Magnetic (Fe3O4) Nanoparticles Reduce Heavy Metals Uptake and Mitigate Their Toxicity in Wheat Seedling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nano-Fe3O4, Heavy Metals and Plant
2.2. Characterization of Nano-Fe3O4
2.3. Preparation of NPs Suspensions and Heavy Metal Solutions
2.4. Seedling Exposure
2.4.1. Effects of Nano-Fe3O4 and Heavy Metals (Pb, Zn, Cd and Cu) on Seedling Growth
2.4.2. Effects of Nano-Fe3O4 on the Reducing Heavy Metal-Induced Root Growth Inhibition and Their Accumulation in Seedling
2.4.3. Effects of Nano-Fe3O4 on Reducing the Oxidative Stress Induced by Heavy Metals in the Wheat Seedlings
Antioxidant Enzyme Activities and Lipid Peroxidation Assays
2.5. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Nano-Fe3O4
3.2. Effects of Nano-Fe3O4 and Heavy Metals (Pb, Zn, Cd and Cu) on Seedling Growth
3.3. Effects of Nano-Fe3O4 on Reducing Root Growth Inhibition Induced by Heavy Metals (Pb, Zn, Cd and Cu)
3.4. Effect of Nano-Fe3O4 on Heavy Metals Accumulation in Wheat Seedlings
3.5. Antioxidant Enzyme Activities and Lipid Peroxidation Assays
3.5.1. Effects of Heavy Metals on Antioxidative Enzyme Activity and MDA Content
3.5.2. Alleviation of Oxidative Stress Induced by Heavy Metals in Wheat Seedlings by Nano-Fe3O4
3.6. Adsorbent Studies of Magnetic (Fe3O4) Nanoparticles
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fan, X.; Wen, X.; Huang, F.; Cai, Y.; Cai, K. Effects of silicon on morphology, ultrastructure and exudates of rice root under heavy metal stress. Acta Physiol. Plant. 2016, 38, 197. [Google Scholar] [CrossRef]
- Munzuroglu, O.; Geckil, H. Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Arch. Environ. Contam. Toxicol. 2002, 43, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Stefanov, K.; Seizova, K.; Yanishlieva, N.; Marinova, E.; Popov, S. Accumulation of lead, zinc and cadmium in plant seeds growing in metalliferous habitats in Bulgaria. Food Chem. 1995, 54, 311–313. [Google Scholar] [CrossRef]
- Wang, M.; Chen, L.; Chen, S.; Ma, Y. Alleviation of cadmium-induced root growth inhibition in crop seedlings by nanoparticles. Ecotoxicol. Environ. Saf. 2012, 79, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Zhou, W.; Dai, H.; Cao, F.; Zhang, G.; Wu, F. Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. J. Hazard. Mater. 2012, 235, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; He, X.; Zhang, P.; Zhang, Z.; Guo, Z.; Tai, R.; Xu, Z.; Zhang, L.; Ding, Y.; Zhao, Y. Phytotoxicity and biotransformation of La2O3 nanoparticles in a terrestrial plant cucumber (Cucumis sativus). Nanotoxicology 2011, 5, 743–753. [Google Scholar] [CrossRef] [PubMed]
- Rui, Y.; Zhang, P.; Zhang, Y.; Ma, Y.; He, X.; Gui, X.; Li, Y.; Zhang, J.; Zheng, L.; Chu, S. Transformation of ceria nanoparticles in cucumber plants is influenced by phosphate. Environ. Pollut. 2015, 198, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; He, X.; Zhang, H.; Ma, Y.; Zhang, P.; Ding, Y.; Zhao, Y. Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics 2011, 3, 816–822. [Google Scholar] [CrossRef] [PubMed]
- Arunakumara, K.; Walpola, B.C.; Yoon, M.H. Agricultural methods for toxicity alleviation in metal contaminated soils: A review. Korean J. Soil Sci. Fertil. 2013, 46, 73–80. [Google Scholar] [CrossRef]
- Cao, F.; Liu, L.; Ibrahim, W.; Cai, Y. Alleviating effects of exogenous glutathione, glycinebetaine, brassinosteroids and salicylic acid on cadmium toxicity in rice seedlings (Oryza sativa). Agrotechnology 2013. [Google Scholar] [CrossRef]
- Yoon, J.; Cao, X.; Zhou, Q.; Ma, L.Q. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci. Total Environ. 2006, 368, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Marzec, Z.; Schlegel-Zawadzka, M. Exposure to cadmium, lead and mercury in the adult population from Eastern Poland, 1990–2002. Food Addit. Contam. 2004, 21, 963–970. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, T.; Okazaki, M.; Kimura, S.D.; Motobayashi, T.; Baasansuren, J.; Hattori, T.; Abe, T. Suppressive effects of magnesium oxide materials on cadmium uptake and accumulation into rice grains: II: Suppression of cadmium uptake and accumulation into rice grains due to application of magnesium oxide materials. J. Hazard. Mater. 2008, 154, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhong, G.; Shi, G.; Pan, F. Toxicity of Cu, Pb, and Zn on Seed Germination and Young Seedlings of Wheat (Triticum aestivum L.). In Proceedings of the International Conference on Computer and Computing Technologies in Agriculture, Nanchang, China, 22–25 October 2010; Li, D.L., Liu, Y., Chen, Y.Y., Eds.; Springer: Cham, Switzerland, 2010; pp. 231–240. [Google Scholar]
- He, J.Y.; Ren, Y.F.; Cheng, Z.; Jiang, D.A. Effects of cadmium stress on seed germination, seedling growth and seed amylase activities in rice (Oryza sativa). Rice Sci. 2008, 15, 319–325. [Google Scholar] [CrossRef]
- Shaikh, I.R.; Shaikh, P.R.; Shaikh, R.A.; Shaikh, A.A. Phytotoxic effects of heavy metals (Cr, Cd, Mn and Zn) on wheat (Triticum aestivum L.) seed germination and seedlings growth in black cotton soil of Nanded, India. Res. J. Chem. Sci. 2013, 3, 14–23. [Google Scholar]
- Yadav, S.K. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S. Afr. J. Bot. 2010, 76, 167–179. [Google Scholar] [CrossRef]
- Zhang, F.Q.; Wang, Y.S.; Lou, Z.P.; Dong, J.D. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere 2007, 67, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, M.; Jetley, U.K.; Khan, M.A.; Zutshi, S.; Fatma, T. Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5. Ecotoxicol. Environ. Saf. 2007, 66, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Dzobo, K.; Naik, Y.S. Effect of selenium on cadmium-induced oxidative stress and esterase activity in rat organs. S. Afr. J. Sci. 2013, 109, 1–8. [Google Scholar] [CrossRef]
- Stohs, S.J.; Bagchi, D.; Hassoun, E.; Bagchi, M. Oxidative mechanisms in the toxicity of chromium and cadmium ions. J. Environ. Pathol. Toxicol. Oncol. 2001. [Google Scholar] [CrossRef]
- Liu, D.L.; Hu, K.Q.; Ma, J.J.; Qiu, W.W.; Wang, X.P.; Zhang, S.P. Effects of cadmium on the growth and physiological characteristics of sorghum plants. Afr. J. Biotechnol. 2011, 10, 15770–15776. [Google Scholar]
- Erdei, S.; Hegedûs, A.; Hauptmann, G.; Szalai, J.; Horváth, G. Heavy Metal Induced Physiological Changes in the Antioxidative Response System. Available online: https://www2.sci.u-szeged.hu/ABS/2002/Acta%20HPb/s2/erde.pdf (accessed on 9 May 2017).
- Scandalios, J.G. Oxygen stress and superoxide dismutases. Plant Physiol. 1993, 101, 7. [Google Scholar] [CrossRef] [PubMed]
- Teisseire, H.; Guy, V. Copper-induced changes in antioxidant enzymes activities in fronds of duckweed (Lemna minor). Plant Sci. 2000, 153, 65–72. [Google Scholar] [CrossRef]
- Blokhina, O.; Virolainen, E.; Fagerstedt, K.V. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Ann. Bot. 2003, 91, 179–194. [Google Scholar] [CrossRef] [PubMed]
- Quan, Y.; Liu, Z.R. An Analysis of Current Problems in China’s Agriculture Development: Agriculture, Rural Areas and Farmers. In Proceedings of the Canadian Agricultural Economics Society Annual Conference, Calgary, AB, Canada, 30 May–1 June 2002. [Google Scholar]
- Carter, C.A. China’s agriculture: Achievements and challenges. Agric. Resour. Econ. Update 2011, 14, 5–7. [Google Scholar]
- Dickinson, M.; Scott, T.B. The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent. J. Hazard. Mater. 2010, 178, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Tang, J.; Nie, Z.; Wang, Y.; Ren, Y.; Zuo, L. Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification. Sep. Purif. Technol. 2009, 68, 312–319. [Google Scholar] [CrossRef]
- Ahmad, I.; Akhtar, M.J.; Zahir, Z.A.; Jamil, A. Effect of cadmium on seed germination and seedling growth of four wheat (Triticum aestivum L.) cultivars. Pak. J. Bot. 2012, 44, 1569–1574. [Google Scholar]
- Office of Prevention, Pesticides and Toxic Substances. Ecological Effect Test Guidelines. OPPTS 85O.4150 Terrestrial Plant Toxicity, Tier I (Vegetative Vigor); EPA 712-C-96-163 Public Draft; United State Environmental Protection Agency (US EPA): Washington, DC, USA, 1996.
- Xiao, L.; Li, J.; Brougham, D.F.; Fox, E.K.; Feliu, N.; Bushmelev, A.; Schmidt, A.; Mertens, N.; Kiessling, F.; Valldor, M. Water-soluble superparamagnetic magnetite nanoparticles with biocompatible coating for enhanced magnetic resonance imaging. ACS Nano 2011, 5, 6315–6324. [Google Scholar] [CrossRef] [PubMed]
- Le, V.N.; Rui, Y.; Gui, X.; Li, X.; Liu, S.; Han, Y. Uptake, transport, distribution and Bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. J. Nanobiotechnol. 2014, 12, 50. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.H.; Lin, H.J. Autointoxication mechanism of Oryza sativa I. Phytotoxic effects of decomposing rice residues in soil. J. Chem. Ecol. 1976, 2, 353–367. [Google Scholar] [CrossRef]
- Drazic, G.; Mihailovic, N.; Lojic, M. Cadmium accumulation in Medicago sativa seedlings treated with salicylic acid. Biol. Plant. 2006, 50, 239–244. [Google Scholar] [CrossRef]
- Saberi, M.; Tarnian, F.; Davari, A.; Ebrahimzadeh, A.; Nik, H.A. Comparing cadmium and copper sulfate effects on seed germination and seedling initial growth properties in two range Species. Int. J. Agric. Crop Sci. 2013, 5, 997. [Google Scholar]
- Shafiq, M.; Iqbal, M.Z.; Mohammad, A. Effect of lead and cadmium on germination and seedling growth of Leucaena leucocephala. J. Appl. Sci. Environ. Manag. 2008. [Google Scholar] [CrossRef]
- Jadia, C.D.; Fulekar, M.H. Phytoremediation: The application of vermicompost to remove zinc, cadmium, copper, nickel and lead by sunflower plant. Environ. Eng. Manag. J. 2008, 7, 547–558. [Google Scholar]
- Mahmood, S.; Hussain, A.; Saeed, Z.; Athar, M. Germination and seedling growth of corn (Zea mays L.) under varying levels of copper and zinc. Int. J. Environ. Sci. Technol. 2005, 2, 269–274. [Google Scholar] [CrossRef]
- Sun, S.; Li, M.; Zuo, J.; Jiang, W.; Liu, D. Cadmium effects on mineral accumulation, antioxidant defence system and gas exchange in cucumber. Zemdirb. Agric. 2015, 102, 193–200. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, Q.; Qi, Y.; Duo, L. Responses of root growth and protective enzymes to copper stress in turfgrass. Acta Biol. Crac. Ser. Bot. 2010, 52, 7–11. [Google Scholar] [CrossRef]
- Mahmood, T.; Islam, K.; Muhammad, S. Toxic effects of heavy metals on early growth and tolerance of cereal crops. Pak. J. Bot. 2007, 39, 451. [Google Scholar]
- Zhang, H.; Jiang, Y.; He, Z.; Ma, M. Cadmium accumulation and oxidative burst in garlic (Allium sativum). J. Plant Physiol. 2005, 162, 977–984. [Google Scholar] [CrossRef] [PubMed]
- Malar, S.; Vikram, S.S.; Favas, P.J.; Perumal, V. Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Bot. Stud. 2014, 57, 1. [Google Scholar] [CrossRef]
- Lapalikar, P.; Raju, D.; Mehta, U.J. In vitro studies on zinc, copper and cadmium accumulation potential of Jatrophacurcas L. Seedlings. Bioremediat. Biodivers. Bioavailab. 2013, 7, 49–53. [Google Scholar]
- Alloway, B.J.; Jackson, A.P.; Morgan, H. The accumulation of cadmium by vegetables grown on soils contaminated from a variety of sources. Sci. Total Environ. 1990, 91, 223–236. [Google Scholar] [CrossRef]
- Yilmaz, K.; Akinci, İ.E.; Akinci, S. Effect of lead accumulation on growth and mineral composition of eggplant seedlings (Solarium melongena). N. Z. J. Crop Hortic. Sci. 2009, 37, 189–199. [Google Scholar] [CrossRef]
- Schickler, H.; Caspi, H. Response of antioxidative enzymes to nickel and cadmium stress in hyperaccumulator plants of the genus Alyssum. Physiol. Plant. 1999, 105, 39–44. [Google Scholar] [CrossRef]
- Dey, S.K.; Dey, J.; Patra, S.; Pothal, D. Changes in the antioxidative enzyme activities and lipid peroxidation in wheat seedlings exposed to cadmium and lead stress. Braz. J. Plant Physiol. 2007, 19, 53–60. [Google Scholar] [CrossRef]
- Gzyl, J.; Rymer, K.; Gwóźdź, E.A. Differential response of antioxidant enzymes to cadmium stress in tolerant and sensitive cell line of cucumber (Cucumis sativus L.). Acta Biochim. Pol. 2009, 56, 723. [Google Scholar]
- Guo, B.; Liang, Y.; Zhu, Y.; Zhao, F. Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Environ. Pollut. 2007, 147, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Sandalio, L.; Dalurzo, H.; Gomez, M.; Romero-Puertas, M.; Del Rio, L. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot. 2001, 52, 2115–2126. [Google Scholar] [CrossRef] [PubMed]
- Shaw, B. Effects of mercury and cadmium on the activities of antioxidative enzymes in the seedlings ofPhaseolusaureus. Biol. Plant. 1995, 37, 587–596. [Google Scholar] [CrossRef]
- Zheng, G.; Lv, H.; Gao, S.; Wang, S. Effects of cadmium on growth and antioxidant responses in Glycyrrhiza uralensis seedlings. Plant Soil Environ. 2010, 56, 508–515. [Google Scholar]
- Zou, J.; Yu, K.; Zhang, Z.; Jiang, W.; Liu, D. Antioxidant response system and chlorophyll fluorescence in chromium (VI)-treated Zea mays L. seedlings. Acta Biol. Crac. Ser. Bot. 2009, 51, 23–33. [Google Scholar]
- Muradoglu, F.; Gundogdu, M.; Ercisli, S.; Encu, T.; Balta, F.; Jaafar, H.Z.; Zia-Ul-Haq, M. Cadmium toxicity affects chlorophyll a and b content, antioxidant enzyme activities and mineral nutrient accumulation in strawberry. Biol. Res. 2015, 48, 1. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Ma, Y.; Zhang, Z.; He, X.; Li, Y.; Zhang, J.; Zheng, L.; Zhao, Y. Species-specific toxicity of ceria nanoparticles to Lactuca plants. Nanotoxicology 2015, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Hu, C.; Zhu, Q.; Chen, L.; Kong, Z.; Liu, Z. Copper and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in the microalga Pavlova viridis (Prymnesiophyceae). Chemosphere 2006, 62, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Saradhi, P.P.; Mohanty, P. Proline in relation to free radical production in seedlings of Brassica juncea raised under sodium chloride stress. Plant Soil 1993, 155, 497–500. [Google Scholar]
- Shu, X.; Yin, L.; Zhang, Q.; Wang, W. Effect of Pb toxicity on leaf growth, antioxidant enzyme activities, and photosynthesis in cuttings and seedlings of Jatropha curcas L. Environ. Sci. Pollut. Res. 2012, 19, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Chen, Q.; Liu, Q.; Zhang, W.; Ding, R. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J. Plant Physiol. 2003, 160, 1157–1164. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, J.; Gholami, A.; Panahpour, E. Removal of cadmium from soil resources using stabilized zero-valent iron nanoparticles. J. Civ. Eng. Urban. 2013, 3, 338–341. [Google Scholar]
- Giraldo, L.; Erto, A.; Moreno-Piraján, J.C. Magnetite nanoparticles for removal of heavy metals from aqueous solutions: Synthesis and characterization. Adsorption 2013, 19, 465–474. [Google Scholar] [CrossRef]
NPs or Heavy Metals | Concentration | Seedlings Viability (%) | Inhibition (%) | Root Length (cm) | Inhibition (%) | Shoot Length (cm) | Inhibition (%) |
---|---|---|---|---|---|---|---|
H20 | 0 | 100 a | 0 | 10.93 ± 2.29 a | 0 | 7.03 ± 1.61 a | 0 |
Nano-Fe3O4 | 2000 mg/L | 100 a | 0 | 11.32 ± 2.02 a | –3.56816 | 8.03 ± 1.85 a | –14.22 |
Pb | 92.5 a | 7.5 | 3.01 ± 1.01 b | 72.46 | 4.06 ± 0.71 b | 42.24 | |
Zn | 97.5a | 2.5 | 4.06 ± 1 b | 62.85 | 5.11 ± 0.79 b | 27.31 | |
Cd | 1 mM | 60 b | 40 | 1.62 ± 0.40 b | 85.17 | 2.14 ± 0.23 b | 69.55 |
Cu | 87.5 b | 12.5 | 2.33 ± 1.39 b | 78.77 | 3.14 ± 0.64 b | 55.33 | |
Pb | 17.5 b | 82.5 | 1.51 ± 0.77 b | 83.53 | 1.61 ± 0.45 b | 77.09 | |
Zn | 77.5 b | 22.5 | 1.64 ± 0.74 b | 84.99 | 2.06 ± 0.50 b | 70.69 | |
Cd | 10 mM | 0 | 100 | 0 | 100 | 0 | 100 |
Cu | 0 | 100 | 0 | 100 | 0 | 100 |
Heavy Metals | Heavy Metal Concentrations (mg.kg-1) in Seedlings | |||
---|---|---|---|---|
Shoot | Root | |||
Heavy Metals | Heavy Metals + NPs | Heavy Metals | Heavy Metals + NPs | |
Pb | 13.1 ± 3.66 a | 10.7 ± 1.37 a | 808.5 ± 41.72 a | 371.5 ± 72.29 b |
Zn | 39.2 ± 9.04 a | 34.7 ± 3.35 a | 238.8 ± 43.99 a | 181.6 ± 18.42 b |
Cd | 7.3 ± 0.92 a | 0.030 ± 0.003 b | 139.8 ± 23.40 a | 48.2 ± 5.91 b |
Cu | 6.0 ± 0.66 a | 2.8 ± 0.5 b | 109.7 ± 17.39 a | 34.4 ± 5.90 b |
Heavy Metals | Time | Cd, Zn, Pb and Cu Contents (mg/L) | |
---|---|---|---|
Heavy Metals | Metals + Nano-Fe3O4 | ||
1 d | 123.43 ± 4.22 | 1.77 ± 0.53 | |
Cd | 2 d | 121.6 ± 1.08 | 1.18 ± 0.2 |
5 d | 118.27 ± 1.05 a | 0.44 ± 0.14 b | |
1 d | 68 ± 0.07 | 5.74 ± 1.61 | |
Zn | 2 d | 70.42 ± 0.21 | 1.46 ± 0.26 |
5 d | 70.61 ± 1.38 a | 0.98 ± 0.14 b | |
1 d | 126.9 ± 0.62 | 0.1 ± 0.02 | |
Pb | 2 d | 130.87 ± 0.47 | 0.1 ± 0.07 |
5 d | 129.37 ± 0.81 a | 0.05 ± 0.01 b | |
1 d | 68.92 ± 0.32 | 1.51 ± 0.4 | |
Cu | 2 d | 70.63 | 0.34 ± 0.08 |
5 d | 71.01 a | 0.22 ± 001 b |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konate, A.; He, X.; Zhang, Z.; Ma, Y.; Zhang, P.; Alugongo, G.M.; Rui, Y. Magnetic (Fe3O4) Nanoparticles Reduce Heavy Metals Uptake and Mitigate Their Toxicity in Wheat Seedling. Sustainability 2017, 9, 790. https://doi.org/10.3390/su9050790
Konate A, He X, Zhang Z, Ma Y, Zhang P, Alugongo GM, Rui Y. Magnetic (Fe3O4) Nanoparticles Reduce Heavy Metals Uptake and Mitigate Their Toxicity in Wheat Seedling. Sustainability. 2017; 9(5):790. https://doi.org/10.3390/su9050790
Chicago/Turabian StyleKonate, Alexandre, Xiao He, Zhiyong Zhang, Yuhui Ma, Peng Zhang, Gibson Maswayi Alugongo, and Yukui Rui. 2017. "Magnetic (Fe3O4) Nanoparticles Reduce Heavy Metals Uptake and Mitigate Their Toxicity in Wheat Seedling" Sustainability 9, no. 5: 790. https://doi.org/10.3390/su9050790
APA StyleKonate, A., He, X., Zhang, Z., Ma, Y., Zhang, P., Alugongo, G. M., & Rui, Y. (2017). Magnetic (Fe3O4) Nanoparticles Reduce Heavy Metals Uptake and Mitigate Their Toxicity in Wheat Seedling. Sustainability, 9(5), 790. https://doi.org/10.3390/su9050790