that each person should have green space no further than 300 m or a 5-min walk from their home [66].
2.3. Assessment of the Rate of Changes for Ecosystem Services and Additional Indicators
3. Results
3.1. Temporal Changes in the Share of Forests, Green Urban Areas, and Impervious Areas from 1990 to 2012
3.2. Temporal Changes in Ecosystem Services
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Carlo, L.; Birgit, G.; Jaume, F.; Holger, R.; Vincent, G.; Marie, B.; Anna, G.; Maria, B.; Adrian, J.; Judith, B.; et al. Ensuring Quality of Life in Europe’s Cities and Towns; EEA-European Environment Agency: Copenhagen, Denmark, 2009. [Google Scholar]
- TEEB–The Economics of Ecosystems and Biodiversity. Available online: www.teebweb.org (accessed on 27 December 2014).
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Baró, F.; Chaparro, L.; Gómez-Baggethun, E.; Langemeyer, J.; Nowak, D.J.; Terradas, J. Contribution of ecosystem services to air quality and climate change mitigation policies: The case of urban forests in Barcelona, Spain. AMBIO 2014, 43, 466–479. [Google Scholar] [CrossRef] [PubMed]
- Breuste, J.; Schnellinger, J.; Qureshi, S.; Faggi, A. Urban ecosystem services on the local level: Urban green spaces as providers. Ekologia (Bratisl.) 2013, 32, 290–304. [Google Scholar] [CrossRef]
- Douglas, I. Urban ecology and urban ecosystems: Understanding the links to human health and well-being. Curr. Opin. Environ. Sustain. 2012, 4, 385–392. [Google Scholar] [CrossRef]
- MEA-Millennium Ecosystem Assessment. Ecosystem and Human Well-Being: Current State and Trends; The Millennium Ecosystem Assessment Series; Island Press: Washington, DC, USA, 2005; Volume 1, pp. 795–825. [Google Scholar]
- Haase, D.; Kabisch, N.; Haase, A. Endless urban growth? On the mismatch of population, household and urban land area growth and its effects on the urban debate. PLoS ONE 2013, 8, e66531. [Google Scholar] [CrossRef] [PubMed]
- Triantakonstantis, D.; Stathakis, D. Examining urban sprawl in Europe using spatial metrics. Geocarto Int. 2015, 30, 10. [Google Scholar] [CrossRef]
- Department of Economic and Social Affairs, Population Division (2014). Available online: https://esa.un.org/unpd/wup/publications/files/wup2014-highlights.Pdf (accessed on 28 July 2016).
- EEA-European Environment Agency. Urban Sprawl in Europe: Joint EEA-FOEN Report; Publications Office: Luxembourg, 2016. [Google Scholar]
- EEA-European Environment Agency. Protected Areas in Europe—An Overview. Available online: http://www.eea.europa.eu/publications/protected-areas-in-europe-2012 (accessed on 26 December 2016).
- Kabisch, N.; Haase, D. Green spaces of European cities revisited for 1990–2006. Landsc. Urban Plan. 2013, 110, 113–122. [Google Scholar] [CrossRef]
- Schägner, J.P.; Brander, L.; Maes, J.; Hartje, V. Mapping ecosystem services’ values: Current practice and future prospects. Ecosyst. Serv. 2013, 4, 33–46. [Google Scholar] [CrossRef]
- Luederitz, C.; Brink, E.; Grall, F.; Hermelingmeier, V.; Meyer, M.; Niven, L.; Panzer, L.; Partelow, S.; Rau, A.-L.; Saski, R.; et al. A review of urban ecosystem services: Six key challenges for future research. Ecosyst. Serv. 2015, 14, 98–112. [Google Scholar] [CrossRef]
- Elmqvist, T.; Setälä, H.; Handel, S.N.; van der Ploeg, S.; Aronson, J.; Blignaut, J.B.; Gómez-Baggethun, E.; Nowak, D.J.; Kronenberg, J.; de Groot, R. Benefits of restoring ecosystem services in urban areas. Curr. Opin. Environ. Sustain. 2015, 14, 101–108. [Google Scholar] [CrossRef]
- Haase, D.; Larondelle, N.; Andersson, E.; Artmann, M.; Borgström, S.; Breuste, J.; Gomez-Baggethun, E.; Gren, Å.; Hamstead, Z.; Hansen, R.; et al. A quantitative review of Urban ecosystem service assessments: Concepts, models, and implementation. AMBIO 2014, 43, 413–433. [Google Scholar] [CrossRef] [PubMed]
- Kuttler, W.; Strassburger, A. Air quality measurements in urban green areas—A case study. Atmos. Environ. 1999, 33, 4101–4108. [Google Scholar] [CrossRef]
- Nowak, D.J.; Civerolo, K.L.; Trivikrama Rao, S.; Sistla, G.; Luley, C.L.; Crane, D.E. A modeling study of the impact of urban trees on ozone. Atmos. Environ. 2000, 34, 1601–1613. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 2006, 4, 115–123. [Google Scholar] [CrossRef]
- Nowak, D.J. Institutionalizing urban forestry as a ‘‘biotechnology’’ to improve environmental quality. Urban For. Urban Green. 2006, 5, 93–100. [Google Scholar] [CrossRef]
- Georgi, J.N.; Dimitriou, D. The contribution of urban green spaces to the improvement of environment in cities: Case study of Chania, Greece. Build. Environ. 2010, 45, 1401–1414. [Google Scholar] [CrossRef]
- Peters, E.B.; McFadden, J.P. Influence of seasonality and vegetation type on suburban microclimates. Urban Ecosyst. 2010, 13, 443–460. [Google Scholar] [CrossRef]
- Monteiroa, M.V.; Doicka, K.J.; Handleya, P.; Peace, A. The impact of green space size on the extent of local nocturnal air temperature cooling in London. Urban For. Urban Green. 2016, 16, 160–169. [Google Scholar] [CrossRef]
- Manes, F.; Incerti, G.; Salvatori, E.; Vitale, M.; Riccota, C.; Costanza, R. Urban ecosystem services: Tree diversity and stability of tropospheric ozone removal. Ecol. Appl. 2012, 22, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.M.; Handley, J.F.; Ennos, A.R. The potential of tree planting to climate-proof high density residential areas in Manchester, UK. Landsc. Urban Plan. 2012, 104, 410–417. [Google Scholar] [CrossRef]
- Tratalos, J.; Fuller, R.A.; Warren, P.H.; Davies, R.G.; Gaston, K.J. Urban form, biodiversity potential and ecosystem services. Landsc. Urban Plan. 2007, 83, 308–317. [Google Scholar] [CrossRef]
- Strohbach, M.W.; Haase, D. Above-ground carbon storage by urban trees in Leipzig, Germany: Analysis of patterns in a European city. Landsc. Urban Plan. 2012, 104, 95–104. [Google Scholar] [CrossRef]
- Davies, Z.G.; Edmondson, J.L.; Heinemeyer, A.; Leake, J.R.; Gaston, K.J. Mapping an urban ecosystem service: Quantifying above-ground carbon storage at a city-wide scale. J. Appl. Ecol. 2011, 48, 1125–1134. [Google Scholar] [CrossRef]
- McPherson, E.G.; Xiao, Q.; Aguaron, E. A new approach to quantify and map carbon stored, sequestered and emissions avoided by urban forests. Landsc. Urban Plan. 2013, 120, 70–84. [Google Scholar] [CrossRef]
- Kuittinen, M.; Moinel, C.; Adalgeirsdottir, K. Carbon sequestration through urban ecosystem services. A case study from Finland. Sci. Total. Environ. 2016, 563, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Tyrväinen, L. Economic valuation of urban forest benefits in Finland. J. Environ. Manag. 2001, 62, 75–92. [Google Scholar] [CrossRef] [PubMed]
- Seeland, K.; Moser, K.; Scheuthle, H.; Kaiser, F.G. Public acceptance of restrictions imposed on recreational activities in the peri-urban Nature Reserve Sihlwald, Switzerland. Urban For. Urban Green. 2002, 1, 49–57. [Google Scholar] [CrossRef]
- Vejre, H.; Jensen, F.S.; Thorsen, B.J. Demonstrating the importance of intangible ecosystem services from peri-urban landscapes. Ecol. Complex. 2010, 7, 338–348. [Google Scholar] [CrossRef]
- Cohen, D.A.; Golinelli, D.; Wiliamson, S.; Sehgal, A.; Marsh, T.; McKenzi, T.L. Effects of Park Improvements on Park Use and Physical Activity. Am. J. Prev. Med. 2009, 37, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Bjerke, T.; Østdahl, T.; Thrane, C.; Strumse, E. Vegetation density of urban parks and perceived appropriateness for recreation. Urban For. Urban Green. 2006, 5, 35–44. [Google Scholar] [CrossRef]
- Bertram, C.; Rehdanz, K. Preferences for cultural urban ecosystem services: Comparing attitudes, perception, and use. Ecosyst. Serv. 2015, 2, 187–199. [Google Scholar] [CrossRef]
- Zerbe, S.; Maurer, U.; Schmitz, S.; Sukopp, H. Biodiversity in Berlin and its potential for nature conservation. Landsc. Urban Plan. 2003, 62, 139–148. [Google Scholar] [CrossRef]
- Strohbach, M.W.; Lerman, S.B.; Warren, P.S. Are small greening areas enhancing bird diversity? Insights from community-driven greening projects in Boston. Landsc. Urban Plan. 2013, 114, 69–79. [Google Scholar] [CrossRef]
- Morimoto, Y. Biodiversity and ecosystem services in urban areas for smart adaptation to climate change: ‘‘Do you Kyoto’’? Landsc. Ecol. Eng. 2011, 7, 9–16. [Google Scholar] [CrossRef]
- Dallimer, M.; Skinner, A.M.J.; Rouquette, J.R.; Maltby, L.L.; Warren, P.H.; Gaston, K.J.; Irvine, K.N.; Davies, Z.G.; Armsworth, P.R. Biodiversity and the feel-good factor: Understanding associations between self-reported human well-being and species richness. BioScience 2012, 62, 47–55. [Google Scholar] [CrossRef]
- Barrico, L.; Azul, A.M.; Morais, M.C.; Coutinho, A.P.; Freitas, H.; Castro, P. Biodiversity in urban ecosystems: Plants and macromycetes as indicators for conservation planning in the city of Coimbra (Portugal). Landsc. Urban Plan. 2012, 106, 88–102. [Google Scholar] [CrossRef]
- Cohen, M.; Baudoin, R.; Palibrk, M.; Persyn, N.; Rheine, C. Urban biodiversity and social inequalities in built-up cities: New evidences, next questions. The example of Paris, France. Landsc. Urban Plan. 2012, 106, 277–287. [Google Scholar] [CrossRef]
- Kowarika, I.; Buchholza, S.; von der Lippea, M.; Seitz, B. Biodiversity functions of urban cemeteries: Evidence from one of the largest Jewish cemeteries in Europe. Urban For. Urban Green. 2016, 19, 68–78. [Google Scholar] [CrossRef]
- Maes, J.; Fabrega, N.; Zulian, G.; Lopes, L.; Vizcaino, M.; Ivits, E.; Polce, C.; Vandecasteele, I.; Mari, I.; Bastos, C.; et al. Mapping and Assessment of Ecosystems and their Services: Trends in Ecosystems and Ecosystem Services in the European Union between 2000 and 2010; Publications Office of the European Union: Luxembourg, 2015. [Google Scholar]
- Song, X.; Chang, K.-T.; Yang, L.; Scheffran, J. Change in Environmental Benefits of Urban Land Use and Its Drivers in Chinese Cities. Int. J. Environ. Res. Public Health 2016, 13, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Feranec, J.; Soukup, T.; Hazeu, G.; Jaffrain, G. European Landscape Dynamics: CORINE Land Cover Data; CRC Press Taylor & Francis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2016. [Google Scholar]
- Estoque, R.C.; Murayama, Y. Examining the potential impact of land use/cover changes on the ecosystem servces of Baguio city, the Philippines: A scenario-based analysis. Appl. Geogr. 2012, 35, 316–326. [Google Scholar] [CrossRef]
- Zhan, J. Impact of Land-Use Changes on Ecosystem Services; Springer: Heidelberg, Germany, 2015. [Google Scholar]
- EEA-European Environment Agency. Biogeographical Regions; European Environmental Agency: Copenhagen, Denmark, 2016; Available online: http://www.eea.europa.eu/data-and-maps/data/biogeographical-regions-europe-3 (accessed on 21 April 2017).
- Sundseth, K. Natura 2000 in the Continental Region; European Commission: Luxemburg, 2005. [Google Scholar]
- Ogrin, D. Long-term air temperature changes in Ljubljana (Slovenia) in comparison Trieste (Italy) and Zagreb (Croatia). Morav. Geogr. Rep. 2015, 23, 17–26. [Google Scholar] [CrossRef]
- Martinelli, L.; Matzarakis, A. Influence of height/width proportions on the thermal comfort of courtyard typology for Italian climate zones. Sustain. Cities Soc. 2017, 29, 97–106. [Google Scholar] [CrossRef]
- EC-European Commission. Urban Audit—Methodological Handbook; Office for Official Publications of the European Communities: Luxembourg, 2004. [Google Scholar]
- EEA-European Environment Agency. Urban Atlas Outline; European Environmental Agency: Copenhagen, Denmark, 2010; Available online: http://www.eea.europa.eu/data-and-maps/data/urban-atlas/urban-atlas-outline/urban-atlas-outline (accessed on 21 April 2017).
- CORINE Land Cover. 2016. Available online: http://land.copernicus.eu/pan-european/corine-land-cover (accessed on 12 July 2016).
- EEA-European Environment Agency. CLC2006 Technical Guidelines; Publications Office: Luxembourg, 2007. [Google Scholar]
- Larondelle, N.; Haase, D. Urban ecosystem services assessment along a rural–urban gradient: A cross-analysis of European cities. Ecol. Indic. 2013, 29, 179–190. [Google Scholar] [CrossRef]
- Larondelle, N.; Haase, D.; Kabisch, N. Mapping the diversity of regulating ecosystem services in European cities. Glob. Environ. Chang. 2014, 26, 119–129. [Google Scholar] [CrossRef]
- Su, S.; Xiao, R.; Jiang, Z.; Zhang, Y. Characterizing landscape pattern and ecosystem services value changes for urbanization at an eco-regional scale. Appl. Geogr. 2012, 34, 295–305. [Google Scholar] [CrossRef]
- Haase, D.; Schwarz, N.; Strohbach, M.; Kroll, F.; Seppelt, R. Synergies, trade-offs, and losses of ecosystem services in urban regions: An integrated multiscale framework applied to the Leipzig-Halle Region, Germany. Ecol. Soc. 2012, 17, 22. [Google Scholar] [CrossRef]
- Rocha, S.M.; Zulian, G.; Maes, J.; Thijssen, M. Mapping and Assessment of Urban Ecosystems and Their Services; EUR 27706 EN; European Union: Brussels, Belgium, 2015. [Google Scholar] [CrossRef]
- Schwarz, N.; Bauer, A.; Haase, D. Assessing climate impacts of planning policies—An estimation for the urban region of Leipzig (Germany). Environ. Impact Assess. Rev. 2011, 31, 97–111. [Google Scholar] [CrossRef]
- Schwarz, N. Urban form revisited—Selecting indicators for characterising European cities. Landsc. Urban Plan. 2010, 96, 29–47. [Google Scholar] [CrossRef]
- Gibbs, H.K. Major World Ecosystem Complexes Ranked by Carbon in Live Vegetation: An Updated Database Using the GLC2000 Land Cover Product (NDP-017b); University of Wisconsin:: Madison, MI, USA, 2006. [Google Scholar]
- Barbosa, O.; Tratalos, J.A.; Armsworth, P.R.; Davies, R.G.; Fuller, R.A.; Johnson, P.; Gaston, K.J. Who benefits from access to green space? A case study from Sheffield, UK. Landsc. Urban Plan. 2007, 83, 187–195. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Müller, F.; Windhorst, W. Landscapes’ capacities to provide ecosystem services—A concept for land-cover based assessments. Landsc. Online 2009, 15, 1–22. [Google Scholar] [CrossRef]
- Haase, D.; Nuissl, H. The urban-to-rural gradient of land use change and impervious cover: A long-term trajectory for the city of Leipzig. J. Land Use Sci. 2010, 5, 123–141. [Google Scholar] [CrossRef]
- Santana-Cordero, A.M.; Ariza, E.; Romagosa, F. Studying the historical evolution of ecosystem services to inform management policies for developed shorelines. Environ. Sci. Policy 2016, 64, 18–29. [Google Scholar] [CrossRef]
- Artmann, M. Driving forecast of urban soil sealing and constraints of its management—The cases of Leipzig and Munich (Germany). J. Settlements Spat. Plan. 2013, 4, 143–152. [Google Scholar]
- MEA-Millennium Ecosystem Assessment. Ecosystem and Human Well-Being: A Framework for Assessment; Island Press: Washington, DC, USA; Covelo, CA, USA; London, UK, 2003. [Google Scholar]
- Gómez-Baggethun, E.; Barton, D.N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 2013, 86, 235–245. [Google Scholar] [CrossRef]
- Niemelä, J.; Saarela, S.-R.; Söderman, T.; Kopperoinen, L.; Yli-Pelkonen, V.; Vare, S.; Kotze, J. Using the ecosystems services approach for better planning and conservation of urban green spaces: A Finland case study. Biodivers. Conserv. 2010, 19, 3225–3243. [Google Scholar] [CrossRef]
- Wilkinson, C.; Saarne, G.; Peterson, D.; Colding, J. Strategic spatial planning and the ecosystem services concept—An historical exploration. Ecol. Soc. 2013, 18. [Google Scholar] [CrossRef]
- Szumacher, I.; Pabjanek, P. The use of land cover data in ecosystem services assessment. Ekonomia i Środowisko 2014, 51, 172–177. [Google Scholar]
- Kandzior, M.; Burkhard, B.; Müller, F. Mapping provisioning ecosystem services at the local scale using data of varying spatial and temporal resolution. Ecosyst. Serv. 2013, 4, 47–59. [Google Scholar] [CrossRef]
CLC Code | CLC Class | f-Value | Surface Emission (Mean) | Carbon Storage MgC/ha | Recreation [ha] and Accessibility of Recreational Areas [%] | Degree of Impervious Cover [%] | Biodiversity Rank |
---|---|---|---|---|---|---|---|
111 | Continuous urban fabric | 0.8 | 143.2 | 4.65 | 95 | 1 | |
112 | Discontinuous urban fabric | 0.9 | 139.4 | 12.93 | 60 | 1 | |
121 | Industrial or commercial units | 0.8 | 141.5 | 8.52 | 90 | 0 | |
122 | Road and rail networks and associated land | 0.8 | 145.1 | 0 | 60 | 0 | |
123 | Port areas | 0.8 | 139.9 | 8.52 | 85 | 0 | |
124 | Airports | 0.8 | 139.9 | 8.52 | 85 | 0 | |
131 | Mineral extraction sites | 1.0 | 137.0 | 0 | 20 | 0 | |
132 | Dump sites | 1.0 | 139.0 | 0 | 20 | 0 | |
133 | Construction sites | 1.0 | 134.8 | 0 | 20 | 0 | |
141 | Green urban areas | 1.1 | 134.3 | 29.38 | yes | 20 | 2 |
142 | Sport and leisure facilities | 1.0 | 138.4 | 5.00 | yes | 40 | 1 |
211 | Non-irrigated arable land | 1.1 | 138.9 | 5.00 | 0 | 2 | |
221 | Vineyards | 1.1 | 141.4 | 16.03 | 0 | 2 | |
222 | Fruit trees and berry plantations | 1.1 | 141.4 | 16.03 | 0 | 2 | |
231 | Pastures | 1.1 | 135.4 | 4.5 | 0 | 3 | |
242 | Complex cultivation patterns | 1.1 | 136.6 | 5.00 | 0 | 3 | |
243 | Land principally occupied by agriculture, with significant areas of natural vegetation | 1.1 | 135.7 | 5.00 | 0 | 4 | |
311 | Broad-leaved forest | 1.1 | 134.0 | 68.31 | yes | 0 | 5 |
312 | Coniferous forest | 1.3 | 137.4 | 72.91 | yes | 0 | 5 |
313 | Mixed forest | 1.2 | 132.8 | 75.71 | yes | 0 | 5 |
321 | Natural grasslands | 1.1 | 135.0 | 4.50 | 0 | 5 | |
322 | Moors and heathland | 1.1 | 137.0 | 4.50 | 0 | 4 | |
324 | Transitional woodland-shrub | 1.1 | 136.0 | 10.12 | 0 | 4 | |
331 | Beaches, dunes, sands | 1.0 | 136.0 | 10.12 | 0 | 3 | |
332 | Bare rocks | 1.0 | 139.1 | 0 | 0 | 3 | |
333 | Sparsely vegetated areas | 1.0 | 139.1 | 10.12 | 0 | 3 | |
334 | Burnt areas | 1.4 | 139.1 | 0 | 0 | 1 | |
411 | Inland marshes | 1.4 | 140.4 | 0 | 0 | 4 | |
412 | Peat bogs | 1.2 | 140.4 | 0 | 0 | 5 | |
421 | Salt marshes | 1.2 | 140.4 | 0 | 0 | 4 | |
423 | Intertidal flats | 1.2 | 140.4 | 0 | 0 | 4 | |
511 | Water courses | 1.4 | 131.3 | 0 | yes | 0 | 4 |
512 | Water bodies | 1.4 | 131.3 | 0 | yes | 0 | 4 |
521 | Coastal lagoons | 1.4 | 131.3 | 0 | yes | 0 | 4 |
522 | Estuaries | 1.4 | 131.3 | 0 | yes | 0 | 4 |
523 | Sea and ocean | 1.4 | 131.3 | 0 | yes | 0 | 3 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szumacher, I.; Pabjanek, P. Temporal Changes in Ecosystem Services in European Cities in the Continental Biogeographical Region in the Period from 1990–2012. Sustainability 2017, 9, 665. https://doi.org/10.3390/su9040665
Szumacher I, Pabjanek P. Temporal Changes in Ecosystem Services in European Cities in the Continental Biogeographical Region in the Period from 1990–2012. Sustainability. 2017; 9(4):665. https://doi.org/10.3390/su9040665
Chicago/Turabian StyleSzumacher, Iwona, and Piotr Pabjanek. 2017. "Temporal Changes in Ecosystem Services in European Cities in the Continental Biogeographical Region in the Period from 1990–2012" Sustainability 9, no. 4: 665. https://doi.org/10.3390/su9040665
APA StyleSzumacher, I., & Pabjanek, P. (2017). Temporal Changes in Ecosystem Services in European Cities in the Continental Biogeographical Region in the Period from 1990–2012. Sustainability, 9(4), 665. https://doi.org/10.3390/su9040665