iPathology: Robotic Applications and Management of Plants and Plant Diseases
Abstract
:1. Introduction
2. Robotic Management of Plants
2.1. Robotic Seeding and Plant Management
2.2. Robotic Harvesting
2.3. Closed or Open Spaces: Challenges for Robotic Plant Management
3. Robotic Precision Plant Protection
3.1. Abiotic Stress
3.2. Biotic Stress
3.2.1. Weed Control
3.2.2. Diagnostic Specificity: The Challenge of Microorganism Control
3.2.3. Pathological Considerations in Robotic Fruit Recognition
4. Environmental and Social Sustainability of Robotic Plant Protection
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bogue, R. Robots poised to revolutionise agriculture. Ind. Robot. 2016, 43, 450–456. [Google Scholar] [CrossRef]
- Aravind, K.R.; Raja, P.; Pérez-Ruiz, M. Task-based agricultural mobile robots in arable farming: A review. Span. J. Agric. Res. 2017, 15, e02R01. [Google Scholar] [CrossRef]
- Bakker, T.; van Asselt, K.; Bontsema, J.; M¨uller, J.; van Straten, G. Autonomous navigation using a robot platform in a sugar beet field. Biosyst. Eng. 2011, 109, 357–368. [Google Scholar] [CrossRef]
- Grift, T.; Zhang, Q.; Kondo, N.; Ting, K.C. A review of automation and robotics for the bio-industry. J. Biomech. Eng. 2008, 1, 37–57. [Google Scholar]
- Yaghoubi, S.; Akbarzadeh, N.A.; Bazargani, S.S.; Bamizan, M.; Asl, M.I. Autonomous robots for agricultural tasks and farm assignment and future trends in agro robots. Int. J. Mech. Mechatron. Eng. 2013, 13, 1–6. [Google Scholar]
- Ramundo, L.; Taisch, M.; Terzi, S. State of the art of technology in the food sector value chain towards the IoT. In Proceedings of the 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI), Bologna, Italy, 7–9 September 2016; pp. 1–6. [Google Scholar]
- Suprem, A.; Mahalik, N.; Kim, K. A review on application of technology systems, standards and interfaces for agriculture and food sector. Comput. Stand. Interfaces 2013, 35, 355–364. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, N.; Wang, M. Wireless sensors in agriculture and food industry—Recent development and future perspective. Comput. Electron. Agric. 2006, 50, 1–14. [Google Scholar] [CrossRef]
- Lee, W.; Slaughter, D.; Giles, D. Robotic weed control system for tomatoes. Precis. Agric. 1999, 1, 95–113. [Google Scholar] [CrossRef]
- Correll, N.; Arechiga, N.; Bolger, A.; Bollini, M.; Charrow, B.; Clayton, A.; Dominguez, F.; Donahue, K.; Dyar, S.; Johnson, L.; et al. Indoor Robot Gardening: Design and Implementation. Intell. Serv. Robot. 2010, 3, 219–232. [Google Scholar] [CrossRef]
- English, A.; Ross, P.; Ball, D.; Corke, P. Vision based guidance for robot navigation in agriculture. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 1693–1698. [Google Scholar]
- Xue, J.; Zhang, L.; Grift, T.E. Variable field-of-view machine vision based row guidance of an agricultural robot. Comput. Electron. Agric. 2012, 84, 85–91. [Google Scholar] [CrossRef]
- Fountas, S.; Carli, G.; Sørensen, C.G.; Tsiropoulos, Z.; Cavalaris, C.; Vatsanidou, A.; Liakos, B.; Canavari, M.; Wiebensohn, J.; Tisserye, B. Farm management information systems: Current situation and future perspectives. Comput. Electron. Agric. 2015, 115, 40–50. [Google Scholar] [CrossRef]
- Naik, N.S.; Shete, V.V.; Danve, S.R. Precision agriculture robot for seeding function. In Proceedings of the International Conference on Inventive Computation Technologies, Coimbatore, India, 26–27 August 2016. [Google Scholar]
- Al-Beeshi, B.; Al-Mesbah, B.; Al-Dosari, S.; El-Abd, M. iPlant: The Greenhouse Robot. In Proceedings of the IEEE 28th Canadian Conference on Electrical and Computer Engineering, Halifax, NS, Canada, 3–6 May 2015. [Google Scholar]
- Maloney, C. Smart Green Cities. Communication to Directorate-General Information Society and Media European Commission of 30 January 2012. Available online: http://www.slideshare.net/lpg/30012012-ce-02smartgreencities (accessed on 21 February 2017).
- Zavala-Yoe, R.; Ramírez-Mendoza, R.A.; García-Lara, S. A 3-SPS-1S parallel robot-based laser sensing for applications in precision agriculture. Soft Comput. 2017, 21, 641–650. [Google Scholar] [CrossRef]
- Siemens, M.C.; Herbon, R.; Gayler, R.R.; Nolte, K.D.; Brooks, D. Automated Machine for Thinning Lettuce—Development and Evaluation. In Proceedings of the ASABE Annual International Meeting, Dallas, TX, USA, 29 July–1 August 2012. [Google Scholar]
- Moghaddam, P.A.; Arasteh, A.S.; Komarizadeh, M.H.; Babazadeh, S. Developing a selective thinning algorithm in sugar beet fields using machine vision system. Comput. Electron. Agric. 2016, 122, 133–138. [Google Scholar] [CrossRef]
- Lyons, D.J.; Heinemann, P.H.; Liu, J.J.; Schupp, J.R.; Baugher, T.A. Development of a selective automated blossom thinning system for peaches. Trans. Am. Soc. Agric. Eng. 2015, 58, 1447–1457. [Google Scholar]
- Yang, F.O. Development of a Table-top Robot Model for Thinning of Fruit. Available online: http://hdl.handle.net/2142/34291 (accessed on 21 February 2017).
- Nielsen, M.; Slaughter, D.C.; Gliever, C. Vision-based 3D peach tree reconstruction for automated blossom thinning. Ind. Inf. IEEE Trans. 2012, 8, 188–196. [Google Scholar] [CrossRef]
- Tabb, A.; Peterson, D.; Park, J. Segmentation of apple fruit from video via background modeling. Proceedings of ASABE Annual International Meeting, Portland, OR, USA, 9–12 July 2006. [Google Scholar]
- Tanigaki, K.; Fujiura, T.; Akase, A.; Imagawa, J. Cherry-harvesting robot. Comput. Electron. Agric. 2008, 63, 65–72. [Google Scholar] [CrossRef]
- Edan, Y. Design of an autonomous agricultural robot. Appl. Intell. 1995, 5, 41–50. [Google Scholar] [CrossRef]
- Kondo, N.; Nishitsuji, Y.; Ling, P.; Ting, K. Visual feedback guided robotic cherry tomato harvesting. Trans. Am. Soc. Agric. Eng. 1996, 39, 2331–2338. [Google Scholar] [CrossRef]
- Kondo, N.; Ninomiya, K.; Hayashi, S. A new challenge of robot for harvesting strawberry grown on table top culture. In Proceedings of the ASAE Annual International Meeting, Tampa, FL, USA, 17–20 July 2005. [Google Scholar]
- Van Henten, E.; Hemming, J.; van Tuijl, B.; Kornet, J.; Meuleman, J.; Bontsema, J.; van Os, E. An autonomous robot for harvesting cucumbers in greenhouses. Auton. Robot. 2002, 13, 241–258. [Google Scholar] [CrossRef]
- Shiigi, T.; Kurita, M.; Kondo, N.; Ninomiya, K.; Rajendra, P.; Kamata, J.; Hayashi, S.; Kobayashi, K.; Shigematsu, K.; Kohno, Y. Strawberry harvesting robot for fruits grown on table top culture. In Proceedings of the ASABE Annual International Meeting, Providence, RI, USA, 29 June–2 July 2008. [Google Scholar]
- Kondo, N.; Yamamoto, K.; Yata, K.; Kurita, M. A machine vision for tomato cluster harvesting robot. In Proceedings of the ASABE Annual International Meeting, Providence, RI, USA, 29 June–2 July 2008. [Google Scholar]
- Arndt, G.; Rudziejewski, R.; Stewart, V.A. On the future of automated selective asparagus harvesting technology. Comput. Electron. Agric. 1997, 16, 137–145. [Google Scholar] [CrossRef]
- Benson, E.; Reid, J.; Zhang, Q. Machine vision-based guidance system for agricultural grain harvesters using cut-edge detection. Biosyst. Eng. 2003, 86, 389–398. [Google Scholar] [CrossRef]
- Cho, S.I.; Chang, S.J.; Kim, Y.Y. Development of a three-degrees-of-freedom robot for harvesting lettuce using machine vision and fuzzy logic control. Biosyst. Eng. 2002, 82, 143–149. [Google Scholar] [CrossRef]
- Reed, J.N.; Miles, S.J.; Butler, J.; Baldwin, M.; Noble, R. Automatic mushroom harvester development. J. Agric. Eng. Res. 2001, 78, 15–23. [Google Scholar] [CrossRef]
- Sanders, K.F. Orange Harvesting Systems Review. Biosyst. Eng. 2005, 90, 115–125. [Google Scholar] [CrossRef]
- Gongal, A.; Amatya, S.; Karkee, M.; Zhang, Q.; Lewis, K. Sensors and systems for fruit detection and localization: A review. Comput. Electron. Agric. 2015, 116, 8–19. [Google Scholar] [CrossRef]
- Paulus, S.; Behmann, J.; Mahlein, A.K.; Plümer, L.; Kuhlmann, H. Low-cost 3D systems: Suitable tools for plant phenotyping. Sensors 2014, 14, 3001–3018. [Google Scholar] [CrossRef] [PubMed]
- Vos, J.; Evers, J.B.; Buck-Sorlin, G.H.; Andrieu, B.; Chelle, M.; De Visser, P.H. Functional–structural plant modelling: A new versatile tool in crop science. J. Exp. Bot. 2010, 61, 2101–2115. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Gong, L.; Huang, Y.; Liu, C. Robust Tomato Recognition for Robotic Harvesting Using Feature Images Fusion. Sensors 2016, 16, 173. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.; Meng, X.; Tao, Y.; Xu, B.; Zhao, D. Fast Segmentation of Colour Apple Image under All-weather Natural Conditions for Vision Recognition of Picking Robots. Int. J. Adv. Robot. Syst. 2016, 13, 24. [Google Scholar] [CrossRef]
- Sa, I.; Ge, Z.; Dayoub, F.; Upcroft, B.; Perez, T.; McCool, C. Deepfruits: A fruit detection system using deep neural networks. Sensors 2017, 16, 1222. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, A.K.; Pant, D. Automatic apple grading model development based on back propagation neural network and machine vision, and its performance evaluation. AI Soc. 2015, 30, 45–56. [Google Scholar] [CrossRef]
- Sofu, M.M.; Er, O.; Kayacan, M.C.; Cetisli, B. Design of an automatic apple sorting system using machine vision. Comput. Electron. Agric. 2016, 127, 395–405. [Google Scholar] [CrossRef]
- Zhang, B.; Huang, W.; Gong, L.; Li, J.; Zhao, C.; Liu, C.; Huang, D. Computer vision detection of defective apples using automatic lightness correction and weighted RVM classifier. J. Food Eng. 2015, 146, 143–151. [Google Scholar] [CrossRef]
- Saffiotti, A.; Broxvall, M.; Gritti, M.; LeBlanc, K.; Lundh, R.; Rashid, J.; Seo, B.; Cho, Y. The peis-ecology project: Vision and results. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 2329–2335. [Google Scholar]
- Lee, J.; Hashimoto, H. Intelligent space—Concept and contents. Adv. Robot. 2002, 16, 265–280. [Google Scholar] [CrossRef]
- Yue, J.; Lei, T.; Li, C.; Zhu, J. The Application of Unmanned Aerial Vehicle Remote Sensing in Quickly Monitoring Crop Pests. Intell. Autom. Soft Comput. 2012, 18, 1043–1052. [Google Scholar] [CrossRef]
- Jia, Y.; Zhongbin, S.; Shen, W.; Yuan, J.; Xu, Z. UAV Remote Sensing Image Mosaic and Its Application in Agriculture. Int. J. Smart Home 2016, 10, 159–170. [Google Scholar] [CrossRef]
- Mahlein, A.K.; Oerke, E.C.; Steiner, U.; Dehne, H.W. Recent advances in sensing plant diseases for precision crop protection. Eur. J. Plant Pathol. 2012, 133, 197–209. [Google Scholar] [CrossRef]
- Sankaran, S.; Mishra, A.; Ehsani, R.; Davis, C. A review of advanced techniques for detecting plant diseases. Comput. Electron. Agric. 2010, 72, 1–13. [Google Scholar] [CrossRef]
- Zude-Sasse, M.; Fountas, S.; Gemtos, T.A.; Abu-Khalaf, N. Applications of precision agriculture in horticultural crops. Eur. J. Hortic Sci. 2016, 81, 78–90. [Google Scholar] [CrossRef]
- Menendez-Aponte, P.; Garcia, C.; Freese, D.; Defterli, S.; Xu, Y. Software and hardware architectures in cooperative aerial and ground robots for agricultural disease detection. In Proceedings of the International Conference on Collaboration Technologies and Systems, Orlando, FL, USA, 1 October–4 November 2016; pp. 354–358. [Google Scholar]
- Gebbers, R.; Adamchuk, V.I. Precision agriculture and food security. Science 2010, 327, 828–831. [Google Scholar] [CrossRef] [PubMed]
- Fountas, S.; Wulfsohn, D.; Blackmore, S.; Jacobsen, H.L.; Pedersen, S.M. A model of decision making and information flows for information-intensive agriculture. Agric. Syst. 2006, 87, 192–210. [Google Scholar] [CrossRef]
- Serôdio, C.; Cunha, J.B.; Morais, R.; Couto, C.; Monteiro, J. A networked platform for agricultural management systems. Comput. Electron. Agric. 2001, 31, 75–90. [Google Scholar] [CrossRef]
- Park, D.H.; Kang, B.J.; Cho, K.R.; Shin, C.S.; Cho, S.E.; Park, J.W.; Yang, W.M. A Study on Greenhouse Automatic Control System Based on Wireless Sensor Network. KLUV Commun. 2011, 56, 117–130. [Google Scholar] [CrossRef]
- Giraldo, S.A.C.; Flesch, R.C.C.; Normey-Rico, J.E. Multivariable Greenhouse Control Using the Filtered Smith Predictor. J. Control Autom. Electr. Syst. 2016, 27, 349–358. [Google Scholar] [CrossRef]
- Benni, S.; Tassinari, P.; Bonora, F.; Barbaresi, A.; Torreggiani, D. Efficacy of greenhouse natural ventilation: Environmental monitoring and CFD simulations of a study case. Energy Build. 2016, 125, 276–286. [Google Scholar] [CrossRef]
- Luvisi, A.; Panattoni, A.; Triolo, E. Electronic identification-based Web 2.0 application for plant pathology purposes. Comput. Electron. Agric. 2012, 84, 7–15. [Google Scholar] [CrossRef]
- Luvisi, A.; Ampatzidis, Y.; De Bellis, L. Plant pathology and Information Technology: Opportunity for management of disease outbreak and applications in regulation frameworks. Sustainability 2016, 8, 831. [Google Scholar] [CrossRef]
- Hamann, H.; Wahby, M.; Schmickl, T.; Zahadat, P.; Hofstadler, D.; Stoy, K.; Risi, S.; Faiña, A.; Veenstra, F.; Kernbach, S.; et al. Flora robotica—Mixed Societies of Symbiotic Robot-Plant Bio-Hybrids. In Proceedings of the IEEE Symposium Series on Computational Intelligence, Cape Town, South Africa, 7–10 December 2015. [Google Scholar]
- Lovell, S.T. Multifunctional urban agriculture for sustainable land use planning in the United States. Sustainability 2010, 2, 2499–2522. [Google Scholar] [CrossRef]
- DeKay, M. The implications of community gardening for land use and density. J. Archit. Plan. Res. 1997, 14, 126–149. [Google Scholar]
- Lorenzini, G.; Landi, U.; Loppi, S.; Nali, C. Lichen distribution and bioindicator tobacco plants give discordant response: A case study from Italy. Environ. Monit. Assess. 2003, 82, 243–264. [Google Scholar] [CrossRef] [PubMed]
- Nali, C.; Balducci, E.; Frati, L.; Paoli, L.; Loppi, S.; Lorenzini, G. Integrated biomonitoring of air quality with plants and lichens: A case study on ambient ozone from central Italy. Chemosphere 2007, 67, 2169–2176. [Google Scholar] [CrossRef] [PubMed]
- Nali, C.; Francini, A.; Lorenzini, G. White clover clones as a cost-effective indicator of phytotoxic ozone: 10 years of experience from central Italy. Environ. Pollut. 2009, 157, 1421–1426. [Google Scholar] [CrossRef] [PubMed]
- Pantazi, X.E.; Moshou, D.; Oberti, R.; West, J.; Mouazen, A.M.; Bochtis, D. Detection of biotic and abiotic stresses in crops by using hierarchical self organizing classifiers. Precis. Agric. 2017, 18, 383–393. [Google Scholar] [CrossRef]
- Tillett, N.D.; Hague, T. Increasing work rate in vision guided precision banded operations. Biosyst. Eng. 2006, 94, 487–494. [Google Scholar] [CrossRef]
- Astrand, B.; Baerveldt, A.J. An agricultural mobile robot with vision-based perception for mechanical weed control. Auton. Robot. 2002, 13, 21–35. [Google Scholar] [CrossRef]
- Griepentrog, H.W.; Norremark, M.; Nielsen, J. Autonomous intra-row rotor weeding based on GPS. In Proceedings of the CIGR World Congress Agricultural Engineering for a Better World, Bonn, Germany, 3–7 September 2006. [Google Scholar]
- Emmi, L.; Gonzalez-de-Soto, M.; Pajares, G.; Gonzalez-de-Santos, P. New trends in robotics for agriculture: Integration and assessment of a real fleet of robots. Sci. World J. 2014. [Google Scholar] [CrossRef] [PubMed]
- Mahlein, A.K. Plant disease detection by imaging sensors—Parallels and specific demands for precision agriculture and plant phenotyping. Plant Dis. 2016, 100, 241–254. [Google Scholar] [CrossRef]
- Fiorani, F.; Schurr, U. Future scenarios for plant phenotyping. Annu. Rev. Plant Biol. 2013, 64, 267–291. [Google Scholar] [CrossRef] [PubMed]
- Kjaer, K.H.; Ottosen, C.O. 3D laser triangulation for plant phenotyping in challenging environments. Sensors 2015, 15, 13533–13547. [Google Scholar] [CrossRef] [PubMed]
- Nutter, F.; van Rij, N.; Eggenberger, S.K.; Holah, N. Spatial and temporal dynamics of plant pathogens. In Precision Crop Protection—The Challenge and Use of Heterogeneity; Oerke, E.C., Gerhards, R., Menz, G., Sikora, R.A., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 27–50. [Google Scholar]
- Luvisi, A.; Lorenzini, G. RFID-plants in the smart city: Applications and outlook for urban green management. Urban For. Urban Green. 2014, 13, 630–637. [Google Scholar] [CrossRef]
- Luvisi, A.; Nicolì, F.; De Bellis, L. Sustainable Management of Plant Quarantine Pests: The Case of Olive Quick Decline Syndrome. Sustainability 2017, 9, 659. [Google Scholar] [CrossRef]
- Deng, X.; Lan, Y.; Hong, T.; Chen, J. Citrus greening detection using visible spectrum imaging and C-SVC. Comput. Electron. Agric. 2016, 130, 177–183. [Google Scholar] [CrossRef]
- Pourreza, A.; Lee, W.S.; Etxeberria, E.; Zhang, Y. Identification of Citrus Huanglongbing Disease at the Pre-Symptomatic Stage Using Polarized Imaging Technique. IFAC Pap. Online 2016, 49, 110–115. [Google Scholar] [CrossRef]
- Bock, C.H.; Parker, P.E.; Cook, A.Z.; Gottwald, T.R. Visual rating and the use of image analysis for assessing different symptoms of citrus canker on grapefruit leaves. Plant Dis. 2008, 92, 530–541. [Google Scholar] [CrossRef]
- Cruz, A.C.; Ampatzidis, Y.; De Bellis, L.; Luvisi, A. Vision-Based Plant Disease Detection System Using Transfer and Deep Learning. In Proceedings of the ASABE 2017, Annual International Meeting, Spokane, WA, USA, 16–19 July 2017. [Google Scholar]
- Bock, C.H.; Poole, G.H.; Parker, P.E.; Gottwald, T.R. Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Crit. Rev. Plant Sci. 2010, 29, 59–107. [Google Scholar] [CrossRef]
- Zhang, M.; Qin, Z.; Liu, X.; Ustin, S. Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing. Appl. Earth Obs. Geoinform. 2003, 4, 295–310. [Google Scholar] [CrossRef]
- Quin, J.; Burks, T.F.; Ritenour, M.A.; Bonn, W.G. Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence. J. Food Eng. 2009, 93, 183–191. [Google Scholar] [CrossRef]
- Williams, E.; Ayres, R.; Heller, M. Energy intensity of computer manufacturing: Hybrid assessment combining process and economic input−output methods. Environ. Sci. Technol. 2004, 38, 6166–6174. [Google Scholar] [CrossRef] [PubMed]
- Williams, E. Environmental effects of information and communications technologies. Nature 2011, 479, 354–358. [Google Scholar] [CrossRef] [PubMed]
- Luvisi, A. Electronic identification technology for agriculture, plant and food. A review. Agric. Sustain. Dev. 2016, 36, 13. [Google Scholar] [CrossRef]
- Frederick, E.D. Libraries, data and the fourth industrial revolution. Libr. Hi Tech News 2016, 33, 9–12. [Google Scholar] [CrossRef]
- Nomura, T. General republics’ opinions on robot ethics: Comparison between Japan, the USA, Germany, and France. In Proceedings of the 4th International Symposium on New Frontiers in Human-Robot Interaction, Canterbury, UK, 21–22 April 2015. [Google Scholar]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, e63. [Google Scholar] [CrossRef] [PubMed]
- Borges, E.; Matos, A.P.; Cardoso, J.M.; Correia, C.; Vasconcelos, T.; Gomes, N. Early detection and monitoring of plant diseases by Bioelectric Impedance Spectroscopy. In Proceedings of the IEEE 2nd Portuguese Meeting in Bioengineering, Coimbra, Portugal, 23–25 February 2012; pp. 1–4. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ampatzidis, Y.; De Bellis, L.; Luvisi, A. iPathology: Robotic Applications and Management of Plants and Plant Diseases. Sustainability 2017, 9, 1010. https://doi.org/10.3390/su9061010
Ampatzidis Y, De Bellis L, Luvisi A. iPathology: Robotic Applications and Management of Plants and Plant Diseases. Sustainability. 2017; 9(6):1010. https://doi.org/10.3390/su9061010
Chicago/Turabian StyleAmpatzidis, Yiannis, Luigi De Bellis, and Andrea Luvisi. 2017. "iPathology: Robotic Applications and Management of Plants and Plant Diseases" Sustainability 9, no. 6: 1010. https://doi.org/10.3390/su9061010
APA StyleAmpatzidis, Y., De Bellis, L., & Luvisi, A. (2017). iPathology: Robotic Applications and Management of Plants and Plant Diseases. Sustainability, 9(6), 1010. https://doi.org/10.3390/su9061010