Sand and Dust Storms: Impact Mitigation
Abstract
:1. Introduction
2. SDS Definitions
3. The Scale of SDS Impacts: Countries Affected
4. SDS Hazards and Their Mitigation
4.1. SDS Source Mitigation
4.1.1. Controlling Wind Erosion on Cropland
- Agronomic measures (crop management practices)
- Soil management techniques
- Protective barriers
4.1.2. Controlling Wind Erosion on Rangeland
4.1.3. Controlling Blowing Sand and Mobile Desert Dunes
4.1.4. Controlling Wind Erosion at Mining Operations
4.1.5. Integrated SDS Control Strategies
4.2. SDS Impact Mitigation
- Advisory, issued when the hourly mean PM10 concentration is expected to exceed 400 μg/m3 for over 2 h.
- Warning, issued when the hourly mean PM10 concentration is expected to exceed 800 μg/m3 for over 2 h.
5. Policy Measures for SDS Impact Mitigation
5.1. Policy Lessons, Failures and Inadvertent Impacts
5.2. Contemporary National, Regional and International Plans
5.3. A Policy Framework for Improving SDS Hazard Mitigation
- (1)
- post-impact crisis management (emergency response procedures);
- (2)
- pre-impact governance programs to strengthen resilience, reduce vulnerability and minimize impacts (mitigation); and
- (3)
- preparedness plans and policies.
6. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Goudie, A.S.; Middleton, N.J. Desert Dust in the Global System; Springer: Heidelberg, Germany, 2006; ISBN 978-3-540-32354-9. [Google Scholar]
- Shao, Y.; Wyrwoll, K.H.; Chappell, A.; Huang, J.; Lin, Z.; McTainsh, G.H.; Yoon, S. Dust cycle: An emerging core theme in Earth system science. Aeolian Res. 2011, 2, 181–204. [Google Scholar] [CrossRef]
- Middleton, N.J. Desert dust hazards: A global review. Aeolian Res. 2017, 24, 53–63. [Google Scholar] [CrossRef]
- Goudie, A.S.; Middleton, N.J. The changing frequency of dust storms through time. Clim. Chang. 1992, 20, 197–225. [Google Scholar] [CrossRef]
- Moulin, C.; Lambert, C.E.; Dulac, F.; Dayan, U. Control of atmospheric export of dust from North Africa by the North Atlantic Oscillation. Nature 1997, 387, 691–694. [Google Scholar]
- Bucher, E.H.; Stein, A.F. Large Salt Dust Storms Follow a 30-Year Rainfall Cycle in the Mar Chiquita Lake (Córdoba, Argentina). PLoS ONE 2016, 11, e0156672. [Google Scholar] [CrossRef] [PubMed]
- Fox, T.A.; Barchyn, T.E.; Hugenholtz, C.H. Successes of soil conservation in the Canadian Prairies highlighted by a historical decline in blowing dust. Environ. Res. Lett. 2012, 7, 014008. [Google Scholar] [CrossRef]
- Tan, M.; Li, X. Does the Green Great Wall effectively decrease dust storm intensity in China? A study based on NOAA NDVI and weather station data. Land Use Policy 2015, 43, 42–47. [Google Scholar] [CrossRef]
- Hsu, N.C.; Gautam, R.; Sayer, A.M.; Bettenhausen, C.; Li, C.; Jeong, M.J.; Tsay, S.C.; Holben, B.N. Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010. Atmos. Chem. Phys. 2012, 12, 8037–8053. [Google Scholar] [CrossRef]
- Notaro, M.; Yu, Y.; Kalashnikova, O.V. Regime shift in Arabian dust activity, triggered by persistent Fertile Crescent drought. J. Geophys. Res. Atmos. 2015, 120, 10229–10249. [Google Scholar] [CrossRef]
- Ganor, E.; Osetinsky, I.; Stupp, A.; Alpert, P. Increasing trend of African dust, over 49 years, in the eastern Mediterranean. J. Geophys. Res. Atmos. 2010, 115, D07201. [Google Scholar] [CrossRef]
- Krasnov, H.; Katra, I.; Friger, M. Increase in dust storm related PM 10 concentrations: A time series analysis of 2001–2015. Environ. Pollut. 2016, 213, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Ghasem, A.; Shamsipour, A.; Miri, M.; Safarrad, T. Synoptic and remote sensing analysis of dust events in southwestern Iran. Nat. Hazards 2012, 64, 1625–1638. [Google Scholar] [CrossRef]
- Kim, J. Transport routes and source regions of Asian dust observed in Korea during the past 40 years (1965–2004). Atmos. Environ. 2008, 42, 4778–4789. [Google Scholar] [CrossRef]
- Aitsi-Selmi, A.; Egawa, S.; Sasaki, H.; Wannous, C.; Murray, V. The Sendai framework for disaster risk reduction: Renewing the global commitment to people’s resilience, health, and well-being. Int. J. Disaster Risk Sci. 2015, 6, 164–176. [Google Scholar] [CrossRef]
- Gillette, D.A. Environmental factors affecting dust emission by wind. In Saharan Dust: Mobilization, Transport, Deposition; Morales, C., Ed.; John Wiley & Sons: Chichester, UK, 1979; pp. 71–91. ISBN 0-471-99680-7. [Google Scholar]
- McTainsh, G.H.; Pitblado, J.R. Dust storms and related phenomena measured from meteorological records in Australia. Earth Surf. Process. Landf. 1987, 12, 415–424. [Google Scholar] [CrossRef]
- Leys, J.F.; Heidenreich, S.K.; Strong, C.L.; McTainsh, G.H.; Quigley, S. PM 10 concentrations and mass transport during “Red Dawn”—Sydney 23 September 2009. Aeolian Res. 2011, 3, 327–342. [Google Scholar] [CrossRef]
- Jugder, D.; Shinoda, M.; Sugimoto, N.; Matsui, I.; Nishikawa, M.; Park, S.U.; Chun, Y.-S.; Park, M.S. Spatial and temporal variations of dust concentrations in the Gobi Desert of Mongolia. Glob. Planet. Chang. 2011, 78, 14–22. [Google Scholar] [CrossRef]
- Prospero, J.M.; Ginoux, P.; Torres, O.; Nicholson, S.E.; Gill, T.E. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 2002, 40, 1002. [Google Scholar] [CrossRef]
- Washington, R.; Todd, M.; Middleton, N.J.; Goudie, A.S. Dust-Storm source areas determined by the Total Ozone Monitoring Spectrometer and surface observations. Ann. Assoc. Am. Geogr. 2003, 93, 297–313. [Google Scholar] [CrossRef]
- Ginoux, P.; Prospero, J.M.; Gill, T.E.; Hsu, N.C.; Zhao, M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 2012, 50, RG3005. [Google Scholar] [CrossRef]
- Bullard, J.E.; Baddock, M.; Bradwell, T.; Crusius, J.; Darlington, E.; Gaiero, D.; Gasso, S.; Gisladottir, G.; Hodgkins, R.; McCulloch, R.; et al. High-latitude dust in the Earth system. Rev. Geophys. 2016, 54, 447–485. [Google Scholar] [CrossRef]
- Borrelli, P.; Panagos, P.; Montanarella, L. New Insights into the Geography and Modelling of Wind Erosion in the European Agricultural Land. Application of a Spatially Explicit Indicator of Land Susceptibility to Wind Erosion. Sustainability 2015, 7, 8823–8836. [Google Scholar] [CrossRef]
- López, M.V.; Sabre, M.; Gracia, R.; Arrue, J.L.; Gomes, L. Tillage effects on soil surface conditions and dust emission by wind erosion in semiarid Aragon (NE Spain). Soil Tillage Res. 1998, 45, 91–105. [Google Scholar] [CrossRef]
- Riksen, M.; Brouwer, F.; de Graaff, J. Soil conservation policy measures to control wind erosion in northwestern Europe. Catena 2003, 52, 309–326. [Google Scholar] [CrossRef]
- Middleton, N.J.; Thomas, D.S.G. World Atlas of Desertification, 2nd ed.; United Nations Environment Programme (UNEP): Nairobi, Kenya, 1997; ISBN 0-340-55512-2. [Google Scholar]
- Borrelli, P.; Panagos, P.; Ballabio, C.; Lugato, E.; Weynants, M.; Montanarella, L. Towards a Pan-European Assessment of Land Susceptibility to Wind Erosion. Land Degrad. Dev. 2016, 27, 1093–1105. [Google Scholar] [CrossRef]
- Varga, G. Spatio-temporal distribution of dust storms—A global coverage using NASA TOMs aerosol measurements. Hung. Geogr. Bull. 2012, 61, 275–298. [Google Scholar]
- Sunnu, A.; Afeti, G.; Resch, F. A long-term experimental study of the Saharan dust presence in West Africa. Atmos. Res. 2008, 87, 13–26. [Google Scholar] [CrossRef]
- Franzén, L.G.; Hjelmroos, M.; Kållberg, P.; Rapp, A.; Mattsson, J.O.; Brorström-Lundén, E. The Saharan dust episode of south and central Europe, and northern Scandinavia, March 1991. Weather 1995, 50, 313–318. [Google Scholar] [CrossRef]
- Kutuzov, S.; Shahgedanova, M.; Mikhalenko, V.; Ginot, P.; Lavrentiev, I.; Kemp, S. High-resolution provenance of desert dust deposited on Mt. Elbrus, Caucasus in 2009–2012 using snow pit and firn core records. Cryosphere 2013, 7, 1481–1498. [Google Scholar] [CrossRef]
- Muhs, D.R.; Budahn, J.R.; Prospero, J.M.; Carey, S.N. Geochemical evidence for African dust inputs to soils of western Atlantic islands: Barbados, the Bahamas and Florida. J. Geophys. Res. 2007, 112, F02009. [Google Scholar] [CrossRef]
- Prospero, J.M. Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment of the southeastern United States. Proc. Natl. Acad. Sci. USA 1999, 96, 3396–3403. [Google Scholar] [CrossRef] [PubMed]
- Boy, J.; Wilcke, W. Tropical Andean forest derives calcium and magnesium from Saharan dust. Glob. Biogeochem. Cycles 2008, 22, GB1027. [Google Scholar] [CrossRef]
- Slingo, A.; Ackerman, T.P.; Allan, R.P.; Kassianov, E.I.; McFarlane, S.A.; Robinson, G.J.; Barnard, J.C.; Miller, M.A.; Harries, J.E.; Russell, J.E.; et al. Observations of the impact of a major Saharan dust storm on the atmospheric radiation balance. Geophys. Res. Lett. 2006, 33, L24817. [Google Scholar] [CrossRef]
- Yoshioka, M.; Mahowald, N.M.; Conley, A.J.; Collins, W.D.; Fillmore, D.W.; Zender, C.S.; Coleman, D.B. Impact of desert dust radiative forcing on Sahel precipitation: Relative importance of dust compared to sea surface temperature variations, vegetation changes, and greenhouse gas warming. J. Clim. 2007, 20, 1445–1467. [Google Scholar] [CrossRef]
- Evan, A.T.; Dunion, J.; Foley, J.A.; Heidinger, A.K.; Velden, C.S. New evidence for a relationship between Atlantic tropical cyclone activity and African dust outbreaks. Geophys. Res. Lett. 2006, 33, L19813. [Google Scholar] [CrossRef]
- Lau, K.M.; Kim, K.M. Cooling of the Atlantic by Saharan dust. Geophys. Res. Lett. 2007, 34, L23811. [Google Scholar] [CrossRef]
- Krom, M.D.; Kress, N.; Brenner, S.; Gordon, L.I. Phosphorus limitation of primary productivity in the eastern Mediterranean Sea. Limnol. Oceanogr. 1991, 36, 424–432. [Google Scholar] [CrossRef]
- Hayes, V.G.; Barber, R.T. African dust and the demise of Caribbean coral reefs. Geophys. Res. Lett. 2000, 27, 3029–3032. [Google Scholar]
- Psenner, R. Living in a dusty world: Airborne dust as a key factor for alpine lakes. Water Air Soil Pollut. 1999, 112, 217–227. [Google Scholar] [CrossRef]
- Kashima, S.; Yorifuji, T.; Bae, S.; Honda, Y.; Lim, Y.H.; Hong, Y.C. Asian dust effect on cause-specific mortality in five cities across South Korea and Japan. Atmos. Environ. 2016, 128, 20–27. [Google Scholar] [CrossRef]
- McKendry, I.G.; Hacker, J.P.; Stull, R.; Sakiyama, S.; Mignacca, D.; Reid, K. Long-range transport of Asian dust to the lower Fraser Valley, British Columbia, Canada. J. Geophys. Res. 2001, 106, 18361–18370. [Google Scholar] [CrossRef]
- Grousset, F.E.; Ginoux, P.; Bory, A.; Biscaye, P.E. Case study of a Chinese dust plume reaching the French Alps. Geophys. Res. Lett. 2003, 30, 1277. [Google Scholar] [CrossRef]
- Uno, I.; Eguchi, K.; Yumimoto, K.; Takemura, T.; Shimizu, A.; Uematsu, M.; Liu, Z.; Wang, Z.; Hara, Y.; Sugimoto, N. Asian dust transported one full circuit around the globe. Nat. Geosci. 2009, 2, 557–560. [Google Scholar] [CrossRef]
- Li, F.; Ginoux, P.; Ramaswamy, V. Distribution, transport, and deposition of mineral dust in the Southern Ocean and Antarctica: Contribution of major sources. J. Geophys. Res. Atmos. 2008, 113, D10207. [Google Scholar] [CrossRef]
- Birmili, W.; Schepanski, K.; Ansmann, A.; Spindler, G.; Tegen, I.; Wehner, B.; Nowak, A.; Reimer, E.; Mattis, I.; Müller, K.; et al. A case of extreme particulate matter concentrations over Central Europe caused by dust emitted over the southern Ukraine. Atmos. Chem. Phys. 2008, 8, 997–1016. [Google Scholar] [CrossRef]
- Rashki, A.; Kaskaoutis, D.G.; Goudie, A.S.; Kahn, R.A. Dryness of ephemeral lakes and consequences for dust activity: The case of the Hamoun drainage basin, southeastern Iran. Sci. Total Environ. 2013, 463, 552–564. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Amiraslani, F.; Liu, J.; Zhou, N. Identification of dust storm source areas in West Asia using multiple environmental datasets. Sci. Total Environ. 2015, 502, 224–235. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, N.; Hara, Y.; Shimizu, A.; Nishizawa, T.; Matsui, I.; Nishikawa, M. Analysis of dust events in 2008 and 2009 using the lidar network, surface observations and the CFORS model. Asia Pac. J. Atmos. Sci. 2013, 49, 27–39. [Google Scholar] [CrossRef]
- Gross, A.; Turner, B.L.; Goren, T.; Berry, A.; Angert, A. Tracing the sources of atmospheric phosphorus deposition to a tropical rain forest in Panama using stable oxygen isotopes. Environ. Sci. Technol. 2016, 50, 1147–1156. [Google Scholar] [CrossRef] [PubMed]
- Muhs, D.; Lancaster, N.; Skipp, G.L. Geochemical evidence for a complex origin for the Kelso dunes, Mojave National Preserve, California USA. Geomorphology 2017, 276, 222–243. [Google Scholar] [CrossRef]
- Hahnenberger, M.; Nicoll, K. Geomorphic and land cover identification of dust sources in the eastern Great Basin of Utah, USA. Geomorphology 2014, 204, 657–672. [Google Scholar] [CrossRef]
- Rivera, N.I.R.; Gill, T.E.; Bleiweiss, M.P.; Hand, J.L. Source characteristics of hazardous Chihuahuan Desert dust outbreaks. Atmos. Environ. 2010, 44, 2457–2468. [Google Scholar] [CrossRef]
- Husar, R.B.; Tratt, D.M.; Schichtel, B.A.; Falke, S.R.; Li, F.; Jaffe, D.; Gasso, S.; Gill, T.; Laulainen, N.S.; Lu, F.; et al. Asian dust events of April 1998. J. Geophys. Res. Atmos. 2001, 106, 18317–18330. [Google Scholar] [CrossRef]
- Prospero, J.M.; Nees, R.T.; Uematsu, M. Deposition rate of particulate and dissolved aluminum derived from Saharan dust in precipitation at Miami, Florida. J. Geophys. Res. Atmos. 1987, 92, 14723–14731. [Google Scholar] [CrossRef]
- Zobeck, T.M.; Van Pelt, R.S. Wind-induced dust generation and transport mechanics on a bare agricultural field. J. Hazard. Mater. 2006, 132, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Aciego, S.M.; Riebe, C.S.; Hart, S.C.; Blakowski, M.A.; Carey, C.J.; Aarons, S.M.; Dove, N.C.; Botthoff, J.K.; Sims, K.W.W.; Aronson, E.L. Dust outpaces bedrock in nutrient supply to montane forest ecosystems. Nat. Commun. 2017, 8, 14800. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, D.; Snow, J.; Cooper, O. The 2001 Asian dust events: Transport and impact on surface aerosol concentrations in the US. Eos Trans. Am. Geophys. Union 2003, 84, 501–507. [Google Scholar] [CrossRef]
- Middleton, N.J.; Goudie, A.S. Saharan dust: Sources and trajectories. Trans. Inst. Br. Geogr. 2001, 26, 165–181. [Google Scholar] [CrossRef]
- Pimentel, D.; Harvey, C.; Resosudarmo, P.; Sinclair, K.; Kurz, D.; McNair, M.; Crist, S.; Shpritz, L.; Fitton, L.; Saffouri, R.; et al. Environmental and economic costs of soil erosion and conservation benefits. Science 1995, 267, 1117–1122. [Google Scholar] [CrossRef] [PubMed]
- Ai, N.; Polenske, K.R. Socioeconomic impact analysis of yellow-dust storms: An approach and case study for Beijing. Econ. Syst. Res. 2008, 20, 187–203. [Google Scholar] [CrossRef]
- Jeong, D.Y. Socio-economic costs from yellow dust damages in South Korea. Korean Soc. Sci. J. 2008, 35, 1–29. [Google Scholar]
- Meibodi, A.E.; Abdoli, G.; Taklif, A.; Morshedi, B. Economic modeling of the regional polices to combat dust phenomenon by using game theory. Procedia Econ. Financ. 2015, 24, 409–418. [Google Scholar] [CrossRef]
- Skidmore, E.L. Wind erosion control. Clim. Chang. 1986, 9, 209–218. [Google Scholar] [CrossRef]
- Nordstrom, K.F.; Hotta, S. Wind erosion from crop-land in the USA: A review of problems, solutions, and prospects. Geoderma 2004, 121, 157–167. [Google Scholar] [CrossRef]
- Akhtar-Schuster, M.; Stringer, L.C.; Erlewein, A.; Metternicht, G.; Minelli, S.; Safriel, U.; Sommer, S. Unpacking the concept of land degradation neutrality and addressing its operation through the Rio Conventions. J. Environ. Manag. 2016, 195, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Marques, M.J.; Schwilch, G.; Lauterburg, N.; Crittenden, S.; Tesfai, M.; Stolte, J.; Zdruli, P.; Zucca, C.; Petursdottir, T.; Evelpidou, N.; et al. Multifaceted impacts of sustainable land management in drylands: A review. Sustainability 2016, 8, 177. [Google Scholar] [CrossRef]
- Sayer, J.; Sunderland, T.; Ghazoul, J.; Pfund, J.L.; Sheil, D.; Meijaard, E.; van Oosten, C. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc. Natl. Acad. Sci. USA 2013, 110, 8349–8356. [Google Scholar] [CrossRef] [PubMed]
- Larney, F.J.; Bullock, M.S.; Janzen, H.H.; Ellert, B.H.; Olson, E.C. Wind erosion effects on nutrient redistribution and soil productivity. J. Soil Water Conserv. 1998, 53, 133–140. [Google Scholar]
- Bilbro, J.D.; Fryrear, D.W. Wind erosion losses as related to plant silhouette and soil cover. Agron. J. 1994, 86, 550–553. [Google Scholar] [CrossRef]
- Toure, A.A.; Rajot, J.L.; Garba, Z.; Marticorena, B.; Petit, C.; Sebag, D. Impact of very low crop residues cover on wind erosion in the Sahel. Catena 2011, 85, 205–214. [Google Scholar] [CrossRef]
- Triplett, G.B.; Dick, W.A. No-tillage crop production: A revolution in agriculture! Agron. J. 2008, 100, S-153–S-156. [Google Scholar] [CrossRef]
- Trigo, E.; Cap, E.; Malach, V.; Villarreal, F. The Case of Zero-Tillage Technology in Argentina; International Food Policy Research Institute: Washington, DC, USA, 2009. [Google Scholar]
- Wang, X.; Zhang, C.; Hasi, E.; Dong, Z. Has the Three Norths Forest Shelterbelt Program solved the desertification and dust storm problems in arid and semiarid China? J. Arid Environ. 2010, 74, 13–22. [Google Scholar] [CrossRef]
- Chendev, Y.G.; Sauer, T.J.; Ramirez, G.H.; Burras, C.L. History of east European chernozem soil degradation; protection and restoration by tree windbreaks in the Russian steppe. Sustainability 2015, 7, 705–724. [Google Scholar] [CrossRef]
- Cornelis, W.M.; Gabriels, D. Optimal windbreak design for wind-erosion control. J. Arid Environ. 2005, 61, 315–332. [Google Scholar] [CrossRef]
- Bielders, C.L.; Alvey, S.; Cronyn, N. Wind erosion: The perspective of grass-roots communities in the Sahel. Land Degrad. Dev. 2001, 12, 57–70. [Google Scholar] [CrossRef]
- Vetter, S. Rangelands at equilibrium and non-equilibrium: Recent developments in the debate. J. Arid Environ. 2005, 62, 321–341. [Google Scholar] [CrossRef]
- Reid, R.S.; Fernández-Giménez, M.E.; Galvin, K.A. Dynamics and resilience of rangelands and pastoral peoples around the globe. Annu. Rev. Environ. Resour. 2014, 39, 217–242. [Google Scholar] [CrossRef]
- Li, W.; Huntsinger, L. China’s grassland contract policy and its impacts on herder ability to benefit in Inner Mongolia: Tragic feedbacks. Ecol. Soc. 2011, 16, 1. [Google Scholar] [CrossRef]
- Wiggs, G.F.S. Geomorphological hazards in drylands. In Arid Zone Geomorphology: Process, Form and Change in Drylands, 3rd ed.; Thomas, D.S.G., Ed.; Wiley-BlackWell: Oxford, UK, 2011; pp. 583–598. ISBN 978-0-470-51908-0. [Google Scholar]
- Dong, Z.; Chen, G.; He, X.; Han, Z.; Wang, X. Controlling blown sand along the highway crossing the Taklimakan Desert. J. Arid Environ. 2004, 57, 329–344. [Google Scholar] [CrossRef]
- Watson, A. The control of blowing sand and mobile desert dunes. The control of wind blown sand and moving dunes: A review of the methods of sand control in deserts, with observations from Saudi Arabia. Q. J. Eng. Geol. Hydrogeol. 1985, 18, 237–252. [Google Scholar] [CrossRef]
- Li, B.; Sherman, D.J. Aerodynamics and morphodynamics of sand fences: A review. Aeolian Res. 2015, 17, 33–48. [Google Scholar] [CrossRef]
- Mohsin, M.A.; Attia, N.F. Inverse emulsion polymerization for the synthesis of high molecular weight polyacrylamide and its application as sand stabilizer. Int. J. Polym. Sci. 2015, 2015, 436583. [Google Scholar] [CrossRef]
- Amiraslani, F.; Dragovich, D. Combating desertification in Iran over the last 50 years: An overview of changing approaches. J. Environ. Manag. 2011, 92, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Loutfy, N.M. Reuse of wastewater in Mediterranean region, Egyptian experience. In Waste Water Treatment and Reuse in the Mediterranean Region; Barcelo, D., Petrovic, M., Eds.; Springer: Heidelberg, Germany, 2011; pp. 183–213. ISBN 978-3-642-18280-8. [Google Scholar]
- Greipsson, S.; El-Mayas, H. Large-scale reclamation of barren lands in Iceland by aerial seeding. Land Degrad. Dev. 1999, 10, 185–193. [Google Scholar] [CrossRef]
- Li, X.R.; Xiao, H.L.; He, M.Z.; Zhang, J.G. Sand barriers of straw checkerboards for habitat restoration in extremely arid desert regions. Ecol. Eng. 2006, 28, 149–157. [Google Scholar] [CrossRef]
- Li, Y.; Cui, J.; Zhang, T.; Okuro, T.; Drake, S. Effectiveness of sand-fixing measures on desert land restoration in Kerqin Sandy Land, northern China. Ecol. Eng. 2009, 35, 118–127. [Google Scholar] [CrossRef]
- Blight, G.E. Wind erosion of waste impoundments in arid climates and mitigation of dust pollution. Waste Manag. Res. 2008, 26, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Lee, I.; Zhang, L. Biopolymer stabilization of mine tailings for dust control. J. Geotech. Geoenviron. Eng. 2014, 141, 04014100. [Google Scholar] [CrossRef]
- Mendez, M.O.; Maier, R.M. Phytostabilization of mine tailings in arid and semiarid environments—An emerging remediation technology. Environ. Health Perspect. 2008, 116, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Liniger, H.; Studer, R.M.; Moll, P.; Zander, U. Making Sense of Research for Sustainable Land Management; Centre for Development and Environment (CDE), University of Bern, Switzerland and Helmholtz-Centre for Environmental Research GmbH-UFZ: Leipzig, Germany, 2017; ISBN 978-3-944280-98-1. [Google Scholar]
- Gill, T.E. Eolian sediments generated by anthropogenic disturbance of playas: Human impacts on the geomorphic system and geomorphic impacts on the human system. Geomorphology 1996, 17, 207–228. [Google Scholar] [CrossRef]
- Akhlaq, M.; Sheltami, T.R.; Mouftah, H.T. A review of techniques and technologies for sand and dust storm detection. Rev. Environ. Sci. Biotechnol. 2012, 11, 305–322. [Google Scholar] [CrossRef]
- Benedetti, A.; Baldasano, J.M.; Basart, S.; Benincasa, F.; Boucher, O.; Brooks, M.E.; Chen, J.P.; Colarco, P.R.; Gong, S.; Huneeus, N.; et al. Operational dust prediction. In Mineral Dust: A Key Player in the Earth System; Knippertz, P., Stuut, J.B.W., Eds.; Springer: Heidelberg, Germany, 2014; pp. 223–265. ISBN 978-94-017-8978-3. [Google Scholar]
- Webb, N.P.; Herrick, J.E.; Van Zee, J.W.; Courtright, E.M.; Hugenholtz, C.H.; Zobeck, T.M.; Okin, G.S.; Barchyn, T.E.; Billings, B.J.; Boyd, R.; et al. The National Wind Erosion Research Network: Building a standardized long-term data resource for aeolian research, modeling and land management. Aeolian Res. 2016, 22, 23–36. [Google Scholar] [CrossRef]
- Coen, G.M.; Tatarko, J.; Martin, T.C.; Cannon, K.R.; Goddard, T.W.; Sweetland, N.J. A method for using WEPS to map wind erosion risk of Alberta soils. Environ. Model. Softw. 2004, 19, 185–189. [Google Scholar] [CrossRef]
- Mendez, M.J.; Buschiazzo, D.E. Wind erosion risk in agricultural soils under different tillage systems in the semiarid Pampas of Argentina. Soil Tillage Res. 2010, 106, 311–316. [Google Scholar] [CrossRef]
- Martínez-Graña, A.M.; Goy, J.L.; Zazo, C. Cartographic procedure for the analysis of aeolian erosion hazard in natural parks (Central System, Spain). Land Degrad. Dev. 2015, 26, 110–117. [Google Scholar] [CrossRef]
- Mayaud, J.R.; Bailey, R.M.; Wiggs, G.F. A coupled vegetation/sediment transport model for dryland environments. J. Geophys. Res. Earth Surf. 2017, 122, 875–900. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). Sand and Dust Storm Warning Advisory and Assessment System (SDS–WAS): Science and Implementation Plan 2015–2020; WWRP Report 2015-5; Nickovic, S., Cuevas, E., Baldasano, J., Terradellas, E., Nakazawa, T., Baklanov, A., Eds.; World Meteorological Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Korea Meteorological Administration. Asian Dust Warning System. Available online: http://web.kma.go.kr/eng/weather/asiandust/intro.jsp (accessed on 12 June 2017).
- Adger, W.N. Vulnerability. Glob. Environ. Chang. 2006, 16, 268–281. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, X.; Zhao, F.; Shi, P.; Liu, L. Mapping Sand-dust Storm Risk of the World. In World Atlas of Natural Disaster Risk; Springer: Berlin/Heidelberg, Germany, 2015; pp. 115–150. [Google Scholar]
- Middleton, N.; Stringer, L.; Goudie, A.; Thomas, D. The Forgotten Billion: MDG Achievement in the Drylands; UNDP-UNCCD: New York, NY, USA, 2011. [Google Scholar]
- Yu, H.L.; Yang, C.H.; Chien, L.C. Spatial vulnerability under extreme events: A case of Asian dust storm’s effects on children’s respiratory health. Environ. Int. 2013, 54, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.J.; Balluz, L.; Mokdad, A. Association between media alerts of air quality index and change of outdoor activity among adult asthma in six states, BRFSS, 2005. J. Community Health 2009, 34, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Tozer, P.R.; Leys, J. Dust Storms—What do they really cost? Rangel. J. 2013, 35, 131–142. [Google Scholar] [CrossRef]
- Merrifield, A.; Schindeler, S.; Jalaludin, B.; Smith, W. Health effects of the September 2009 dust storm in Sydney, Australia: Did emergency department visits and hospital admissions increase? Environ. Health 2013, 12, 32. [Google Scholar] [CrossRef] [PubMed]
- Thomson, M.C.; Jeanne, I.; Djingarey, M. Dust and epidemic meningitis in the Sahel: A public health and operational research perspective. IOP Conf. Ser. Earth Environ. Sci. 2009, 7, 012017. [Google Scholar] [CrossRef]
- Garcia-Pando, C.P.; Stanton, M.C.; Diggle, P.J.; Trzaska, S.; Miller, R.L.; Perlwitz, J.P.; Baldasano, J.M.; Cuevas, E.; Ceccato, P.; Yaka, P.; et al. Soil dust aerosols and wind as predictors of seasonal meningitis incidence in Niger. Environ. Health Perspect. 2014, 122, 679–686. [Google Scholar] [CrossRef]
- Remy, G. Les fondements écologiques de la ceinture de la méningite cérébro-spinale en Afrique Sud-saharienne. Climat et Santé 1990, 3, 7–21. [Google Scholar]
- Moore, P.S. Meningococcal meningitis in sub-Saharan Africa: A model for the epidemic process. Clin. Infect. Dis. 1992, 14, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Mueller, J.E.; Yaro, S.; Madec, Y.; Somda, P.K.; Idohou, R.S.; Njanpop Lafourcade, B.M.; Drabo, A.; Tarnagda, Z.; Sangaré, L.; Traoré, Y.; et al. Association of respiratory tract infection symptoms and air humidity with meningococcal carriage in Burkina Faso. Trop. Med. Int. Health 2008, 13, 1543–1552. [Google Scholar] [CrossRef] [PubMed]
- Noinaj, N.; Easley, N.C.; Oke, M.; Mizuno, N.; Gumbart, J.; Boura, E.; Evans, R.W. Structural basis for iron piracy by pathogenic Neisseria. Nature 2012, 483, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Thomson, M.C.; Firth, E.; Jancloes, M.; Mihretie, A.; Onoda, M.; Nickovic, S.; Broutin, H.; Sow, S.; Perea, W.; Bertherat, E.; et al. A climate and health partnership to inform the prevention and control of meningoccocal meningitis in sub-Saharan Africa: The MERIT initiative. In Climate Science for Serving Society; Springer: Heidelberg, Germany, 2013; pp. 459–484. ISBN 978-94-007-6691-4. [Google Scholar]
- Vukovic, A.; Vujadinovic, M.; Pejanovic, G.; Andric, J.; Kumjian, M.J.; Djurdjevic, V.; Dacic, M.; Prasad, A.K.; El-Askary, H.M.; Paris, B.C.; et al. Numerical Simulation of ‘An American Haboob’. Atmos. Chem. Phys. 2014, 14, 3211–3230. [Google Scholar] [CrossRef]
- Burritt, B.E.; Hyers, A. Evaluation of Arizona’s highway dust warning system. Geol. Soc. Am. 1981, 186, 281–292. [Google Scholar]
- Janhäll, S. Review on urban vegetation and particle air pollution—Deposition and dispersion. Atmos. Environ. 2015, 105, 130–137. [Google Scholar] [CrossRef]
- Hwang, H.J.; Yook, S.J.; Ahn, K.H. Experimental investigation of submicron and ultrafine soot particle removal by tree leaves. Atmos. Environ. 2011, 45, 6987–6994. [Google Scholar] [CrossRef]
- Lafortezza, R.; Carrus, G.; Sanesi, G.; Davies, C. Benefits and well-being perceived by people visiting green spaces in periods of heat stress. Urban For. Urban Green. 2009, 8, 97–108. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Hoehn, R. Modeled PM 2.5 removal by trees in ten US cities and associated health effects. Environ. Pollut. 2013, 178, 395–402. [Google Scholar] [PubMed]
- Janssen, N.A.H.; Schwartz, J.; Zanobetti, A.; Suh, H.H. Air conditioning and source-specific particles as modifiers of the effect of PM10 on hospital admissions for heart and lung disease. Environ. Health Perspect. 2002, 110, 43. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.I. Socio-Economic Impact Assessment Study of Dust; Chung-Ang University: Seoul, Korea, 2009. (In Korean) [Google Scholar]
- Mani, M.; Pillai, R. Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations. Renew. Sustain. Energy Rev. 2010, 14, 3124–3131. [Google Scholar] [CrossRef]
- Worster, D. Dust Bowl: The Southern Plains in the 1930s; Oxford University Press: Oxford, UK, 2004; ISBN 978-01-951-7488-5. [Google Scholar]
- McLeman, R.A.; Dupre, J.; Ford, L.B.; Ford, J.; Gajewski, K.; Marchildon, G. What we learned from the Dust Bowl: Lessons in science, policy, and adaptation. Popul. Environ. 2014, 35, 417–440. [Google Scholar] [CrossRef] [PubMed]
- Marchildon, G.P.; Kulshreshtha, S.; Wheaton, E.; Sauchyn, D. Drought and institutional adaptation in the Great Plains of Alberta and Saskatchewan, 1914–1939. Nat. Hazards 2008, 45, 391–411. [Google Scholar] [CrossRef]
- Wienhold, B.J.; Power, J.F.; Doran, J.W. Agricultural accomplishments and impending concerns. Soil Sci. 2000, 165, 13–30. [Google Scholar] [CrossRef]
- Ervin, R.T.; Lee, J.A. Impact of conservation practices on airborne dust in the southern high plains of Texas. J. Soil Water Conserv. 1994, 49, 430–437. [Google Scholar]
- Phillips, S.T. Lessons from the dust bowl: Dryland agriculture and soil erosion in the United States and South Africa, 1900–1950. Environ. Hist. 1999, 4, 245–266. [Google Scholar] [CrossRef]
- McCauley, J.F.; Breed, C.S.; Grolier, M.J.; Mackinnon, D.J. The US dust storm of February 1977. Geol. Soc. Am. 1981, 186, 123–148. [Google Scholar]
- Hand, J.L.; Gill, T.E.; Schichtel, B.A. Spatial and seasonal variability in fine mineral dust and coarse aerosol mass at remote sites across the United States. J. Geophys. Res. Atmos. 2017, 122, 3080–3097. [Google Scholar] [CrossRef]
- Knowler, D.; Bradshaw, B. Farmers’ adoption of conservation agriculture: A review and synthesis of recent research. Food Policy 2007, 32, 25–48. [Google Scholar] [CrossRef]
- Stonehouse, P.D. A targeted policy approach to inducing rates of conservation compliance in agriculture. Can. J. Agric. Econ. 1996, 44, 105–119. [Google Scholar] [CrossRef]
- Swinton, S.M. More social capital, less erosion: Evidence from Peru’s Altiplano. Presented at the Annual Meeting of the American Agricultural Economics Association, Tampa, FL, USA, 30 July–2 August 2000. [Google Scholar]
- Sobels, J.; Curtis, A.; Lockie, S. The role of Landcare group networks in rural Australia: Exploring the contribution of social capital. J. Rural Stud. 2001, 17, 265–276. [Google Scholar] [CrossRef]
- Warren, A.; Osbahr, H.; Batterbury, S.; Chappell, A. Indigenous views of soil erosion at Fandou Béri, southwestern Niger. Geoderma 2003, 111, 439–456. [Google Scholar] [CrossRef]
- Lei, D.E.; Shangguan, Z.P.; Rui, L.I. Effects of the grain-for-green program on soil erosion in China. Int. J. Sediment Res. 2012, 27, 120–127. [Google Scholar]
- Dalintai, B.; Yanbo, L.; Jianjun, C. The Eurasian Steppe: History of utilization and policies on the rangeland. In Restoring Community Connections to the Land; Fernández-Giménez, M.E., Wang, X., Baival, B., Klein, J., Reid, R., Eds.; CABI: Wallingford, UK, 2011; pp. 51–68. ISBN 97-818-459-3894-9. [Google Scholar]
- Middleton, N. Rangeland management and climate hazards in drylands: Dust storms, desertification and the overgrazing debate. Nat. Hazards 2016, 1–14. [Google Scholar] [CrossRef]
- Piao, S.; Friedlingstein, P.; Ciais, P.; Viovy, N.; Demarty, J. Growing season extension and its impact on terrestrial carbon cycle in the northern hemisphere over the past 2 decades. Glob. Biogeochem. 2007, 21, GB3018. [Google Scholar] [CrossRef]
- Cao, S. Why large-scale afforestation efforts in China have failed to solve the desertification problem. Environ. Sci. Technol. 2008, 42, 1826–1831. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Xiao, T.; Zhao, Z.; Sun, C.; Liu, J.; Shao, Q.; Wang, J. Effects of grassland restoration programs on ecosystems in arid and semiarid China. J. Environ. Manag. 2013, 117, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Liu, W.; Xu, H.; Wang, Z.; Zhang, H.; Hu, H.; Li, Y. Long-term livestock exclusion facilitates native woody plant encroachment in a sandy semiarid rangeland. Ecol. Evol. 2015, 5, 2445–2456. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Han, J.S.; Ahn, J.Y. The research trend of Asian dust storm (AD) of Korea and recent episode analysis. J. Korean Soc. Atmos. Environ. 2013, 29, 553–573. [Google Scholar] [CrossRef]
- United Nations Convention to Combat Desertification (UNCCD). Regional Master Plan for the Prevention and Control of Dust and Sandstorms in North East Asia; UNCCD Secretariat: Bonn, Germany, 2005; Volume 1. [Google Scholar]
- United Nations Office at Nairobi (UNEP). West Asia Regional Master Plan to Combat Sand and Dust Storms; UNEP: Nairobi, Kenya, 2014. [Google Scholar]
Entrainment | Transport | Deposition |
---|---|---|
Soil loss | Sand-blasting of crops | Salt deposition and groundwater salinization |
Nutrient, seed and fertilizer loss | Radio communication problems | Reduction of reservoir storage capacity |
Crop root exposure | Microwave attenuation | Drinking-water contamination |
Undermining structures | Transport disruption | Burial of structures |
Local climatic effects | Crop growth problems | |
Air pollution | Machinery problems | |
Respiratory problems and eye infections | Reduction of solar power potential | |
Disease transmission (human) | Electrical insulator failure | |
Disease transmission (plants and animals) | Disruption to power supplies |
Control Approach | Examples |
---|---|
Windblown sand | |
Promote deposition | Ditches; fences; tree belts |
Enhance transport | Streamlining techniques; creating a smooth texture over the land surface; erecting panels to deflect air flow |
Reduce sand supply | Surface stabilizing techniques; fences; vegetation |
Deflect moving sand | Fences; tree belts |
Mobile dunes | |
Mechanical removal | Bulldozing |
Dissipation | Reshaping; trenching; surface stabilization techniques |
Immobilization by altering aerodynamic form | Surface stabilization techniques; fences |
Advice |
---|
Avoid exposure if possible |
Stay indoors (preferably in air conditioned buildings) |
Do not exercise (postpone outdoor sports events) |
Follow asthma plans and seek medical help if respiratory or cardiovascular symptoms occur |
Hypothesis | Reference |
---|---|
Increase in invasion rate (i.e., shift from carrier to infected status) due to high dust loads and persistent low humidity damaging immune defenses in the mouth and easing bacterial invasion | [117] |
Higher transmission levels due to changes in living habits, such as proximity of individuals taking refuge from dusty winds | [116] |
Co-occurrence of viral respiratory infections weakening the immune system and easing transmission and invasion by bacteria | [118] |
Neisseria bacteria, responsible for meningitis, require iron-rich dust to grow and become virulent | [119] |
Initiative | Year Established | Jurisdiction | Authority | Purpose/Mission |
---|---|---|---|---|
Alberta No-Till Farmer’s Association | 1978 | Alberta | Nonprofit | Promote use of tillage practices to reduce soil erosion |
Manitoba-North Dakota Zero Tillage Farmer’s Association (MNDZTFA) | 1982 | Manitoba, Canada, and North Dakota, USA | Nonprofit | Publish information to encourage zero-tillage practices |
Alberta Conservation Tillage Society | 1986 | Alberta | Nonprofit | Develop and implement innovative tillage systems |
Saskatchewan Soil Conservation Association | 1987 | Saskatchewan | Nonprofit | Promote soil conservation production systems |
Soil Conservation Council of Canada | 1987 | Canada | Nonprofit | Provide public forum for soil conservation issues |
Alberta Soil Conservation Act | 1988 | Alberta | Provincial | Impose duty on landholders to protect soil resources |
Pembina Valley Conservation District | 1989 | Regional | Nonprofit | Address concerns related to loss of topsoil |
No-Till on the Prairies | 1991 | North America | Nonprofit | Provide information to farmers on adopting zero-tillage |
Zero Tillage Production Manual | 1991 | General | MNDZTFA | Provide answers to questions about zero-tillage farming |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Middleton, N.; Kang, U. Sand and Dust Storms: Impact Mitigation. Sustainability 2017, 9, 1053. https://doi.org/10.3390/su9061053
Middleton N, Kang U. Sand and Dust Storms: Impact Mitigation. Sustainability. 2017; 9(6):1053. https://doi.org/10.3390/su9061053
Chicago/Turabian StyleMiddleton, Nick, and Utchang Kang. 2017. "Sand and Dust Storms: Impact Mitigation" Sustainability 9, no. 6: 1053. https://doi.org/10.3390/su9061053
APA StyleMiddleton, N., & Kang, U. (2017). Sand and Dust Storms: Impact Mitigation. Sustainability, 9(6), 1053. https://doi.org/10.3390/su9061053